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A. General Form of BOCS
In this section we describe the general form of BOCS that
handles models of order larger than two as well as categori-
cal and integer-valued variables.

So far, we have focused our presentation on binary variables,
i.e., D = {0, 1}d or equivalently, D = {−1,+1}d, that
allow efficient encodings of many combinatorial structures
as demonstrated above.

We begin with a description of how to incorporate categor-
ical variables into our statistical model. Let I denote the
indices of categorical variables. Consider a categorical vari-
able xi with i ∈ I that takes values in Di = {ei1, . . . , eimi

}.
We introduce mi new binary variables xij with xij = 1
if xi = eij and xij = 0 otherwise. Note that

∑
j xij = 1

for all i ∈ I since the variable takes exactly one value, and
the dimensionality of the binary variables increases from d
to d− |I|+

∑
i∈Imi.

BOCS uses the sparse Bayesian linear regression model for
binary variables proposed in Sect. 3.1 and samples αt in
each iteration t. When searching for the next x(t) that opti-
mizes the objective value for αt, we need to exert additional
care: observe that running SA to optimize the binary vari-
ables might result in a solution that selects more than one
element in Di, or none at all, and therefore would not corre-
spond to a feasible assignment to the categorical variable xi.

Instead, we undo the above expansion: SA operates on d-
tuples xwhere each xi with i ∈ I takes values in its original
domain Di. Then the neighborhood N(x) of any tuple x
is given by all vectors where at most one variable differs
in its assignment. To evaluate fαt

(x) + P(x), we leverage
this correspondence between categorical variables and their
‘binary representation’.

Note that integer-valued variables can be handled naturally
by the regression model. For the optimization of the acquisi-
tion criterion, simulated annealing uses the same definition
of the neighborhood N(x) as in the case of categorical vari-
ables.

Next we show how to extend the BOCS algorithm to models
that contain monomials of length larger than two. In this
case we have

fα(x) =
∑
S∈2D

αS
∏
i∈S

xi,

where 2D denotes the power set of the domain and αS is a
real-valued coefficient.

Following the description of BOCS for second-order models,
the regression model is obtained by applying the sparsity-
inducing prior described in Sect. 3.1. Then, in each itera-
tion t, we sample αt from the posterior over the regression
coefficients and now search for an x(t) that approximates

max
x∈D

∑
S∈2D

αS
∏
i∈S

xi − λP(x).

Since we can evaluate the objective value fαt(x)− λP(x)
at any x efficiently, we may use simulated annealing again
to find an approximate solution to the acquisition criterion.

B. Evaluation of Higher Order Models
We point out that the problems studied in Sect. 4.2, 4.3,
and 4.4 have natural interactions of order higher than two
between the elements that we optimize over. To highlight
these interactions, we measure the number of regression
coefficients that have significant weight (i.e., values |αi| ≥
0.1) with the sparse regression model of different orders.

As an example, we fit the model using 100 samples from a
random instance of the Ising model presented in Sect. 4.2.
Typically, four out of 24 linear terms, 28 out of 300 second-
order terms, and 167 out of 2048 third-order terms have
value of at least 0.1. Here we note the importance of the
sparsity-inducing prior to promote a small number of param-
eters in order to reduce the variance in the model predictions
(cp. Sect. 3.1).

We also examine how BOCS performs when equipped with
a statistical model of higher order. Our implementation
follows Sect. 3.1 and uses simulated annealing to search
for an optimizer of the acquisition criterion as described in
Sect. A and in Sect. 3.4.

Fig. 8 compares the performances of the BOCS-SA algo-
rithm on the aero-structural benchmark with a second and
third-order model. The second-order model has a lower
number of coefficients that can be estimated with lower
variance given few training samples. On the other hand,
a statistical model of higher order is able to capture more
interactions between the active coupling variables but may
require more samples for a sufficient model fit. Thus, it is
not surprising that BOCS-SA performs better initially with
the second-order model. As the number of samples grows
larger, the third order model obtains better results.

We also evaluate BOCS-SA with higher order models for
the Ising benchmark presented in Sect. 4.2. Fig. 9 contrasts
the performances of the BOCS-SA algorithm for λ = 0
with a first order, a second-order, and a third-order statistical
model. All results are averaged over 100 instances of the
Ising model. Fig. 10 summarizes the results for λ = 10−2.
Interestingly, the third-order model already performs sim-
ilarly to the second-order model for this problem with a
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Figure 8. Performance of BOCS-SA on the aero-structural bench-
mark for λ = 10−2 with second and third-order statistical models.
As the number of samples increases, BOCS-SA with the third-
order model achieves better results.

smaller number of data points, although it exhibits a larger
variability in the performance.

Figure 9. Performance of BOCS-SA for the Ising model with λ=0.
After 150 iterations, BOCS-SA with the third order model per-
forms better on average.

These results provide numerical evidence that a second-
order model provides a good trade-off of model expressive-
ness and accuracy for these problems when data is limited.

C. Wall-clock Time Performance
In this section, we compare the wall-clock times required by
BOCS and EI for the Ising benchmark presented in Sect. 4.2.
The wall-clock time is computed as the first time each in-
stance of the algorithm reaches an objective value of 0.01 for
λ = 0, and 10−4. The average results over 100 runs of each
algorithm and the 95% confidence intervals are presented in
Table 4.

The results demonstrate that BOCS is considerably faster

Figure 10. Performance of BOCS-SA on the Ising model with
λ=10−2. After 150 iterations, the third order models typically
leads to better results.

Table 4. Wall-clock time required by the algorithms presented in
Sect. 3 for the 24-dimensional Ising model benchmark. BOCS-SA
and BOCS-SDP are considerably more efficient than EI.

λ EI BOCS-SA BOCS-SDP

0 404.2± 49.1 45.8 ± 12.4 115.6± 18.1
10−4 412.9± 55.8 62.1 ± 16.5 104.6± 16.7

than EI. BOCS-SA is at least seven times faster, while
BOCS-SDP is still four times faster. Even for a problem
with 24 binary variables, the cost of finding an optimizer of
the acquisition function is prohibitively large for EI.

D. Descriptions of Benchmark Problems
In this section, we provide more details on the benchmark
problems studied in Sect. 4.

D.1. Sparsification of Ising Models

To evaluate the objective function for the Ising model (see
Sect. 4.2), we compute the KL divergence between models
p(z) and qx(z), that are defined by their interaction matrices
Jp and Jq, respectively. To do so, we pre-compute the
second moments of the random variables in the original
model given by Ep[zizj ] and use these together with the
differences in the interaction matrices to evaluate the first
term in the KL divergence. The second term in the objective
is given by the log difference of the partition functions,
log(Zq/Zp), where Zp is constant for each x and only needs
to be evaluated once. Zq is the normalizing constant for the
approximating distribution and is given by

Zq =
∑

z∈{−1,1}n
exp(zTJqz). (8)

In this work we do not restrict the class of distributions to be
defined over subgraphs Gq whose normalizing constants can
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be computed efficiently (e.g., mean-field approximations).
Therefore, in general, computing Zq requires summing an
exponential number of terms with respect to n, making this
term and the KL divergence expensive to evaluate.

Furthermore, the objective function above only measures
the distance between p(z) and an approximating distribution
defined over a subgraph while still using the same parame-
ters, i.e., if Jqij is non-zero then it has the same value as the
corresponding entry in Jp.

D.2. Contamination Control

The objective in this problem is to minimize the cost of
prevention efforts while asserting that the contamination
level does not exceed certain thresholds with sufficiently
high probability. These latter constraints are evaluated by
running T Monte Carlo simulations and counting the num-
ber of runs that exceed the specified upper limits for the
contamination. Each set of Monte Carlo runs defines an in-
stance of the objective function in Eq. (7) that we optimize
with respect to x using the various optimization algorithms
presented in Sect. 3. In our studies we followed the rec-
ommended problem parameters that are provided by the
SimOpt Library (Hu et al., 2010).

D.3. Aero-structural Multi-Component Problem

The OpenAeroStruct model developed by (Jasa et al., 2018)
computes three output variables for each set of random in-
put parameters. In this study, our objective is to evaluate
the change in the probability distribution of these outputs
for each set of active coupling variables between the com-
ponents of the computational model, x. We denote the
distribution of the outputs in the reference model by πy
(i.e., with all active coupling variables) and the decoupled
model by πxy. The difference in these probability distribu-
tions is measured by the KL divergence and is denoted by
DKL(πy||πxy).

While the KL divergence can be estimated to arbitrary ac-
curacy with Monte Carlo simulation and density estimation
techniques, in this study we follow Baptista et al. (2018)
and rely on an approximation of the objective. This ap-
proximation linearizes the components of the model and
propagates the uncertainty in the Gaussian distributed in-
put variables to characterize the Gaussian distribution for
the outputs. By repeating this process for the reference
and decoupled models, an estimate for the KL divergence
can be computed in closed form between the two multi-
variate Gaussian distributions. However, the linearization
process still requires computing gradients with respect to
high-dimensional internal state variables within the model
and is thus computationally expensive.

For more information on how to evaluate the approximate

KL divergence as well as its numerical performance in prac-
tice for several engineering problems, we refer the reader
to Baptista et al. (2018).

E. Maximum Likelihood Estimate for the
Regression Coefficients

In Sect. 3.1 we proposed a Bayesian treatment of the regres-
sion coefficients α in Eq. (1). Here we discuss an alternative
approach based on a point-estimate, e.g., a maximum like-
lihood estimate (MLE). Suppose that we have observed
(x(i), f(x(i))) for i = 1, . . . , N . The maximum likelihood
estimator assumes that the discrepancy between f(x) and
the statistical model is represented with an additive error.
This error is supposed to follow a normal distribution with
mean zero and known finite variance σ2. To compute this
estimator, we stack the p predictors of all N samples to
obtain X ∈ {0, 1}N×p. Then the regression coefficients α
are obtained by the least-squares estimator

αMLE = (XTX)−1(XTy), (9)

where y ∈ RN is the vector of function evaluations.

While the parameters of this model can be efficiently es-
timated for a small number of evaluations, the MLE only
provides a uniform estimate of σ2 for the variance of the co-
efficients. On the other hand, the Bayesian models described
in Section 3.1 better characterize the joint uncertainty of
all parameters α and σ2 in order to capture the discrepancy
of the generative model. BOCS leverages this uncertainty
by sampling from the posterior distribution over the coef-
ficients. This sampling allows BOCS to better explore the
combinatorial space of models and find a global optimum
of the objective function. This is also contrasted with using
a variance of σ2 to sample the coefficients independently,
which may lead to uninformative models that do not account
for the correlation between coefficients that is captured by
the Bayesian models. Furthermore, we note that only us-
ing the MLE coefficients from (9) in BOCS often results
in purely exploitative behavior that fails to find the global
optimum, as observed in Fig. 2.

F. Validation of the Regression Models
We now validate models of order two proposed in Sect. 3.1
and Sect. E for each benchmark considered in Sect. 4. The
figures compare the statistical models based on the maxi-
mum likelihood estimate, standard Bayesian linear regres-
sion and sparse Bayesian linear regression based on the
sparsity-inducing prior introduced in Sect. 3.1. The stan-
dard Bayesian linear regression model supposes a joint prior
for the parameters of P (α, σ2) = P (α|σ2)P (σ2), where
α|σ2 ∼ N (µα, σ

2Σα) and σ2 ∼ IG(a, b) have a normal
and inverse-gamma distribution respectively. Given the
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same data model as in Sect. 3.1, the joint posterior of α
and σ2 has a normal-inverse-gamma form.

We compare the average absolute approximation error of
these three regression models on a test set ofM = 50 points,
varying the number of training points.

F.1. Validation on Binary Quadratic Programming.

We first evaluate the regression models on an instance of
the test function from Sect. 4.1, using a set of N = 40
training samples. Fig. 11 depicts: the true function values
(black), the predictions of the MLE estimator (red), and
the mean and standard deviation of the Bayesian linear
regression model (green) and of the sparse regression model
(blue). The regression model with the sparsity-inducing
prior (blue) achieves the best prediction of the true values
(black). This figure empirically demonstrates the ability of

Figure 11. Test error of quadratic test problem (Lc = 1) for differ-
ent α estimators. The Bayesian regression with a sparsity-inducing
prior (blue) performs better than the Bayesian linear regression
model (green) and the MLE estimator (red).

the model to accurately capture the effect of binary coupling
between input variables. Although the MLE also provides
good estimates, as we discuss in Sect. 4, the performance
of the Bayesian optimization process is drastically impaired
when using the MLE estimator instead of samples from the
posterior of the regression coefficients, since the uncertainty
in the model is not reflected in the former.

We now compare the average test error of M = 50 points
with an increasing size of the training set in Fig. 12. The
results are averaged over 30 random instances of the binary
quadratic problem (BQP) with Lc ∈ [1, 10, 100]. As N
increases, the test error is converging for all estimators. We
note that for a quadratic objective function, the quadratic
model fα(x) closely interpolates the function with a suf-
ficient number of training points, resulting in low test er-
ror for the MLE estimator. We note that for this lower
d = 10-dimensional test problem, standard Bayesian linear
regression (green) resulted in similar accuracy as the sparse

estimator (blue).

Figure 12. Test error of quadratic test problem with increasing size
of training set. Standard Bayesian regression (green) and sparse
regression (blue) perform similarly as N increases for the d = 10
quadratic test problem.

F.2. Validation on the Ising Problem.

For the Ising model with d = 24 edges, we examine the
test error of M = 50 points with an increasing size of the
training set; see Fig. 13. The results are averaged over 10
models with randomly drawn edge weights as discussed in
Section 4.2 and the 95% confidence intervals of the mean
error are also reported in the error bars. As compared to
the results for the BQP, the sparse estimator provides lower
test errors for this higher-dimensional problem, warranting
its use over Bayesian linear regression in the BOCS algo-
rithm. This reduction in test error can be attributed to the
shrinkage of coefficients with near-zero values from the
sparsity-inducing prior (Carvalho et al., 2010).

Figure 13. Test error of Ising model for different α estimators. The
sparse estimator (blue) provides lower errors on the test set than
standard Bayesian linear regression (red).

F.3. Validation on the Contamination Control Problem.

The test error with increasing training set size is plotted in
Fig. 14 for the contamination control problem with d = 20
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stages and T = 103 Monte Carlo samples for approximating
the probability in the objective.

With increasing N , the variance in the values of all esti-
mated coefficients decreases, which results in lower test set
error as observed for the MLE and Bayesian linear regres-
sion. A similar behavior is also seen for the sparse estimator
with a large reduction in the error offset for small values
of N . This suggests that the objective can be well approxi-
mated by the model described in Section 3.1 with a sparse
set of interaction terms. As a result, the sparsity-inducing
prior learns the set of non-zero terms and the test set error
is dominated by the variance of the few remaining terms.
It seems advantageous for BOCS to have a more accurate
model based on this sparse prior when N is small.

Figure 14. Test error of contamination control problem for dif-
ferent α estimators. The model based on the sparsity-inducing
prior (blue) provides the best performance for approximating the
objective.

F.4. Validation on the Aero-structural Problem.

For the aero-structural problem in Section 4.4, the average
absolute test set error for M = 50 samples is presented in
Fig. 15. With an increasing number of training samples,
this problem has similar performance for the four different
estimators. We note that for large N , the test set error of the
α estimators for this problem begin to plateau with more
training samples. This is an indication of the bias present
in the statistical model of order two, and that it may be
advantageous to use a higher order model to approximate
the objective within BOCS, as observed in Fig. 8 with greater
N . While the order two model may be computationally
efficient, future work will address adaptive switching to
a higher order when there are enough training samples to
estimate its parameters with low variance.

Figure 15. Test error of aero-structural problem for different α
estimators. The MLE (red), standard Bayesian linear regression
(green) and sparse linear regression (blue) produce similar test
error results.


