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A. Further experimental results

Figure A.1. A simple toy problem where SIGNSGD converges faster than SGD. The objective function is just a quadratic f(x) =

1
2x

2

for x 2 R100. The gradient of this function is just g(x) = x. We construct an artificial stochastic gradient by adding Gaussian noise
N (0, 100

2
) to only the first component of the gradient. Therefore the noise is extremely sparse. The initial point is sampled from a unit

variance spherical Gaussian. For each algorithm we tune a separate, constant learning rate finding 0.001 best for SGD and 0.01 best for
SIGNSGD. SIGNSGD appears more robust to the sparse noise in this problem. Results are averaged over 50 repeats with ±1 standard
deviation shaded.

Figure A.2. Measuring gradient density via ratio of norms, over a range of datasets and architectures. For each network, we take a point in
parameter space provided by the Xavier initialiser (Glorot & Bengio, 2010). We do a full pass over the data to compute the full gradient at
this point. It is remarkably dense in all cases.
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Figure A.3. CIFAR-10 results using SIGNUM to train a Resnet-20 model. Top: validation accuracies from a hyperparameter sweep on a
separate validation set carved out from the training set. We used this to tune initial learning rate, weight decay and momentum for all
algorithms. All other hyperparameter settings were chosen as in (He et al., 2016a) as found favourable for SGD. The hyperparameter
sweep for other values of momentum is plotted in Figure A.4 of the supplementary. Bottom: there is little difference between the final test
set performance of the algorithms. SIGNUM closely resembles ADAM in all of these plots.
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Figure A.4. Results of a massive grid search over hyperparameters for training Resnet-20 (He et al., 2016a) on CIFAR-10 (Krizhevsky,
2009). All non-algorithm specific hyperparameters (such as learning rate schedules) were set as in (He et al., 2016a). In ADAM, �2 and ✏

were chosen as recommended in (Kingma & Ba, 2015). Data was divided according to a {45k/5k/10k} {train/val/test} split. Validation
accuracies are plotted above, and the best performer on the validation set was chosen for the final test run (shown in Figure A.3). All
algorithms at the least get close to the baseline reported in (He et al., 2016a) of 91.25%. Note the broad similarity in general shape of the
heatmap between ADAM and SIGNSGD, supporting a notion of algorithmic similarity. Also note that whilst SGD has a larger region of
very high-scoring hyperparameter configurations, SIGNSGD and ADAM appear stable over a larger range of learning rates. Notice that the
SGD heat map shifts up for increasing momentum, since the implementation of SGD in the mxnet deep learning framework actually
couples the momentum and learning rate parameters.
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B. Proving the convergence rate of SIGNSGD

Theorem 1 (Non-convex convergence rate of SIGNSGD). Run algorithm 1 for K iterations under Assumptions 1 to
3. Set the learning rate and mini-batch size (independently of step k) as
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Let N be the cumulative number of stochastic gradient calls up to step K, i.e. N = O(K2
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Proof. First let’s bound the improvement of the objective during a single step of the algorithm for one instantiation of the
noise. I[.] is the indicator function, g
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denotes the ith component of the true gradient g(x
k
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is a stochastic sample
obeying Assumption 3.

First take Assumption 2, plug in the step from Algorithm 1, and decompose the improvement to expose the stochasticity-
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Next we find the expected improvement at time k + 1 conditioned on the previous iterate.
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So the expected improvement crucially depends on the probability that each component of the sign vector is correct, which
is intuitively controlled by the relative scale of the gradient to the noise. To make this rigorous, first relax the probability,
then use Markov’s inequality followed by Jensen’s inequality:
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refers to the variance of the kth stochastic gradient estimate, computed over a mini-batch of size n
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. Therefore, by
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We now substitute these results and our learning rate and mini-batch settings into the expected improvement:
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Now extend the expectation over randomness in the trajectory, and perform a telescoping sum over the iterations:
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We can rearrange this inequality to yield the rate:
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Since we are growing our mini-batch size, it will take N = O(K2
) gradient calls to reach step K. Substitute this in, square

the result, and we are done.

C. Large and small batch SGD

Algorithm C.1 SGD
Input: learning rate �, current point x

k

g̃
k

 stochasticGradient(x
k

)

x
k+1  x

k

� � g̃
k

For comparison with SIGNSGD theory, here we present non-convex convergence rates for SGD. These are classical results
and we are not sure of the earliest reference.

We noticeably get exactly the same rate for large and small batch SGD when measuring convergence in terms of
number of stochastic gradient calls. Although the rates are the same for a given number of gradient calls N , the
large batch setting is preferred (in theory) since it achieves these N gradient calls in only

p

N iterations, whereas the
small batch setting requires N iterations. Fewer iterations in the large batch case implies a smaller wall-clock time
to reach a given accuracy (assuming the large batch can be parallelised) as well as fewer rounds of communication in
the distributed setting. These systems benefits of large batch learning have been observed by practitioners (Goyal et al., 2017).
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Theorem C.1 (Non-convex convergence rate of SGD). Run algorithm C.1 for K iterations under Assumptions 1 to 3.
Define L := kLk1 and �2
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Let N be the cumulative number of stochastic gradient calls up to step K, i.e. N = O(K2
) for large batch and

N = O(K) for small batch. Then, in either case, we have
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Proof. The proof begins the same for the large and small batch case.

First we bound the improvement of the objective during a single step of the algorithm for one instantiation of the noise. g
k

denotes the true gradient at step k and g̃
k

is a stochastic sample obeying Assumption 3.

Take Assumption 2 and plug in the algorithmic step.

f
k+1 � f

k

 gT
k

(x
k+1 � x

k

) +

dX

i=1

L
i

2

(x
k+1 � x

k

)

2
i

 gT
k

(x
k+1 � x

k

) +

kLk1
2

kx
k+1 � x

k

k

2
2

= ��
k

gT
k

g̃
k

+ �2
k

L

2

kg̃
k

k

2
2

Next we find the expected improvement at time k + 1 conditioned on the previous iterate.
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First let’s substitute in the (large batch) hyperparameters.
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Now extend the expectation over randomness in the trajectory, and perform a telescoping sum over the iterations:
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We can rearrange this inequality to yield the rate:
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Since we are growing our mini-batch size, it will take N = O(K2
) gradient calls to reach step K. Substitute this in and we

are done for the (large batch) case.

Now we need to show that the same result holds for the (small batch) case. Following the initial steps of the large batch
proof, we get
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This time �2
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= �2. Substituting this and our learning rate and mini-batch settings into the expected improvement:
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Now extend the expectation over randomness in the trajectory, and perform a telescoping sum over the iterations:
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It will take N = O(K) gradient calls to reach step K. Substitute this in and we are done.

D. Proving the convergence rate of distributed SIGNSGD with majority vote

Theorem 2 (Non-convex convergence rate of distributed SIGNSGD with majority vote). Run algorithm 3 for K
iterations under Assumptions 1 to 3. Set the learning rate and mini-batch size for each worker (independently of step
k) as
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Then (a) majority vote with M workers converges at least as fast as SIGNSGD in Theorem 1.

And (b) further assuming that the noise in each component of the stochastic gradient is unimodal and symmetric about
the mean (e.g. Gaussian), majority vote converges at improved rate:
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where N is the cumulative number of stochastic gradient calls per worker up to step K.
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Before we introduce the unimodal symmetric assumption, let’s first address the claim that M-worker majority vote is at least
as good as single-worker SIGNSGD as in Theorem 1 only using Assumptions 1 to 3.

Proof of (a). Recall that a crucial step in Theorem 1 is showing that
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then we are done, since the machinery of Theorem 1 can then be directly applied.

Define the signal-to-noise ratio of a component of the stochastic gradient as S := |g
i

|/�
i

. Note that when S  1 then (?) is
trivially satisfied, so we need only consider the case that S > 1. S should really be labeled S

i

but we abuse notation.

Without loss of generality, assume that g
i

is negative, and thus using Assumption 3 and Cantelli’s inequality (Cantelli, 1928)
we get that for the failure probability q of a single worker

q := P[sign(g̃
i

) 6= sign(g
i

)] = P[g̃
i

� g
i

� |g
i

|] 

1

1 +

g

2
i

�

2
i
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decoder of the repetition code, and of course decreases the probability of error—see e.g. (MacKay, 2002). Therefore in all
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That’s all well and good, but what we’d really like to show is that using M workers provides a speedup by reducing the
variance. Is
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too much to hope for?

Well in the regime where S � 1 such a speedup is very reasonable since q ⌧ 1
2 by Cantelli, and the repetition code actually

supplies exponential reduction in failure rate. But we need to exclude very skewed or bimodal distributions where q > 1
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and adding more voting workers will not help. That brings us naturally to the following lemma:
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Proof. Recall Gauss’ inequality for unimodal random variable X with mode ⌫ and expected squared deviation from the
mode ⌧2 (Gauss, 1823; Pukelsheim, 1994):
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Without loss of generality assume that g
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is negative. Then applying symmetry followed by Gauss, the failure probability for
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We now have everything we need to prove part (b) of Theorem 2.

Proof of (b). If we can show (†) we’ll be done, since the machinery of Theorem 1 follows through with � replaced
everywhere by �p
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where Z is the number of successes of a binomial random variable b(M,p) and S is our signal-to-noise ratio S :=

|gi|
�i

.

Let’s start by getting a bound on the success probability p (or equivalently failure probability q) of a single Bernoulli trial.

By Lemma D.1, which critically relies on unimodal symmetric gradient noise, the failure probability for the sign bit of a
single worker satisfies:
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Where we have defined q̃(S) to be our S-dependent bound on q. Since q  q̃(S) < 1
2 , there is hope to show (†). Define ✏ to

be the defect of q from one half, and let ✏̃(S) be its S-dependent bound.
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Now we have an analytical handle on random variable Z, we may proceed to show (§). There are a number of different
inequalities that we can use to bound the tail of a binomial random variable, but Cantelli’s inequality will be good enough
for our purposes.
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So we have shown both cases, which proves (§) from which we get (†) and we are done.

E. General recipes for the convergence of approximate sign gradient methods
Now we generalize the arguments in the proof of SIGNSGD and prove a master lemma that provides a general recipe for
analyzing the approximate sign gradient method. This allows us to handle momentum and the majority voting schemes,
hence proving Theorem 3 and Theorem 2.

Lemma E.1 (Convergence rate for a class of approximate sign gradient method). Let C and K be integers satisfying
0 < C ⌧ K. Consider the algorithm given by x
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and all N
k

stochastic gradient oracle calls up to time k. Let g
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Proof. Our general strategy will be to show that the expected objective improvement at each step will be good enough to
guarantee a convergence rate in expectation. First let’s bound the improvement of the objective during a single step of the
algorithm for k � C, and then take expectation. Note that I[.] is the indicator function, and w

k

[i] denotes the ith component
of the vector w

k

.

By Assumption 2

f
k+1 � f

k

 gT
k

(x
k+1 � x

k

) +

dX

i=1

L
i

2

(x
k+1,i � x

k,i

)

2 Assumption 2

= ��
k

gT
k

sign(v
k

) + �2
k

k

~Lk1
2

by the update rule

= ��
k

kg
k

k1 + 2�
k

dX

i=1

|g
k

[i]| I[sign(v
k

[i]) 6= sign(g
k

[i])] + �2
k

k

~Lk1
2

by identity

Now, for k � C we need to find the expected improvement at time k + 1 conditioned on x
k

, where the expectation is over
the randomness of the stochastic gradient oracle. Note that P[E] denotes the probability of event E.

E[f
k+1 � f

k

|x
k

]  ��
k

kg
k

k1 + 2�
k

dX

i=1

|g
k

[i]|P
h
sign(v

k

[i]) 6= sign(g
k

[i])
���x

k

i
+ �2

k

k

~Lk1
2

.

Note that g
k

becomes fixed when we condition on x
k

. Further take expectation over x
k

, and apply (2). We get:

E[f
k+1 � f

k

]  ��
k

E[kg
k

k1] + 2�
k

⇠(k) +
�2
k

k

~Lk1
2

. (3)

Rearrange the terms and sum over (3) for k = C,C + 1, ...,K � 1.

K�1X

k=C

�
k

E[kg
k

k1] 

K�1X

k=C

(Ef
k

� Ef
k+1) + 2

K�1X

k=C

�
k

⇠(k) +
K�1X

k=C

�2
k

k

~Lk1
2

Dividing both sides by
⇥
(K � C)min

CkK�1 �k
⇤
, using a telescoping sum over Ef

k

and using that f(x) � f⇤ for all x,
we get

1

K � C

K�1X

k=C

Ekg
k

k1 
f
C

� f⇤ + 2

P
K�1
k=C

�
k

⇠(k) +
P

K�1
k=C

�

2
kk~Lk1

2

(K � C)min

CkK�1 �k

and the proof is complete by noting that the minimum is smaller than the average in the LHS.
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To use the above Lemma for analyzing SIGNUM and the Majority Voting scheme, it suffices to check condition (2) for each
algorithm.

One possible way to establish (2) is show that v
k

is a good approximation of the gradient g
k

in expected absolute value.

Lemma E.2 (Estimation to testing reduction). Equation (2) is true, if for every k

dX

i=1

E|v
k

[i]� g
k

[i]|  ⇠(k). (4)

Proof. First note that for any two random variables a, b 2 R.

P
h
sign(a) 6= sign(b)

i
 P

h
|a� b| > |b|

i
.

Condition on x
k

and apply the above inequality to every i = 1, ..., d to what is inside the expectation of (2), we have

dX

i=1

|g
k

[i]|P
h
sign(v

k

[i]) 6= sign(g
k

[i])
���x

k

i


dX

i=1

|g
k

[i]|P
h
|v

k

[i]� g
k

[i]| > |g
k

[i]|
���x

k

i


dX

i=1

E[|v
k

[i]� g
k

[i]||x
k

].

Note that the final  uses Markov’s inequality and constant |g
k

[i]| cancels out.

The proof is complete by taking expectation on both sides and apply (4).

Note that the proof of this lemma uses Markov’s inequality in the same way information-theoretical lower bounds are often
proved in statistics — reducing estimation to testing.

Another handy feature of the result is that we do not require the approximation to hold for every possible x
k

. It is okay that
for some x

k

, the approximation is much worse as long as those x
k

appears with small probability according to the algorithm.
This feature enables us to analyze momentum and hence proving the convergence for SIGNUM.

F. Analysis for SIGNUM

Recall our definition of the key random variables used in SIGNUM.

g
k

:= rf(x
k

)

g̃
k

:=

1

n
k

nkX

j=1

g̃(j)(x
k

)

m
k

:=

1� �

1� �k+1

kX

t=0

⇥
�tg

k�t

⇤

m̃
k

:=

1� �

1� �k+1

kX

t=0

⇥
�tg̃

k�t

⇤

SIGNUM effectively uses v
k

= m̃
k

and also �
k

= O(1/
p

k).

Before we prove the convergence of SIGNUM, we first prove a utility lemma about the random variable Z
k

:= g̃
k

� g
k

.
Note that in this lemma quantities like Z

k

, Y
k

, |Z
k

| and Z2
k

are considered vectors—so this lemma is a statement about each
component of the vectors separately and all operations, such as (·)2 are pointwise operations.

Lemma F.1 (Cumulative error of stochastic gradient). For any k <1 and fixed weight�1 < ↵1, ...,↵k

<1,
P

k

l=1 ↵l

Z
l

is a Martingale. In particular,

E

2

4
 

kX

l=1

↵
l

Z
l

!2
3

5


kX

l=1

↵2
l

~�2.
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Proof. We simply check the definition of a Martingale. Denote Y
k

:=

P
k

l=1 ↵l

Z
l

. First, we have that

E[|Y
k

|] = E
"�����

kX
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l
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#
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X
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=
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law of total probability


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Jensen’s inequality



X
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Second, again using the law of total probability,
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Z
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k+1E [E [Z
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Z
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Z
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]

= Y
k

+ ↵
k+1E [E [Z

k+1|xk+1] |↵1Z1, ...,↵k

Z
k

]

= Y
k

This completes the proof that it is indeed a Martingale. We now make use of the properties of Martingale difference
sequences to establish a variance bound on the Martingale.
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=
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~�2.

The consequence of this lemma is that we are able to treat Z1, ..., Zk

as if they are independent, even though they are
not—clearly Z

l

is dependent on Z1, ..., Zl�1 through x
l

.

Lemma F.2 (Gradient approximation in SIGNUM). The version of the SIGNUM algorithm that takes v
k

= m̃
k

, and all
parameters according to Theorem 3, obeys that for all integer C  k  K

kE|m̃
k

� g
k

|k1 
2

p

k + 1

✓
8k

~Lk1�
�

1� �
+

p

3k~�k1
p
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◆
.

Proof. For each i 2 [d] we will use the following non-standard “bias-variance” decomposition.

E [|m̃
k

[i]� g
k

[i]|]  E [|m
k

[i]� g
k

[i]|]| {z }
(⇤)

+E [|m̃
k

[i]�m
k

[i]|]| {z }
(⇤⇤)

(5)
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We will first bound (⇤⇤) and then deal with (⇤).

Note that (⇤⇤) =

1��

1��

k+1E
h
|

P
k

t=0 �
k�tZ

t

|

i
. Using Jensen’s inequality and applying Lemma F.1 with our choice of

↵1, ...,↵l

(including the effect of the increasing batch size) we get that for k � C
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+

k
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
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Combining, and again using our condition that k � C, we get
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r
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We now turn to bounding (⇤) — the “bias” term.
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To proceed, we need the following lemma.

Lemma F.3. Under Assumption 2, for any sign vector s 2 {�1, 1}d, any x 2 Rd and any ✏  �

kg(x+ ✏s)� g(x)k1  2✏k~Lk1.

Proof. By Taylor’s theorem,

g(x+ ✏s)� g(x) =

Z 1

t=0
H(x+ t✏s)dt

�
✏s.

Let v := sign(g(x+ ✏s)� g(x)), H :=

hR 1
t=0 H(x+ t✏s)dt

i
and moreover, use H+ to denote the psd part of H and H�

to denote the nsd part of H . Namely, H = H+ �H�.

We can write

kg(x+ ✏s)� g(x)k1 = vT (g(x+ ✏s)� g(x)) = vTH(✏s) = ✏vTH+s� ✏vTH�s

= ✏hH1/2
+ v,H1/2

+ si � ✏hH1/2
� v,H1/2

� si  ✏kH1/2
+ vkkH1/2

+ sk+ ✏kH1/2
� vkkH1/2

� sk. (8)



SIGNSGD: Compressed Optimisation for Non-Convex Problems

Note that assumption 2 implies the semidefinite ordering

H+ � diag(

~L) and H� � diag(

~L)

and thus max{sTH+s, sTH�s} 
P

d

i=1 Li

= k

~Lk1 for all s 2 {�1, 1}d.

The proof is complete by observing that both v and s are sign vectors in (8).

Using the above lemma and the fact that our update rules are always following some sign vectors with learning rate smaller
than �, we have
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It follows that
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derivative of geometric progression
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r
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k
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Substitute (6) into (5), sum both sides over i and then further plug in (10) we get the statement in the lemma.

The proof of Theorem 3 now follows in a straightforward manner. Note that Lemma F.2 only kicks in after a warmup period
of C iterations, with C as specified in Theorem 3. In theory it does not matter what you do during this warmup period,
provided you accumulate the momentum as normal and take steps according to the prescribed learning rate and mini-batch
schedules. One option is to just stay put and not update the parameter vector for the first C iterations. This is wasteful since
no progress will be made on the objective. A better option in practice is to take steps using the sign of the stochastic gradient
(i.e. do SIGNSGD) instead of SIGNUM during the warmup period.

Proof of Theorem 3. Substitute Lemma F.2 as ⇠(k) into Lemma E.1 and check that ⇠(k) = O(1/
p

k), �
k

=

O(1/
p

k),min �
k

= �/
p

K,C ⌧ K, and in addition, we note that by the increasing minibatch size N
K

= O(K2
).

Substitute K = O(

p

N) and take the square on both sides of the inequality. (We can take the min

k

out of the square since
all the arguments are nonnegative and (·)

2 is monotonic on R+).


