
Supplementary Material

Distributed Clustering via LSH Based Data Partitioning

1 Proof of Lemma 3

In this section, we prove the lemma concerning the number of distinct tuples that a cluster hashes
to (Lemma 3 of the main text).

Proof. Let us start by considering a single LSH. Let n(C) be the number of distinct hash values for
the points of C (n(C) is thus a random variable). The first step is to condition on the diameter of
C ′ = {Ax : x ∈ C}. We saw in the proof of Lemma 1 that with probability 1− 1/n2, the diameter
of C ′ is ≤ r′, where r′ = 4σ

√
t+ log n. Thus,

E[n(C)] ≤ E[n(C)|diam(C ′) < r′] +
1

n2
|C|.

The second term on the RHS is at most 1/n. Thus we only need to bound the first. Let us now
consider a ball B∗ of radius r′ as before (the ball contains C ′ and has radius < diam(C ′)). As our
choice of w satisfies w > 2r′, we cannot have two points in C ′ being close to two different lattice
points of a grid Gti. Thus, under our conditioning, two points in C ′ cannot have the same first
coordinate for the LSH (this is the coordinate that gives the index of the shift), and different values
among the next t coordinates.

Now, let us understand the quantity n(C). Recall Figure 1 and let us denote by Bouter and
Binner the outer and inner balls containing B∗ respectively. Consider the shifts s1, s2, . . . in order.
For each si, either (a) si ∈ Binner, or (b) si ∈ (Bouter \Binner), or (c) si 6∈ Bouter. Let us consider s1.
If case (a) occurs for s1, then all the points in C ′ are w-close to a point in Gt1, and they all have the
same hash (so n(C) = 1). If case (c) occurs for s1, then none of the points have a w-close point in
Gt1, and thus we move on to s2. If case (b) occurs, then we may have some points of C hashing with
first coordinate equal to 1, and the rest will move on to s2. Thus n(C) can be upper bounded by
the number of times we encounter case (b) before encountering case (a) for the first time (starting
from i = 1, 2, . . .).

This is thus equivalent to a coin tossing process in which we have three outcomes – heads, tails
and “don’t-care”, where there is a given probability for each outcome (say q1, q2, q3 resp.), the draws
are i.i.d., and we wish to compute the expected number of trials to see the first heads, while not
counting the don’t-cares. This is precisely (q2 + q1)/q1. Applying this to our situation,

E[n(C)] =
vol(Bouter)

vol(Binner)
=

(w + r′)t

(w − r′)t
=

(
1 +

2r′

w − r′

)t
.

This completes the analysis for one LSH. Since the different hashes are independent and the overall
hash is simply a concatenation, the expected number of different hash values is E[n(C)]` = O(1), by
our choice of parameters.

1

2 Proof of Lemma 4

Let us thus prove Lemma 4. We introduce one piece of notation. For a cluster C, let C(r) be the set
of all points in C that are at a distance ≤ r from the centroid of C.

Proof of Lemma 4. Let us consider the radius scale that contains the quantity 2ρ. By Lemma 1,
for the hashing at this scale, all the points in C(2ρ) are hashed to the same integer tuple, with
probability ≥ 3/4. Let us condition on this event, and let j be the bin into which this tuple is
hashed in the 2-level hashing scheme. Recall that Uj is the set of all points assigned to the jth bin.

Intuitively, we wish to show that points in C(2ρ) form a good fraction of the points in Uj . We
show something roughly to this effect. Let us examine the points in Uj \C(2ρ). First we have points
that are not in C(2ρ) but hash to the PLSH tuple. Let us call this set of vertices V0. By Lemma 2,
all of these points are at a distance ≤ α · ρ from the center of C, with probability ≥ 1− 1/n2.

Next, we have points that hash to different PLSH tuples, but are hashed to Uj in the second

step of the hashing. We divide these points into two sets: first, we have the points V1 = ∪iC(2ρ)
i ,

i.e., the points that are at distance ≤ 2ρ from their respective cluster centers. Then, we have

V2 = ∪i(Ci \ C(2ρ)
i).

Claim 1. Points in V1 hash to O(k) distinct PLSH tuples, w.p. ≥ 9/10.

Using Lemma 3, the expected number of PLSH tuples for each C
(2ρ)
i is ∆, for some constant

∆; thus by the linearity of expectation, the number of PLSH tuples for V1 is ∆k. By Markov’s
inequality, the probability of having more than 10∆k tuples for V1 is ≤ 1/10, which proves the
claim.

Claim 2. |V2| ≤ k|C(2ρ)|.
Note that any point in V2 contributes at least 4ρ2 to the k-means objective. Thus the number

of such points is ≤ nθ2/4ρ2 ≤ k|C|/4 ≤ k|C(2ρ)|, from the definition of the adjusted radius.
Now, Claim 1 allows us to compute the probability that none of the 10∆k PLSH tuples

corresponding to V1 hash to the index j. This is precisely
(
1− 1

Lk

)10∆k
, which is ≥ 9/10, for

L = 100∆. (We have used the inequality (1− x)n ≥ 1− nx.) Let us call this event E1.
Finally, Claim 2 allows us to say that

E[V2 ∩ Uj] = k|C(2ρ)|/Lk < |C(2ρ)|/L,

where the expectation is over the second step of hashing. Once again, Markov’s inequality gives
that Pr[|V2 ∩ Uj | ≤ |C(2ρ)|] ≥ 1− 1/L > 9/10. Let us call this event E2.

Now, consider sampling 4 random points from Uj . If we sample at least one point from V0∪C(2ρ),
our desired conclusion follows. If E1 and E2 both occur, the probability of not sampling any such
point can be bounded by (

|C(2ρ)|
|V0|+ 2|C(2ρ)|

)4

.

This is clearly at most 1/16, and thus the lemma follows.

3 Proof of Theorem 3

In this section, we prove Theorem 3 of the main text, thus giving a parallel implementation of the
algorithm from Section 4 of the paper.

2

We first show a weaker version of the theorem, with the number of machines being O(nk log3 n/s).

Proof of weaker version. Note that most parts of the algorithm from Theorem 2 can be immediately
parallelized: the O(log k) runs of the algorithm can be made parallel on different sets of machines.
The same is true of trying different radius ranges. Furthermore, assuming that all the machines use
the same random seed, the two step hashing can be done entirely in parallel.

The main step that requires work is that of aggregating points that hash to a given bin (recall
that this set was denoted Uj , and j ∈ [Lk]) and choosing a random sample from Uj . Aggregating
points is a standard “reduce” operation, provided the number of points going into a bin is ≤ s (in
this case all these points will fit on one machine). However, we have two issues: first, the average
size |Uj | is n/Lk, which could be larger than s. Second, the numbers |Uj | can vary widely depending
on j.

For the weaker version, we can do the following: for each bin j, we associate a group of n log n/s
machines (called Gj), and when a point is hashed to bin j, we randomly assign it to a machine in Gj .
Since |Uj | is at most n, each machine will receive O(s) points w.h.p. Now, unless |Uj | > n log n/s,
each machine will receive much fewer than s points (and some machines could receive no points).
Thus to output a random sample, the machines in Gj need to determine the size of Uj . This is
simply an aggregation problem, and can be done in dlogs ne rounds of MapReduce computation
using ≤ s memory on each machine: the first round consists of the machines Gj . Now, the first s
machines send the number of points they were assigned to machine 1, the next s machines send
the number they were assigned to machine s+ 1, and so on. In the next round, only these |Gj |/s
machines are active, and they send their counts to a smaller set of machines (this time |Gj |/s2),
and so on. This results in the desired bound.

Finally, once |Uj | is computed, the machines independently output each point they have w.p.
O(1)/|Uj |.1

The main drawback above is the number of machines needed — while storing n points requires
n/s machines of memory s, the number above is larger by a k polylog(n) factor. To show Theorem
3, we need an additional “pre-sampling” trick.

Pre-sampling. Let Q be a random sample of the dataset formed by including each vertex w.p. q/n
independent of the rest (thus E[|Q|] = q). Now, suppose all the machines know Q, and at radius scale
r, suppose that they only hash points u ∈ U such that d(u,Q) ≥ α · r. Here α = O(log n log logn),
more specifically, the term from Lemma 2. We claim that this results in much smaller bins, w.h.p.
First, we observe the following:

Lemma 1. Let us fix a radius scale, and let h be an `(t+ 1) tuple of integers for which there exists
some u ∈ U that hashes to h. Then in the procedure described above (machines hash only points
that are far from the pre-sample), the number of points hashing to h is at most 4n log n/q, w.p. at
least 1− 1/n2.2

Proof. Let us denote the PLSH hash by H, for convenience. Now, for any h = H(u), we consider
H−1(h) := {v ∈ U : H(v) = h}. The first observation is that if |H−1(h)| ≥ 4n log n/q, then w.p.

1This gives only O(1) points in expectation. To output precisely a certain number of points, the machines first
output points independently w.p. O(logn)/|Uj |, collect the outcome on one machine, and then randomly pick a subset
of the desired size. This results in one extra round.

2The probability is over the choice of the pre-sample.

3

1− 1/n4, the pre-sample has a non-empty intersection with it; i.e., H−1(h) ∩Q 6= ∅. This is easy to
see: the probability that none of the elements of H−1(h) is picked in Q is at most(

1− q

n

)4n logn/q
≤ 1

n4
.

We can take a union bound over all the h (as there are at most n of them), and thus w.p.
1− 1/n3, the pre-sample has a non-empty intersection with all H−1(h) that have size ≥ 4n log n/q.
Now, by Lemma 2, we have that w.h.p., diam(H−1(h)) ≤ α · r. Thus if we only hash points that
are far from the pre-sample, then none of the points in such an H−1(h) get hashed! This means
that the number of points actually hashing to any given h is at most 4n log n/q, which gives the
lemma.

We now see how the lemma lets us improve the number of machines.

Proof of Theorem 3. We choose a pre-sample of size q = min{Lk, s}. Thus by Lemma 1, for any
hash value h, the number of points hashed to it in the pre-sample based algorithm is at most
4n log n/q. Suppose there are g different tuples that have a non-zero number of points hashed to
them, and let these number of points be denoted a1, a2, . . . , ag. Thus maxi ai ≤ 4n log n/q.
Claim. In the second step of hashing, none of the bins get more than O(n log2 n)/min{k, s} points,
with probability > 1− 1/n.
Proof of claim. Note that in the second step of hashing, the tuples are mapped independently
and u.a.r. to a bin. Thus the number of points in bin j is distributed as

∑
i aiYi, where Yi is a

Bernoulli random variable that is 1 w.p. 1/Lk and 0 otherwise. Thus, using a Chernoff bound (e.g.,
Theorem 3.3 from [CL06]), we have

Pr

[∣∣∣∣∣∑
i

aiYi −
1

Lk

∑
i

ai

∣∣∣∣∣ > t

]

≤ exp

(
− t2∑

i a
2
i ·

1
Lk + 2t

3 maxi ai

)
. (1)

Now, using
∑

i a
2
i ≤ (maxi ai)(

∑
i ai) ≤ (n log n/q)(n), the RHS above can be simplified to

exp
(
− t2

n2 logn/Lkq+2tn logn/3q

)
. Plugging in t = (4n log2 n)/q, this simplifies to 1/n2. Thus we can

take a union bound over all the bins, and the claim follows.
Now, if (4n log2 n)/q < s, then we have one machine handle sq/(4n log2 n) bins. If it is > s,

then for each bin, we assign (n log2 n)/qs machines. They can perform at most logs n rounds of
computation (as in the proof of the simpler case above) and return the desired sample. In both cases,
the number of machines is bounded by O(n polylog(n))k/qs and the number of points assigned to
each machine is s, as we desired.

References

[CL06] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a
survey. Internet Math., 3(1):79–127, 2006.

4

	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 3

