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Abstract
Supervised learning needs a huge amount of la-
beled data, which can be a big bottleneck under
the situation where there is a privacy concern or la-
beling cost is high. To overcome this problem, we
propose a new weakly-supervised learning setting
where only similar (S) data pairs (two examples
belong to the same class) and unlabeled (U) data
points are needed instead of fully labeled data,
which is called SU classification. We show that
an unbiased estimator of the classification risk can
be obtained only from SU data, and the estima-
tion error of its empirical risk minimizer achieves
the optimal parametric convergence rate. Finally,
we demonstrate the effectiveness of the proposed
method through experiments.

1. Introduction
In supervised classification, we need a vast amount of la-
beled data in the training phase. However, in many real-
world problems, it is time-consuming and laborious to label
a huge amount of unlabeled data. To deal with this problem,
weakly-supervised classification (Zhou, 2018) has been ex-
plored in various setups, including semi-supervised classifi-
cation (Chapelle & Zien, 2005; Belkin et al., 2006; Chapelle
et al., 2010; Miyato et al., 2016; Laine & Aila, 2017; Sakai
et al., 2017; Tarvainen & Valpola, 2017; Luo et al., 2018),
multiple instance classification (Li & Vasconcelos, 2015;
Miech et al., 2017; Bao et al., 2018), and positive-unlabeled
(PU) classification (Elkan & Noto, 2008; du Plessis et al.,
2014; 2015; Niu et al., 2016; Kiryo et al., 2017).

Another line of research from the clustering viewpoint is
semi-supervised clustering, where pairwise similarity and
dissimilarity data (a.k.a. must-link and cannot-link con-
straints) are utilized to guide unsupervised clustering to
a desired solution. The common approaches are (i) con-
strained clustering (Wagstaff et al., 2001; Basu et al., 2002;
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Table 1: Explanations of classification and clustering.

Problem Explanation
Classification The goal is to minimize the true risk

(given the zero-one loss) of an inductive
classifier. To this end, an empirical risk
(given a surrogate loss) on the training
data is minimized for training the classi-
fier. The training and testing phases can
be clearly distinguished. Classification
requires the existence of the underlying
joint density.

Clustering The goal is to partition the data at hand
into clusters. To this end, density-
/margin-/information-based measures
are optimized for implementing the low-
density separation based on the clus-
ter assumption. Most of the clustering
methods are designed for in-sample in-
ferencea. Clustering does not need the
underlying joint density.

aDiscriminative clustering methods are designed for out-of-
sample inference, such as maximum margin clustering (Xu et al.,
2005) and information maximization clustering (Krause et al.,
2010; Sugiyama et al., 2011).

2004; Li & Liu, 2009), which utilize pairwise links as con-
straints on clustering. (ii) metric learning (Xing et al., 2002;
Bilenko et al., 2004; Weinberger et al., 2005; Davis et al.,
2007; Li et al., 2008; Niu et al., 2012), which perform
(k-means) clustering on learned metrics (iii) matrix com-
pletion (Yi et al., 2013; Chiang et al., 2015), which recover
unknown entries in a similarity matrix.

Semi-supervised clustering and weakly-supervised classifi-
cation are similar in that they do not use fully-supervised
data. However, they are different from the learning the-
oretic viewpoint—weakly-supervised classification meth-
ods are justified as supervised learning methods, while
semi-supervised clustering methods are still evaluated as
unsupervised learning (see Table 1). Indeed, weakly-
supervised learning methods based on empirical risk min-
imization (du Plessis et al., 2014; 2015; Niu et al., 2016;
Sakai et al., 2017) were shown that their estimation errors
achieve the optimal parametric convergence rate, while such
generalization guarantee is not available for semi-supervised
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clustering methods.

The goal of this paper is to propose a novel weakly-
supervised learning method called SU classification, where
only similar (S) data pairs (two examples belong to the same
class) and unlabeled (U) data points are employed, in order
to bridge these two different paradigms. In SU classification,
the information available for training a classifier is similar to
semi-supervised clustering. However, our proposed method
gives an inductive model, which learns decision functions
from training data and can be applied for out-of-sample
prediction (i.e., prediction of unseen test data). Furthermore,
the proposed method can not only separate two classes but
also identify which class is positive (class identification)
under certain conditions.

SU classification is particularly useful to predict people’s
sensitive matters such as religion, politics, and opinions on
racial issues—people often hesitate to give explicit answers
to these matters, instead indirect questions might be easier
to answer: “Which person do you have the same belief as?”1

For this SU classification problem, our contributions in this
paper are three-fold:

1. We propose an empirical risk minimization method for
SU classification (Section 2). This enables us to obtain
an inductive classifier. Under certain loss conditions to-
gether with the linear-in-parameter model, its objective
function becomes even convex in the parameters.

2. We theoretically establish an estimation error bound for
our SU classification method (Section 4), showing that
the proposed method achieves the optimal parametric
convergence rate.

3. We experimentally demonstrate the practical useful-
ness of the proposed SU classification method (Sec-
tion 5).

Related problem settings are summarized in Figure 1.

2. Classification from Pairwise Similarity and
Unlabeled Data

In this section, we propose a learning method to train a
classifier from pairwise similarity and unlabeled data.

2.1. Preliminaries

We formulate the standard binary classification problem
briefly. Let X ⇢ Rd be a d-dimensional example space
and Y = {+1,�1} be a binary label space. We assume
that labeled data (x, y) 2 X ⇥ Y is drawn from the joint

1 This questioning can be regarded as one type of randomized
response (indirect questioning) techniques (Warner, 1965; Fisher,
1993), which is a survey method to avoid social desirability bias.

Figure 1: Illustrations of SU classification and other related prob-
lem settings.

probability distribution with density p(x, y). The goal of
binary classification is to obtain a classifier f : X ! R
which minimizes the classification risk defined as

R(f) , E
(X,Y )⇠p

[`(f(X), Y )] , (1)

where E(X,Y )⇠p[·] denotes the expectation over the joint
distribution p(X,Y ) and ` : R⇥Y ! R+ is a loss function.
The loss function `(z, t) measures how well the true class
label t 2 Y is estimated by an output of a classifier z 2 R,
generally yielding a small/large value if t is well/poorly
estimated by z.

In standard supervised classification scenarios, we are given
positive and negative training data independently following
p(x, y). Then, based on these training data, the classifica-
tion risk (1) is empirically approximated and the empirical
risk minimizer is obtained. However, in many real-world
problems, collecting labeled training data is costly. The goal
of this paper is to train a binary classifier only from pairwise
similarity and unlabeled data, which are cheaper to collect
than fully labeled data.
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2.2. Pairwise Similarity and Unlabeled Data

First, we discuss underlying distributions of similar data
pairs and unlabeled data points, in order to perform the
empirical risk minimization.

Pairwise Similarity: If x and x0 belong to the same class,
they are said to be pairwise similar (S). We assume that
similar data pairs are drawn following

pS(x,x
0
) = p(x,x0|y = y0 = +1 _ y = y0 = �1)

=

⇡2
+p+(x)p+(x

0
) + ⇡2

�p�(x)p�(x
0
)

⇡2
+ + ⇡2�

, (2)

where ⇡+ , p(y = +1) and ⇡� , p(y = �1) are
the class-prior probabilities satisfying ⇡+ + ⇡� = 1, and
p+(x) , p(x|y = +1) and p�(x) , p(x|y = �1) are
the class-conditional densities. Eq. (2) means that we draw
two labeled data independently following p(x, y), and we
accept/reject them if they belong to the same class/different
classes.

Unlabeled Data: We assume that unlabeled (U) data points
are drawn following the marginal density p(x), which can
be decomposed into the sum of the class-conditional densi-
ties as

p(x) = ⇡+p+(x) + ⇡�p�(x). (3)

Our goal is to train a classifier only from SU data, which we
call SU classification. We assume that we have similar pairs
DS and an unlabeled dataset DU as

DS , {(xS,i,x
0
S,i)}nS

i=1
i.i.d.⇠ pS(x,x

0
),

DU , {xU,i}nU
i=1

i.i.d.⇠ p(x).

We also use a notation eDS , {exS,i}2nS
i=1 to denote pointwise

similar data obtained by ignoring pairwise relations in DS.

Lemma 1. eDS = {exS,i}2nS
i=1 are independently drawn fol-

lowing

epS(x) =
⇡2
+p+(x) + ⇡2

�p�(x)
⇡S

, (4)

where ⇡S , ⇡2
+ + ⇡2

�.

A proof is given in Appendix A.

Lemma 1 states that a similar data pair (xS,x
0
S) is essen-

tially symmetric, and xS,x
0
S can be regarded as being in-

dependently drawn following epS, if we assume the pair
(xS,x

0
S) is drawn following pS. This perspective is impor-

tant when we analyze the variance of the risk estimator
(Section 2.4), and estimate the class-prior (Section 3.2).

2.3. Risk Expression with SU Data

Below, we attempt to express the classification risk (1) only
in terms of SU data. Assume ⇡+ 6= 1

2 , and let è(z), LS,`(z)
and LU,`(z) be

è
(z) , `(z,+1)� `(z,�1),

LS,`(z) ,
1

2⇡+ � 1

è
(z),

LU,`(z) , �
⇡�

2⇡+ � 1

`(z,+1) +

⇡+
2⇡+ � 1

`(z,�1).

Then we have the following theorem.
Theorem 1. The classification risk (1) can be equivalently

expressed as

RSU,`(f) = ⇡S E
(X,X0)⇠pS


LS,`(f(X)) + LS,`(f(X

0
))

2

�

+ E
X⇠p

[LU,`(f(X))] .

A proof is given in Appendix B.

According to Theorem 1, the following is a natural candidate
for an unbiased estimator of the classification risk (1):

bRSU,`(f)

=

⇡S
nS

nSX

i=1

LS,`(f(xS,i)) + LS,`(f(x
0
S,i))

2

+

1

nU

nUX

i=1

LU,`(f(xU,i))

=

⇡S
2nS

2nSX

i=1

LS,`(f(exS,i)) +
1

nU

nUX

i=1

LU,`(f(xU,i)),

(5)

where in the last line we use the decomposed version of
similar pairs eDS instead of DS, since the loss form is sym-
metric.

LS,` and LU,` are illustrated in Figure 2.

2.4. Minimum-Variance Risk Estimator

Eq. (5) is one of the candidates of an unbiased SU risk esti-
mator. Indeed, due to the symmetry of (x,x0

) ⇠ pS(x,x
0
),

we have the following lemma.
Lemma 2. The first term of RSU,`(f), i.e.,

⇡S E
(X,X0)⇠pS


LS,`(f(X)) + LS,`(f(X

0
))

2

�
, (6)

can be equivalently expressed as

⇡S E
(X,X0)⇠pS

[↵LS,`(f(X)) + (1� ↵)LS,`(f(X
0
))] ,

where ↵ 2 [0, 1] is an arbitrary weight.
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z

O

L (z)

L (z)

(a) Squared Loss, ⇡+ = 3
4

z

O

(b) Logistic Loss, ⇡+ = 3
4

z

O

(c) Squared Loss, ⇡+ = 1
4

z

O

(d) Logistic Loss, ⇡+ = 1
4

Figure 2: LS,` and LU,` appearing in Eq. (5) are illustrated with different loss functions and class-priors.

A proof is given in Appendix C.1. By Lemma 2,

⇡S
nS

nSX

i=1

�
↵LS,`(f(xS,i)) + (1� ↵)LS,`(f(x

0
S,i))

 
(7)

is also an unbiased estimator of Eq. (6). Then, a natural
question arises: is the risk estimator (5) best among all ↵?

We answer this question by the following theorem.

Theorem 2. The estimator

⇡S
nS

nSX

i=1

LS,`(f(xS,i)) + LS,`(f(x
0
S,i))

2

(8)

has the minimum variance among estimators in the form

Eq. (7) with respect to ↵ 2 [0, 1].

A proof is given in Appendix C.2.

Thus, the variance minimality (with respect to ↵ in Eq. (7))
of the risk estimator (5) is guaranteed by Theorem 2. We
use this risk estimator in the following sections.

2.5. Practical Implementation

Here, we investigate the objective function when the linear-
in-parameter model f(x) = w>�(x)+w0 is employed as a
classifier, where w 2 Rd and w0 2 R are parameters and � :

Rd ! Rb is basis functions. In general, the bias parameter
w0 can be ignored 2. We formulate SU classification as the
following empirical risk minimization problem using Eq. (5)
together with the `2 regularization:

bw = min

w

bJ`(w), (9)

where

bJ`(w) , ⇡S
2nS

2nSX

i=1

LS,`(w
>�(exS,i))

+

1

nU

nUX

i=1

LU,`(w
>�(xU,i)) +

�

2

kwk2,

(10)

2 Let e
�(x) , [�(x)> 1]> and e

w , [w> w0]
> then

w

>
�(x) + w0 = e

w

> e
�(x).

Table 2: A selected list of margin loss functions satisfying the
conditions in Theorem 3.

Loss name  (m)

Squared loss 1
4 (m� 1)

2

Logistic loss log(1 + exp(�m))

Double hinge loss max(�m,max(0, 1
2 �

1
2m))

and � > 0 is the regularization parameter. We need the
class-prior ⇡+ (included in ⇡S) to solve this optimization
problem. We discuss how to estimate ⇡+ in Section 3.2.

Next, we will investigate appropriate choices of the loss
function `. From now on, we focus on margin loss func-

tions (Mohri et al., 2012): ` is said to be a margin loss func-
tion if there exists  : R! R+ such that `(z, t) =  (tz).

In general, our objective function (10) is non-convex even
if a convex loss function is used for ` 3. However, the next
theorem, inspired by Natarajan et al. (2013) and du Plessis
et al. (2015), states that a certain loss function will result in
a convex objective function.
Theorem 3. If the loss function `(z, t) is a convex margin

loss, twice differentiable in z almost everywhere (for every

fixed t 2 {±1}), and satisfies the condition

`(z,+1)� `(z,�1) = �z,

then

bJ`(w) is convex.

A proof of Theorem 3 is given in Appendix D.

Examples of margin loss functions satisfying the condi-
tions in Theorem 3 are shown in Table 2 (also illustrated in
Figure 3). Below, as special cases, we show the objective
functions for the squared and the double-hinge losses. The
detailed derivations are given in Appendix E.

Squared Loss: The squared loss is `SQ(z, t) = 1
4 (tz�1)2.

Substituting `SQ into Eq. (10), the objective function is

bJSQ(w) = w>
✓

1

4nU
X>

UXU +

�

2

I

◆
w

+

1

2⇡+ � 1

✓
� ⇡S
2nS

1>XS +

1

2nU
1>XU

◆
w,

3 In general, LU,` is non-convex because either
� ⇡�

2⇡+�1 `(·,+1) or ⇡+

2⇡+�1 `(·,�1) is convex and the other
is concave. LS,` is not always convex even if ` is convex, either.
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m

�
(m

)

Figure 3: Comparison of loss functions.

where 1 is the vector whose elements are all ones, I is
the identity matrix, XS , [�(exS,1) · · · �(exS,2nS)]

>, and
XU , [�(xU,1) · · · �(xU,nU)]

>. The minimizer of this
objective function can be obtained analytically as

w =

nU

2⇡+ � 1

·
�
X>

UXU + 2�nUI
��1

✓
⇡S
nS

X>
S 1� 1

nU
X>

U1

◆
.

Thus the optimization problem can be easily implemented
and solved highly efficiently if the number of basis functions
is not so large.

Double-Hinge Loss: Since the hinge loss `H(z, t) =

max(0, 1�tz) does not satisfy the conditions in Theorem 3,
the double-hinge loss `DH(z, t) = max(�tz,max(0, 1

2 �
1
2 tz)) is proposed by du Plessis et al. (2015) as an alterna-
tive. Substituting `DH into Eq. (10), we can reformulate the
optimization problem as follows:

min

w,⇠,⌘
� ⇡S

2nS(2⇡+ � 1)

1>XSw �
⇡�

nS(2⇡+ � 1)

1>⇠

+

⇡+
nU(2⇡+ � 1)

1>⌘ +

�

2

w>w

s.t. ⇠ � 0, ⇠ � 1

2

1+

1

2

XUw, ⇠ � XUw,

⌘ � 0, ⌘ � 1

2

1� 1

2

XUw, ⌘ � �XUw,

where � for vectors denotes the element-wise inequality.
This optimization problem is a quadratic program (QP).
The transformation into the standard QP form is given in
Appendix E.

3. Relation between Class-Prior and SU
Classification

In Section 2, we assume that the class-prior ⇡+ is given in
advance. In this section, we first clarify the relation between
behaviors of the proposed method and ⇡+, then we propose
an algorithm to estimate ⇡+ in case we do not have ⇡+ in
advance.

Table 3: Behaviors of the proposed method on class identification
and class separation, depending on prior knowledge of the class-
prior.

Case Prior knowledge Identification Separation
1 exact ⇡+ 3 3
2 nothing 7 3
3 sign(⇡+ � ⇡�) 3 3

3.1. Class-Prior-Dependent Behaviors of Proposed
Method

We discuss the following three different cases on prior
knowledge of ⇡+ (summarized in Table 3).

(Case 1) The class-prior is given: In this case, we can
directly solve the optimization problem (9). The solution
does not only separate data but also identifies classes, i.e.,
determine which class is positive.

(Case 2) No prior knowledge on the class-prior is given:
In this case, we need to estimate ⇡+ before solving (9). If
we assume ⇡+ > ⇡�, the estimation method in Section 3.2
gives an estimator of ⇡+. Thus, we can regard the larger
cluster as positive class and solve the optimization prob-
lem (9). This time the solution just separates data because
we have no prior information for class identifiability.

(Case 3) Magnitude relation of the class-prior is given:
Finally, consider the case where we know which class has a

larger class-prior. In this case, we also need to estimate ⇡+,
but surprisingly, we can identify classes. For example, if the
negative class has a larger class-prior, first we estimate the
class-prior (let b⇡ be an estimated value). Since Algorithm 1
given in Sec. 3.2 always gives an estimate of the class-
prior of the larger class, the positive class-prior is given as
⇡+ = 1� b⇡. After that, it reduces to Case 1.

Remark: In all of the three cases above, our proposed
method gives an inductive model, which is applicable to
out-of-sample prediction without any modification. On the
other hand, most of the unsupervised/semi-supervised clus-
tering methods are designed for in-sample prediction, which
can only give predictions for data at hand given in advance.

3.2. Class-Prior Estimation from Pairwise Similarity
and Unlabeled Data

We propose a class-prior estimation algorithm only from
SU data. First, let us begin with connecting the pairwise
marginal distribution p(x,x0

) and pS(x,x
0
) when two ex-

amples x and x0 are drawn independently:

p(x,x0
) = p(x)p(x0

)

= ⇡2
+p+(x)p+(x

0
) + ⇡2

�p�(x)p�(x
0
)

⇡+⇡�p+(x)p�(x0
) + ⇡+⇡�p�(x)p+(x0

)

= ⇡SpS(x,x
0
) + ⇡DpD(x,x

0
), (11)
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Algorithm 1 Prior estimation from SU data. CPE is a class-
prior estimation algorithm.

Input: DU = {xU,i}nU
i=1 (samples from p), eDS =

{exS,i}2nS
i=1 (samples from epS)

Output: class-prior ⇡+
⇡S  CPE(DU, eDS)

⇡+  
p
2⇡S�1+1

2

where Eq. (2) was used to derive the last line, ⇡D , 2⇡+⇡�,
and

pD(x,x
0
)

= p(x,x0|(y = +1 ^ y0 = �1) _ (y = �1 ^ y0 = +1))

=

⇡+⇡�p+(x)p�(x0
) + ⇡+⇡�p�(x)p+(x0

)

2⇡+⇡�
. (12)

Marginalizing out x0 in Eq. (11) as Lemma 1, we obtain

p(x) = ⇡SepS(x) + ⇡DepD(x),

where epS is defined in Eq. (4) and epD(x) , (p+(x) +

p�(x))/2. Since we have samples DU and eDS drawn from
p and epS respectively (see Eqs. (3) and (4)), we can estimate
⇡S by mixture proportion estimation4 methods (Scott, 2015;
Ramaswamy et al., 2016; du Plessis et al., 2017).

After estimating ⇡S, we can calculate ⇡+. By the discussion
in Section 3.1, we assume ⇡+ > ⇡�. Then, following
2⇡S � 1 = ⇡S � ⇡D = (⇡+ � ⇡�)2 = (2⇡+ � 1)

2 � 0,
we obtain ⇡+ =

p
2⇡S�1+1

2 . We summarize a wrapper of
mixture proportion estimation in Algorithm 1.

4. Estimation Error Bound
In this section, we establish an estimation error bound for
the proposed method. Hereafter, let F ⇢ RX be a function
class of a specified model.

Definition 1. Let n be a positive integer, Z1, . . . , Zn be

i.i.d. random variables drawn from a probability distribu-

tion with density µ, H = {h : Z ! R} be a class of mea-

surable functions, and � = (�1, . . . ,�n) be Rademacher

variables, i.e., random variables taking +1 and �1 with

even probabilities. Then (expected) Rademacher complexity

of H is defined as

R(H;n, µ) , E
Z1,...,Zn⇠µ

E
�

"
sup

h2H

1

n

nX

i=1

�ih(Zi)

#
.

4 Given a distribution F which is a convex combination of
distributions G and H such that F = (1�)G+H , the mixture
proportion estimation problem is to estimate  2 [0, 1] only with
samples from F and H . In our case, F , H , and  correspond to
p(x), epS(x), and ⇡S, respectively. See, e.g., Scott (2015).

In this section, we assume for any probability density µ, our
model class F satisfies

R(F ;n, µ)  CFp
n

(13)

for some constant CF > 0. This assumption is reason-
able because many model classes such as the linear-in-
parameter model class F = {f(x) = w>�(x) | kwk 
C

w

, k�k1  C
�

} (C
w

and C
�

are positive constants)
satisfy it (Mohri et al., 2012).

Subsequently, let f⇤ , arg min

f2F
R(f) be the true risk min-

imizer, and bf , arg min

f2F
bRSU,`(f) be the empirical risk

minimizer.

Theorem 4. Assume the loss function ` is ⇢-Lipschitz with

respect to the first argument (0 < ⇢ < 1), and all func-

tions in the model class F are bounded, i.e., there exists

a constant Cb such that kfk1  Cb for any f 2 F . Let

C` , supt2{±1} `(Cb, t). For any � > 0, with probability

at least 1� �,

R(

bf)�R(f⇤
)  CF,`,�

✓
2⇡Sp
2nS

+

1p
nU

◆
, (14)

where

CF,`,� =

4⇢CF +

q
2C2

` log
4
�

|2⇡+ � 1| .

A proof is given in Appendix F.

Theorem 4 shows that if we have ⇡+ in advance, our
proposed method is consistent, i.e., R(

bf) ! R(f⇤
) as

nS ! 1 and nU ! 1. The convergence rate is
Op(1/

p
nS + 1/

p
nU), where Op denotes the order in

probability. This order is the optimal parametric rate for
the empirical risk minimization without additional assump-
tions (Mendelson, 2008).

5. Experiments
In this section, we empirically investigate the performance
of class-prior estimation and the proposed method for SU
classification.

Datasets: Datasets are obtained from the UCI Machine

Learning Repository (Lichman, 2013), the LIBSVM (Chang
& Lin, 2011), and the ELENA project

5. We randomly
subsample the original datasets, to maintain that similar
pairs consist of positive and negative pairs with the ratio of
⇡2
+ to ⇡2

� (see Eq. (2)), while the ratios of unlabeled and
test data are ⇡+ to ⇡� (see Eq. (3)).

5
https://www.elen.ucl.ac.be/neural-nets/

Research/Projects/ELENA/elena.htm

https://www.elen.ucl.ac.be/neural-nets/Research/Projects/ELENA/elena.htm
https://www.elen.ucl.ac.be/neural-nets/Research/Projects/ELENA/elena.htm
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n + n n + n

Figure 4: Estimation errors of the class-prior (absolute value of
difference between true class-prior and estimated class-prior) from
SU data over 100 trials are plotted in the vertical axes. For all
experiments, true class-prior ⇡+ is set to 0.7.

5.1. Class-Prior Estimation

First, we study empirical performance of class-prior estima-
tion. We conduct experiments on benchmark datasets. Dif-
ferent dataset sizes {200, 400, 800, 1600} are tested, where
half of the data are S pairs and the other half are U data.

In Figure 4, KM1 and KM2 are plotted, which are proposed
by Ramaswamy et al. (2016). We used them as CPE in
Algorithm 1 6. Since ⇡S = ⇡2

++⇡2
� = 2(⇡+� 1

2 )
2
+

1
2 �

1
2 ,

we use additional heuristic to set �left = 2 in Algorithm 1
of Ramaswamy et al. (2016).

5.2. Classification Complexity

We empirically investigate our proposed method in terms of
the relationship between classification performance and the
number of training data. We conduct experiments on bench-
mark datasets with the fixed number of S pairs (fixed to 200),
and the different numbers of U data {200, 400, 800, 1600}.

The experimental results are shown in Figure 5. It indicates
that the classification error decreases as nU grows, which
well agree with our theoretical analysis in Theorem 4. Fur-
thermore, we observe a tendency that classification error
becomes smaller as the class-prior becomes farther from 1

2 .
This is because CF,`,� in Eq. (14) has the term |2⇡+ � 1| in
the denominator, which will make the upper bound looser
when ⇡+ is close to 1

2 .

The detailed setting about the proposed method is described
below. Our implementation is available at https://
github.com/levelfour/SU_Classification.

Proposed Method (SU): We use the linear-in-input model
f(x) = w>x + b. In Section 5.2, the squared loss is
used, and ⇡+ is given (Case 1 in Table 3). In Section 5.3,
the squared loss and the double-hinge loss are used, and
the class-prior is estimated by Algorithm 1 with KM2 (Ra-
maswamy et al., 2016) (Case 2 in Table 3). The regulariza-

6We used the author’s implementations published in
http://web.eecs.umich.edu/

˜

cscott/code/

kernel_CPE.zip.

tion parameter � is chosen from {10�1, 10�4, 10�7}.

To choose hyperparameters, 5-fold cross-validation is used.
Since we do not have any labeled data in the training phase,
the validation error cannot be computed directly. Instead,
Eq. (5) equipped with the zero-one loss `01(·) =

1
2 (1 �

sign(·)) is used as a proxy to estimate the validation error. In
each experimental trial, the model with minimum validation
error is chosen.

5.3. Benchmark Comparison with Baseline Methods

We compare our proposed method with baseline methods
on benchmark datasets. We conduct experiments on each
dataset with 500 similar data pairs, 500 unlabeled data, and
100 test data. As can be seen from Table 4, our proposed
method outperforms baselines for many datasets. The de-
tails about the baseline methods are described below.

Baseline 1 (KM): As a simple baseline, we consider k-
means clustering (MacQueen, 1967). We ignore pair infor-
mation of S data and apply k-means clustering with k = 2

to U data.

Baseline 2 (ITML): Information-theoretic metric learn-
ing (Davis et al., 2007) is a metric learning method by
regularizing the covariance matrix based on prior knowl-
edge, with pairwise constraints. We use the identity matrix
as prior knowledge, and the slack variable parameter is fixed
to � = 1, since we cannot employ the cross-validation with-
out any class label information. Using the obtained metric,
k-means clustering is applied on test data.

Baseline 3 (SERAPH): Semi-supervised metric learning
paradigm with hyper sparsity (Niu et al., 2012) is another
metric learning method based on entropy regularization.
Hyperparameter choice follows SERAPHhyper. Using the
obtained metric, k-means clustering is applied on test data.

Baseline 4 (3SMIC): Semi-supervised SMI-based cluster-
ing (Calandriello et al., 2014) models class-posteriors and
maximizes mutual information between unlabeled data at
hand and their cluster labels. The penalty parameter � and
the kernel parameter t are chosen from {10�2, 100, 102}
and {4, 7, 10}, respectively, via 5-fold cross-validation.

Baseline 5 (DIMC): DirtyIMC (Chiang et al., 2015) is a
noisy version of inductive matrix completion, where the sim-
ilarity matrix is recovered from a low-rank feature matrix.
Similarity matrix S is assumed to be expressed as UU>,
where U is low-rank feature representations of input data.
After obtaining U , k-means clustering is conducted on U .
Two hyperparameters �M ,�N in Eq. (2) in (Chiang et al.,
2015) are set to �M = �N = 10

�2.

Baseline 6 (IMSAT): Information maximizing self-
augmented training (Hu et al., 2017) is an unsupervised
learning method to make a probabilistic classifier that maps

https://github.com/levelfour/SU_Classification
https://github.com/levelfour/SU_Classification
http://web.eecs.umich.edu/~cscott/code/kernel_CPE.zip
http://web.eecs.umich.edu/~cscott/code/kernel_CPE.zip
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Figure 5: Average classification error (vertical axes) and standard error (shaded areas) over 50 trials. Different nU 2
{200, 400, 800, 1600} are tested, while nS is fixed to 200. For each dataset, results with different class-priors (⇡+ 2 {0.1, 0.4, 0.7}) are
plotted, which is assumed to be known in advance. Dataset “phoneme” does not have a plot for ⇡+ = 0.1 because the number of data in
the original dataset is insufficient to subsample SU dataset with ⇡+ = 0.1.

Table 4: Mean accuracy and standard error of SU classification on different benchmark datasets over 20 trials. For all experiments,
class-prior ⇡+ is set to 0.7. The proposed method does not have oracle ⇡+ in advance, instead estimating it. Performances are measured
by the clustering accuracy 1�min(r, 1� r), where r is error rate. Bold-faces indicate outperforming methods, chosen by one-sided t-test
with the significance level 5%. The result of SERAPH with “w8a” is unavailable due to high-dimensionality and memory constraints.

SU(proposed) Baselines

Dataset Dim Squared Double-hinge KM ITML SERAPH 3SMIC DIMC IMSAT(linear)
adult 123 64.5 (1.2) 84.5 (0.8) 58.1 (1.1) 57.9 (1.1) 66.5 (1.7) 58.5 (1.3) 63.7 (1.2) 69.8 (0.9)

banana 2 67.5 (1.2) 68.2 (1.2) 54.3 (0.7) 54.8 (0.7) 55.0 (1.1) 61.9 (1.2) 64.3 (1.0) 69.8 (0.9)
cod-rna 8 82.8 (1.3) 71.0 (0.9) 63.1 (1.1) 62.8 (1.0) 62.5 (1.4) 56.6 (1.2) 63.8 (1.1) 69.1 (0.9)
higgs 28 55.1 (1.1) 69.3 (0.9) 66.4 (1.6) 66.6 (1.3) 63.4 (1.1) 57.0 (0.9) 65.0 (1.1) 69.7 (1.4)
ijcnn1 22 65.5 (1.3) 73.6 (0.9) 54.6 (0.9) 55.8 (0.7) 59.8 (1.2) 58.9 (1.3) 66.2 (2.2) 68.5 (1.1)
magic 10 66.0 (2.0) 69.0 (1.3) 53.9 (0.6) 54.5 (0.7) 55.0 (0.9) 59.1 (1.4) 63.1 (1.1) 70.0 (1.1)

phishing 68 75.0 (1.4) 91.3 (0.6) 64.4 (1.0) 61.9 (1.1) 62.4 (1.1) 60.1 (1.3) 64.8 (1.4) 69.4 (0.8)
phoneme 5 67.8 (1.5) 70.8 (1.0) 65.2 (0.9) 66.7 (1.4) 69.1 (1.4) 61.3 (1.1) 64.5 (1.2) 69.2 (1.1)
spambase 57 69.7 (1.4) 85.5 (0.5) 60.1 (1.8) 54.4 (1.1) 65.4 (1.8) 61.5 (1.3) 63.6 (1.3) 70.5 (1.1)

susy 18 59.8 (1.3) 74.8 (1.2) 55.6 (0.7) 55.4 (0.9) 58.0 (1.0) 57.1 (1.2) 65.2 (1.0) 70.4 (1.2)
w8a 300 62.1 (1.5) 86.5 (0.6) 71.0 (0.8) 69.5 (1.5) 0.0 (0.0) 60.5 (1.5) 65.0 (2.0) 70.2 (1.2)

waveform 21 77.8 (1.3) 87.0 (0.5) 56.1 (0.8) 54.8 (0.7) 56.5 (0.9) 56.5 (0.9) 65.0 (0.9) 69.7 (1.1)

similar data to similar representations, combining informa-
tion maximization clustering with self-augmented training,
which make the predictions of perturbed data close to the
predictions of the original ones. Instead of data perturba-
tion, self-augmented training can be applied on S data to
make each pair of data similar. Here the logistic regressor
p
✓

(y|x) = (1 + exp(�✓>x))�1 is used as a classification
model, where ✓ is parameters to learn. Trade-off parameter
� is set to 1.

Remark: KM, ITML, and SERAPH rely on k-means, which
is trained by using only training data. Test prediction is
based on the metric between test data and learned cluster
centers. Among the baselines, DIMC can only handle in-
sample prediction, so it is trained by using both training and
test data at the same time.

6. Conclusion
In this paper, we proposed a novel weakly-supervised learn-
ing problem named SU classification, where only similar
pairs and unlabeled data are needed. SU classification even
becomes class-identifiable under a certain condition on the
class-prior (see Table 3). Its optimization problem with the
linear-in-parameter model becomes convex if we choose cer-
tain loss functions such as the squared loss and the double-
hinge loss. We established an estimation error bound for the
proposed method, and confirmed that the estimation error
decreases with the parametric optimal order, as the number
of similar data and unlabeled data becomes larger. We also
investigated the empirical performance and confirmed that
our proposed method performs better than baseline methods.
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