Classification from Pairwise Similarity and Unlabeled Data

A. Proof of Lemma 1

From the assumption (2), Ds = {(xs;, x5 ,;)}i°; ~ ps(x,2’). In order to decompose pairwise data into pointwise,
marginalize ps(x, ') with respect to x’:
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Since a pair (s ;, {B/SZ) € Dg is independently and identically drawn, both xg ; and mgz are drawn following ps. O

B. Proof of Theorem 1

To prove Theorem 1, it is convenient to begin with the following Lemma 3.

Lemma 3. The classification risk (1) can be equivalently expressed as

Resp(f) = 5 E [Uf(X)]
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where Exp, ['], E(x x/)~ps |-, and E(x x1)~py, |-] denote expectations over p (X), ps(X, X'), and pp (X, X'), respec-
tively.

Note that the definitions of pp and 7p are first given in Eq. (12).

Proof. Eq. (1) can be transformed into pairwise fashion:
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Both pairs (X,Y) and (X', Y”) are independently and identically distributed from the joint distribution p(x,y). Thus,
Eq. (B.2) can be further decomposed:
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Using Eq. (2), the following equation is obtained:
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Similarly, the following equation is obtained from Eq. (12):
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Combining Egs. (B.3), (B.4) and (B.5), the expected risk R(f) is written as
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Here

e the second term on the RHS of Eq. (B.4) is substituted into the second term in the last line of Eq. (B.3).

o the second term on the RHS of Eq. (B.5) is substituted into the fourth term in the last line of Eq. (B.3).
On the third and fourth term on the RHS of Eq. (B.6),
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Here similarly to derivation of Eq. (B.4),
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Combining Eqgs. (B.7) and (B.8),
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Finally from Egs. (B.6) and (B.9), the expected risk R(f) is written as
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O
Now we give a proof for Theorem 1.
Proof of Theorem 1. By Lemma 3, it is enough to show Rsu ¢(f) = Rpsp.e(f).
From Eq. (11),
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where Ex ., [-] denotes the expectation over the marginal distribution p(X') and the last equality is obtained from Eq. (11).
Eq. (B.11) produces an alternative expression of the expectation over pp (the third term on the RHS of Eq. (B.1)):
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Next, we obtain an alternative expression of the expectation over positive data (the first term in RHS of Eq. (B.1)). The
following two equations (B.13) and (B.14) are useful:
E [{ro0)] = E [0+ B [HUX))], (B.13)
X~p X~py X~p_

which can simply be obtained from Eq. (3).
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which is obtained from Eq. (2). By calculating (B.14) — 7m_ x (B.13) and organizing, we obtain
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Substituting Egs. (B.12) and (B.15) into Eq. (B.1),
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which concludes the proof. The third equality of Eq. (B.16) holds because X and X’ are symmetric and

1427, ~ 1+27_ ~ 1~ ﬁl?()ﬁ-m%ll?()
1o, 10 1m0 = 3, 100 = T

C. Discussion on Variance of Risk Estimator
C.1. Proof of Lemma 2

The statement can be simply confirmed as follows:
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C.2. Proof of Theorem 2

We show Eq. (8) is the variance minimizer of
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Since fip — /i is the variance of -1 =2 Lse(f(®s,i))s b2 — fi3 > 0. Thus, Var(S(f; )) is minimized whena = 1. O

D. Proof of Theorem 3

Since £ is a twice differentiable margin loss, there is a twice differentiable function ¢ : R — R such that £(z,t) = ¥ (tz).
Taking the derivative of
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where & £ w ' ¢(xy ;). Here, the second-order derivative of £(z, ) with respect to z is
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where £ = tz is employed in the second equality and ¢ € {+1, —1} is employed in the last equality. Thus the Hessian of jg
is
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where A = 0 means that a matrix A is positive semidefinite. Positive semidefiniteness of H .J;(w) follows from 9 6“/25,5) >

0
(.- £is convex) and ¢(zy ;)d(zu;) " = 0. Thus Jo(w) is convex. O
E. Derivation of Optimization Problems
E.1. Squared Loss

First, substituting the linear-in-parameter model f(x) = w ' ¢(x) and the squared loss £sq(z,t) = 1 (tz—1)? into Eq. (10),
we obtain the following objective function:
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Taking the derivative with respect to w,

9 ~ 1 1 -
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Solving %jSQ (w) = 0, we obtain the analytical solution:

nu _ s T 1 T
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E.2. Double-Hinge Loss

Using the double-hinge loss {pr (2, t) = max(—tz, max(0, 1 — 1¢z)), we obtain the following objective function:

2ng
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Using slack variables £, 7 € R™Y, the objective function can be rewritten into the following optimization problem:
s

— e )\
in — —————1" Xgw — 17 t o 1Th s 2T
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s.t. 6 > 07 E > 51 + §XU'U), g > XU'LU,

1 1
n>0 n> 51 — QXUw, n > —Xyw,
where > for vectors denotes the element-wise inequality.

Below, we rewrite the optimization problem into the standard QP form. Let v = [w' £7 n']T € R42"U be a objective
variable and
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where [, means k x k identity matrix, Oy ; means k x [ all-zero matrix, 1; is k-dimensional all-one vector, and 0y, is
k-dimensional all-zero vector. Then the optimization problem is

1
min §7TP7 +q' st. Gy <h,
~

which is the standard form of QP.
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F. Proof of Theorem 4

First, we derive the next risk expression for convenience.

Lemma 4. Given any function f : X — R, let Rgy; ,(f) be

Rgy(f) =7s E [ﬁs,e(f(X))]JrXIgp [Lue(f(X))],

X~ps
then Ry ¢(f) = R§U,e<f)'

Proof. The first term on the RHS of Eq. (5) can be transformed as follows:

s E Es,é(f(X))JrﬁS,e(f(X’))] — g {1 E [Ls.0(f(X))] +% E [ﬁs,e(f(X'))]}
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Next, we show the uniform deviation bound, which is useful to derive estimation error bounds. The proof can be found in

the textbooks such as Mohri et al. (2012) (Theorem 3.1).

Lemma 5. Let Z be a random variable drawn from a probability distribution with density u, H = {h : Z — [0, M|}
(M > 0) be a class of measurable functions, {z;}7_, be i.i.d. samples drawn from the distribution with density ji. Then,

with probability at least 1 — 0,
M?log %
<2R(H;n, p) + —5

Let us begin with the estimation error R(f) — R(f*). For convenience, let
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Ry ((f) 2 7sRs ((f) + Rue(f).
Note that
Rsue(f) = Rgy ,(f) (E.1)

by Eq. (5). Then,

~

R(f) — R(f*) = Rsu.¢(f) — Rsu.e(f*) (- Theorem 1)
= (Rsu,e(f) — Rsue(f)) + (Rsu,e(f) — Rsue(f*))
+ (Rsu,e(f*) — Rsu,e(f*))
< (Rsu.e(f) — Rsu.e(f)) + 0+ (Rsu.e(f*) — Rsu.e(f*)) (.- by the definition of f* and f)
< 2sup )RSU,Z(f) - ESU,Z(f)’
fer

= 2sup | Rsy () - Ry o(f)] (- Lemma 4 and Eq. (F.1))
< 27y ;ug ’jo(f) - Ege(f)’ + 2 ;u}; Ry (f) — §U7g(f) (.- subaditivity of sup). (F.2)
€ €

Each term in the last line is bounded in next two lemmas with probability at least 1 — g.
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Lemma 6. Assume the loss function £ is p-Lipschitz with respect to the first argument (0 < p < 00), and all functions
in the model class F are bounded, i.e., there exists a constant Cy, such that |||l < Cy for any f € F. Let Cy =
supse i1y £(Ch, t). For any 6 > 0, with probability at least 1 — S,

4pCr + 1/2C2log 3

sup | R , () — R, ()] <

fer |27T+ - 1|\/%
Proof. By Lemma 5,
R 1 _ 1 2ns~
?‘ég Ry ,(f) - R§,e(f)‘ = 2, —1] ?elg X@;?s [f(f(X))} " g ;f(f@s,i))‘
<'1{w)@mmmm—1ﬁw@mm
1274 — 1| | fer | x~ps 2ns
13
+Jsc1el§ XE;S [(f(X),=1)] - Ins ;f(f(ws,i% -1) }
< ﬁ AR (Lo F;2ns,ps) + QCl;:;ggl ,

where £ o F in the last line means {¢o f | f € F}. The last inequality holds from Lemma 5. By Talagrand’s lemma (Lemma
4.2 in Mohri et al. (2012)),

R(Lo F;2ng, ps) < pAR(F;2ng, ps).

Together with Eq. (13), we obtain

N 1 Cr 2C% log 3
sup | Rz — Rz ' < 4 + 0
Sep 15D = R D= e =37 \ P Vams TV ams

4pCr + 1/2C2log 3

274 — 1]v/2ng
O
Lemma 7. Assume the loss function { is p-Lipschitz with respect to the first argument (0 < p < o0), and all functions
in the model class F are bounded, i.e., there exists a constant Cy, such that || f||.c < Cy for any f € F. Let Cy =
supse i1y £(Ch, t). For any 6 > 0, with probability at least 1 — g,
R 20Cr + 1/3C2?log 3

sup |Ru¢(f) — Rue(f ) <

feF ) ) 2m4 — 1]y/nu
Proof. This lemma can be proven similarly to Lemma 6. O

Combining Lemma 6, Lemma 7 and Eq. (F.2), Theorem 4 is proven. O



