Distributed Clustering via LSH Based Data Partitioning

Aditya Bhaskara! Maheshakya Wijewardena '

Abstract

Given the importance of clustering in the analysis
of large scale data, distributed algorithms for for-
mulations such as k-means, k-median, etc. have
been extensively studied. A successful approach
here has been the “reduce and merge” paradigm,
in which each machine reduces its input size to
O(k), and this data reduction continues (possibly
iteratively) until all the data fits on one machine,
at which point the problem is solved locally. This
approach has the intrinsic bottleneck that each
machine must solve a problem of size > k, and
needs to communicate at least Q2(k) points to the
other machines. We propose a novel data parti-
tioning idea to overcome this bottleneck, and in
effect, have different machines focus on “finding
different clusters”. Under the assumption that we
know the optimum value of the objective up to
a poly(n) factor (arbitrary polynomial), we es-
tablish worst-case approximation guarantees for
our method. We see that our algorithm results in
lower communication as well as a near-optimal
number of ‘rounds’ of computation (in the popular
MapReduce framework).

1. Introduction

Clustering is a fundamental problem in the analysis and
understanding of data, and is used widely in different ar-
eas of science. The broad goal of clustering is to divide
a (typically large) dataset into groups that such that data
points within a group are “similar” to one another. In most
applications, there is a measure of similarity between any
two objects, which typically forms a metric. The problem
can be formalized in many different ways, depending on
the properties desired of the obtained clustering. While a
“perfect” formulation may not exist (see (Kleinberg, 2002)),

“Equal contribution 'School of Computing, University
of Utah. Correspondence to: Aditya Bhaskara <bhaskaraa-
ditya@gmail.com>, Maheshakya Wijewardena <pmahe-
shakya4 @gmail.com>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

many formulations have been very successful in applica-
tions, including k-means, k-median, k-center, and various
notions of hierarchical clustering (see (Hastie et al., 2009;
Dasgupta, 2016) and references there-in).

In this paper, we focus on k-means clustering, in which the
input is a set of n points in Euclidean space. Here the goal
is to partition the points into k clusters, so as to minimize
the sum of squared distances from the points to the respec-
tive cluster centers (see Section 2 for a formal definition).
k-means is one of the most well-studied clustering variants.
Lloyd’s algorithm (Lloyd, 1982), developed over 35 years
ago, has been extremely successful in practice (the success
has been ‘explained’ in many recent works; see (Arthur et al.,
2011; Awasthi & Sheffet, 2012; Kumar & Kannan, 2010)
and references there-in). Despite the success, Lloyd’s algo-
rithm can have an arbitrarily bad approximation ratio in the
worst case. To address this, constant factor approximation
algorithms have been developed, which are more involved
but have worst case guarantees (see (Kanungo et al., 2004)
and (Ahmadian et al., 2017)). In another direction, works
by (Ostrovsky et al., 2006; Jaiswal et al., 2012; Arthur &
Vassilvitskii, 2007) have shown how to obtain simple bi-
criteria approximation algorithms for k-means. (Arthur &
Vassilvitskii, 2007) also proposed a variant of Lloyd’s al-
gorithm, termed “k-means++", which also comes with a
theoretical approximation factor guarantee of O(log k) ap-
proximation.

All the algorithms above assume that data fits in a single
machine. However, with the ubiquity of large data sets,
there has been a lot of interest in distributed algorithms
where data is spread across several machines. The goal is to
use available distributed models of computation to design
algorithms that can (a) work with machines having access
only to their local data set, (b) use small amount of memory
and only a few “rounds” of communication, and (c) have
approximation guarantees for the solution they output.

For k-means and related objectives, the paradigm of iterative
‘data reduction’ has been remarkably successful. The main
idea is that in each round, a machine chooses a small subset
of its input, and only this subset is carried to the next round.
Thus the total number of points reduces by a significant
factor in every round, and this results in a small number
of rounds overall. Such an algorithm can be implemented

Distributed Clustering via LSH Based Data Partitioning

efficiently in the MapReduce framework, introduced by
(Dean & Ghemawat, 2004), and formalized by (Karloff
et al., 2010)). (Ene et al., 2011) gave one of the first such
implementations (for the k-median problem), and showed
theoretical guarantees. This line of work has subsequently
been developed in (Kumar et al., 2013; Balcan et al., 2013a;
Awasthi et al., 2017). The last work also gives a summary
of the known results in this space.

The high level ideas used in these works are similar to those
used in streaming algorithms for clustering. The literature
here is very rich; one of the earliest works is that of (Charikar
et al., 1997), for the k-center problem. The work of (Guha
et al., 2001) introduced many ideas crucial to the distributed
algorithms mentioned above. Indeed, all of these algorithms
can be viewed as implicitly constructing coresets (or sum-
maries) for the underlying clustering problem. We refer
to the works of (Agarwal et al., 2004; 2012; Balcan et al.,
2013b; Indyk et al., 2014) for more on this connection.

Motivation for our work. While iterative data reduction
is powerful, it has a key bottleneck: in order to have approx-
imation guarantees, machines always need to store > k data
points. Indeed, all the algorithms we are aware of require a
memory of kn® if they are to use O(1/¢) rounds of MAPRE-
DUCE computation.! The high level reason for this is that
if a machine sees k points that are all very far from one
another, it needs to keep all of them, or else we might lose
all the information about one of the clusters, and this could
lead to a large objective value. This is also the reason each
machine needs to communicate > k& points to the others
(such a lower bound was proved formally in (Chen et al.,
2016), as we will discuss later). The natural question is thus
to ask:

can we partition the data across machines so that different
machines work in different “regions of space”, and thus
focus on finding different clusters?

This would result in a smaller space requirement per ma-
chine, and lesser communication between machines. Our
main result is to show that this is possible, as long as we
have a rough estimate of the optimum objective value (up to
an arbitrary polynomial factor). We give an algorithm based
on a variant of locality sensitive hashing, and prove that this
yields a bi-criteria approximation guarantee.

Locality sensitive hashing was introduced in the seminal
work of (Indyk & Motwani, 1998), which gave an efficient
algorithm for nearest neighbor search in high dimensional
space. The idea has found several applications in machine
learning and data science, ranging from the early appli-
cations of similarity search to the speeding up of neural
networks (Spring & Shrivastava, 2017). (Datar et al., 2004)

'All the algorithms mentioned above can be naturally imple-
mented in the MAPREDUCE framework.

generalized the original result of (Indyk & Motwani, 1998)
to the case of £, norms, and (Andoni & Indyk, 2006) gave
an improved analysis. Extensions of LSH are still an active
area of research, but a discussion is beyond the scope of this
paper. Our contribution here is to understand the behavior
of clusters of points under LSH and its variants.

1.1. Our results

Our focus in the paper will be on the k-means objective
(defined formally in Section 2). The data set is assumed to
be a collection of points in a Euclidean space R? for some
d, and distance refers to the ¢ distance.

Our first contribution is an analysis of “product LSH”
(PLSH), a hash obtained by concatenating independent
copies of an LSH. For each LSH, we consider the imple-
mentation of (Andoni & Indyk, 2006).

Informal theorem 1 (See Lemmas 1 and 2). Let C be
any cluster of points with diameter 0. Then PLSH with
appropriate parameters yields the same hash for all the
points in C, with probability > 3/4. Furthermore, for
any two points u,v such that |lu — v|| > « - o, where
a = lognloglogn, the probability that u and v have the
same hash is < 1/n?.

Thus, PLSH has a “cluster preserving” property. We show
the above by extending the analyses of (Indyk & Motwani,
1998) and (Andoni & Indyk, 2006). Then, we use this obser-
vation to give a simple bi-criteria approximation algorithm
for k-means clustering. (A bi-criteria algorithm is one that
is allowed to output a slightly larger number of centers; see
Section 2.) We assume knowledge of k, as well as a very
rough estimate of the objective value. The algorithm re-
turns a polylogarithmically larger number of clusters, while
obtaining a polylogarithmic factor approximation. We re-
fer to Theorem 2 for the statement. As we note below, if
s > k polylog(()n), then we can avoid violating the bound
on the number of clusters (and obtain a “true” guarantee as
opposed to a bi-criteria one).

The algorithm can be implemented in a distributed manner,
specifically in the MAPREDUCE model, with [log, n| + 2
rounds, using machines of memory s (when we say memory
s, we mean that each machine can store at most s of the
points. This will be roughly the same as measuring s in
bytes, as we see in Section 2. The formal result is stated
in Theorem 3. We highlight that the distributed algorithm
works for any s > w(logn), even s < k (in which case the
standard reduce-and-merge framework has no non-trivial
guarantees).

Finally, we prove that for any MapReduce algorithm that
uses poly(n) machines of space s, the number of rounds nec-
essary to obtain any non-trivial approximation to k-means
is at least [log, n]. Thus the ‘round/memory tradeoff” we

Distributed Clustering via LSH Based Data Partitioning

obtain is nearly optimal. This is based on ideas from the
recent remarkable result of (Roughgarden et al., 2016). (See
Theorem 4.)

1.2. Discussion, extensions and limitations

Going beyond communication lower bounds. The recent
result of (Chen et al., 2016) shows lower bounds on the
total amount of communication necessary for distributed
clustering. They show that for a worst-case partition of
points across machines, Q(Mk) bits are necessary, where
M is the number of machines. Our result in Section 4.2
implies that if points have been partitioned across machines
according to PLSH hashes, we can bypass this lower bound.

Round lower bound. In light of Theorem 4, one way to
interpret our algorithmic result is as saying that as far as ob-
taining polylogarithmic bi-criteria approximations go, clus-
tering is essentially as easy as “aggregation” (i.e., summing
a collection of » numbers — which also has the same log, n
upper and lower bounds).

Precisely k clusters. Theorem 3 gives only a bi-criteria
guarantee, so it is natural to ask if we can obtain any guar-
antee when we desire precisely k centers. In the case when
s > klog?n, we can apply known results to obtain this.
(Guha et al., 2001) showed (in our notation) that:

Theorem 1. Let U be a set of points, and let S be a set of
centers with the property that)", .., d(u, S)* <~ - OPT,
where OPT is the optimum k-means objective value on U.
Let g : U — S map every u € U to its closest point in
S, breaking ties arbitrarily. Now, consider a new weighted
instance T of k-means where we have points in S, with
weight of v € S being |g~* (v)|. Then, any set of centers that
p-approximate the optimum objective for T give a (4 + 2p)
approximation to the original instance (given by U).

Thus, if s > klog® n, we can aggregate the output of our
bi-criteria algorithm onto one machine, and solve k-means
approximately. In essence, we are using the output of our
algorithm as a coreset for k-means. We demonstrate this in
our experimental results.

Balanced clustering. A common constraint for clustering
algorithms is that of the clusters being balanced. This is
often captured by requiring an upper bound on the size of a
cluster. (Bateni et al., 2014) showed that balanced clustering
can also be solved in a distributed setting. Specifically,
they showed that any bi-criteria algorithm for k-means can
be used to solve the balanced clustering problem, via a
result analogous to 1. In our context, this implies that if
s > klog? n, our method also gives a distributed algorithm
for balanced clustering with a k-means objective.

Limitations and lower bounds. There are two key limita-

tions to our result. First, the polylogarithmic approximation
factor in the approximation ratio seems difficult to avoid
(although our experiments show that the guarantees are very
pessimistic). In our argument, it arises as a by-product of
being able to detect very small clusters. This is in contrast
with single machine algorithms (e.g., (Kanungo et al., 2004;
Ahmadian et al., 2017)) and the prior work in MapReduce
algorithms, (Ene et al., 2011), which give constant factor
approximations. Another restriction is that our algorithms
assume a Euclidean setting for the points. The algorithms
of (Ene et al., 2011) and related works can handle the case
of arbitrary metric spaces. The bottleneck here is the lack of
locality sensitive hashing for such spaces. A very interesting
open problem is to develop new methods in this case, or
prove stronger lower bounds.

2. Notation and Preliminaries

We now introduce some notation and definitions that will
be used for the rest of the paper. We will denote by U the
set of points in the input. We denote n = |U|. All of our
algorithms are for the Euclidean setting, where the points
in U are in R?, and the distance between xz,y € U is the {y

norm ||z — yll2 = /32 (zi — yi)*.

A E-clustering of the points U is a partition C of U into
subsets C, Co, ..., Ck. The centroid of a cluster C; is the
point u; = Wl‘ Y e ¢, u- The k-means objective for the
clustering C is now defined as

SNl — will3. (1)

i€k] ueC;

The problem of k-means clustering is to find C that mini-
mizes the objective defined above. The minimum objective
value will be denoted by OPT(U). (When the U is clear
from context, we simply write OPT.) A p-approximation
algorithm for k-means clustering is a polynomial time algo-
rithm that outputs a clustering C’ whose objective value is at
most p-OPT(U). We will be interested in p being a constant
or polylog(n). A (p,3) bi-criteria approximation (where
B > 1) is an efficient algorithm that outputs a clustering C’
that has at most Sk clusters and has an objective value at
most p - OPT(U). Note that the optimum still has & clusters.

Note on the dimension d. We assume that d = O(logn).
This is without loss of generality, because we may assume
that we have pre-processed the data by applying Johnson-
Lindenstrauss transform. As the JL transform preserves
all pairwise ¢, distances (Johnson & Lindenstrauss, 1984;
Indyk & Motwani, 1998), clustering in the transformed
space gives a (1 + ¢) approximation to clustering in the
original one. Furthermore, the transform can be applied
in parallel, individually to each point. Thus we henceforth
assume that the space required to store a point is O(log n).

Distributed Clustering via LSH Based Data Partitioning

MapReduce model. To illustrate our ideas, we use the
well-studied MapReduce model (Dean & Ghemawat, 2004;
Karloff et al., 2010). The details of the map and reduce
operations are not important for our purpose. We will view
it as a model of computation that proceeds in levels. At each
level, we have M machines that can perform computation
on their local data (the input is distributed arbitrarily among
machines in the first layer). Once all the machines are done
with computation, they send information to machines in the
next layer. The information received by a machine acts as
its local data for the next round of computation. We assume
that each machine has a memory of s.

Constants. For the sake of easier exposition, we do not
attempt to optimize the constants in our bounds.

3. Two Step Hashing

The key to our distributed algorithm is a two step hashing
scheme. The first step is a ‘product’ of locality sensitive
hashes (LSH), and the second is a random hash that maps
the tuples obtained from the product-LSH to a bin with a
label in the range 1, ..., Lk, for an appropriate constant L.

3.1. Product LSH

We begin with a short discussion of LSH. We follow the
presentation of (Andoni & Indyk, 2006).

Suppose we have a collection of points U in R%,

Locality sensitive hashing (LSH). Let ¢, w be parame-
ters. LSH; ,, is a procedure that takes a v € U, and pro-
duces a (t + 1)-tuple of integers. The hash uses as pa-
rameters a matrix A of dimensions ¢ x d, whose entries
are i.i.d. N(0,1) Gaussians, and a collection of shift vec-
tors S = {s1,..., sy}, where s; is picked uniformly from
[0,4w]’. The shifts are used to generate a collection of
shifted grids G! := G* + s;, where G! is the integer grid
7%, scaled by 4w. Now to compute the hash of a point u,
first its projection to R? is computed by v’ = Au. Next,
one searches for the smallest index ¢ € [U] for which the
ball B(u', w) contains a point of the shifted grid G%. (Alter-
nately one could imagine radius-w balls around the points
in the shifted grids, and we look for the smallest ¢ for which
the point »’ is contained in one such ball.) The hash of the
point is then (i, 21, ..., x:), where 4 is the index as above,
and (x1,...,x;) are the integer coordinates corresponding
to the grid point in G that is at distance < w from u’.

(Andoni & Indyk, 2006) show that to cover all of R (and
thus to have a well-defined hash for every point), the number
of shifts that suffice is 2©(#1°8%) Consequently, this is also

>The earlier LSH schemes of (Indyk & Motwani, 1998)
and (Datar et al., 2004) can also be used; however, they give
a weaker approximation factor.

the time required to compute hash for a point, as we may
need to go through all the shifts. In our setting, we will
choose t = o(logn/loglogn), and thus the time needed to
hash is n°(1).

Product LSH (PLSH). Given an integer ¢, the product
LSH PLSHy 4, ¢ is a hashing scheme that maps a point v to
a concatenation of £ independent copies of LSH; ,,; it thus
outputs an /(¢ + 1)-tuple of integers.

We show the following properties of PLSH. In what follows,
let o be a parameter. Let

logn

w = 8 (logn)®?; t = ¢ = 32(loglogn)*.

(2)
Lemma 1. Suppose C C U has diameter < o. Then with

probability at least 3/4, PLSH, , ¢ maps all the points in C
to the same hash value.

(loglogn)? ;

Lemma 2. Let u, v be points that are at distance > 4w/ Vi
(= O(lognloglogn) - o). Then the probability that they
have the same hash value is < #

Proof of Lemma 1. Let C' = {Azxz : ¢ € C}. First, we
claim that the diameter of C” is at most 40/t + log n, w.h.p.
over the choice of A. This is because for any x,y € C, the
quantity || A(x — y)||3/||z — yl|3 is distributed as a x? with
t degrees of freedom. It is known (e.g., (Laurent & Massart,
2000), Lemma 1) that the tail of a chi-square statistic Y
with ¢ degrees of freedom satisfies: for any z > 0, Pr[Y >
t + 2tz + 2z] < e7*. Setting z = 4logn, and using
2v/tz <t + 2z, we get that Pr[Y > 16(t + logn)] < 1/n*.
Thus by taking union bound over all pairs of points z, y, we
have that with probability > 1 — #, the diameter of C’ is

<404/t + logn.

Conditioned on this, let us calculate the probability that the
points in C' all have the same hash value. (The conditioning
does not introduce any dependencies, as the above argument
depended only on the choice of A, while the next step will
depend on the choice of the shifts.) Now, consider a ball
B* C R of radius v’ := 40/t + log n that contains C’ (as
C’ is of small diameter, such a ball exists).

Before analyzing the probability of interest, let us under-
stand when a shifted grid G contains a point that has dis-
tance < w to a given point x. This is equivalent to saying
that (z — s;) is w-close to a lattice pointin G*. This happens
iff s; is in the ball B(z, w), where the ball has been reduced
modulo [0, 4w]t (see Figure 1).

Now, we can see how it could happen that some x € B* is
w-close to a lattice point in G¢ but the entirety of B* does
not have this property. Geometrically, the bad choices of
s; are shown in Figure 1 (before reducing moulo [0, 4w]").
Thus, we have that the probability that all points in B* are
w-close to a lattice point in G¢ conditioned on there existing

Distributed Clustering via LSH Based Data Partitioning

valid(s; .
-

B(a, w)

7

s; (redluced)

A

Figure 1. On the left, figure showing when grid G} has a point
w-close to . On the right, choosing s; in the region between the
two outer circles results in B* having points that hash differently.

a point x € B* that is close to a lattice point is at least

2 \'
= (1 G) .
w+ 7!
Thus p; is a lower bound on a single LSH giving the same
hash value for all the points in C'. Repeating this £ times, and

plugging in our choice of values for 7/, w, t, £, the desired
claim follows. O

p1 =

Next, we get to the proof of Lemma 2.

Proof. Let u, v be points as in the statement of the lemma.
We show that the probability that || A(u — v)|| < 2w in all
the ¢ hashes is < 1/ n*. This clearly implies what we need,
because if in even one LSH we have Au and Av being > 2w
away, they cannot have the same PLSH.?

Now, for a random A, the quantity || A(u—v)||3/||u—v]3 is
distributed as a 2 distribution with ¢ degrees of freedom (as
we saw earlier), and thus using the lower tail from (Laurent
& Massart, 2000), we get that for any z > 0, for such a
random variable Y, we have Pr[Y < t — 2V/tz] < e 2.
Thus Pr[Y < (1 — \}5)16} < e~ /%, Now, for our choice of

parameters, we have 4w?/[u — vl < t/4 < (1 -)t

and thus the probability that « and v have the same PLSH is
upper bounded by e ~**/8 = 1/n*, as desired. O

3.2. Number of tuples for a cluster

We have shown that the probability that a cluster of diameter
< o hashes to precisely one tuple (for appropriate parame-
ters) is > 3/4. We now show something slightly stronger
(as we will need it later).

Lemma 3. Let C' be a cluster of diameter o, and let t,w, {
be set as in Eq. (2). The expected number of distinct tuples

3This reasoning allows us to get a bound slightly better
than (Andoni & Indyk, 2006).

for points in C (produced by PLSH ,, ¢) is O(1).

3.3. Second step of hashing

The PLSH maps each point u € U to an £(t + 1) tuple of
integers. The second step of hashing is very simple — we
simply hash each tuple independently and uniformly to an
integer in [Lk], for a prescribed parameter L.

4. Approximation Algorithm

We start by describing our algorithm in a single machine
setting. Then in Section 4.2, we describe how it can be
implemented in parallel, with a small number of machines,
and a small memory per machine.

4.1. Main algorithm

The high level idea in our algorithm is to perform the two-
level hashing above, and choose a random subset of points
from each bin.

Now, in order to choose the w parameter in the hash, we
need a rough scale of the optimum. To this end, we will
assume that we know a D such that the optimum objective
value is in the range (D/f, D), for some f = poly(n).
Note that f can be something like n2, so this is a very
mild assumption. With this assumption, we have that the
average contribution of a point to the objective (i.e., its
squared distance to its center) is > D/(n - f). Let us denote
ro :=+/D/(n - f). Also, observe that no point can have a
contribution more than D to the objective (as it is an upper
bound on the sum of the contributions). Thus, inuitively, all
the clusters have a radius (formally defined below) < VD.
Let k = [log(nf)], and let r; := 2¥/2rg, for 1 < i < k.
These will be the different radius “scales” for our clusters
of interest. Note that K = O(logn), as f = poly(n).

The algorithm can now be described (see Algorithm 4.1).
Algorithm 1 Find-Cover
Input: set of points U, rough estimate of optimum D.
Output: a subset of points S.
fori=1...xdo
- Hash every point in U to a bin (range [Lk]) using the
two layer hash with params ¢, w;, ¢, Lk, where w; :=
87;(logn)®/2. Let U, be the points hashed to bin 7.
- Let G; be the group of machines assigned for bin j.
For each j, assign points in U; uniformly at random to
amachine in G;.
- For each j, select a uniformly random subset of U} of
size O(1) from G; and add them to S. (If the number
of points in the group is O(1), add all of them to S.)
end for

In the remainder of this section, we analyze this algorithm.
We start with a definition.

Distributed Clustering via LSH Based Data Partitioning

Definition 1 (Cluster radius). For a cluster C with cen-
troid 1, we define the radius to be the quantity p =

Vi Shecllp -

Observation 1. In any cluster C with centroid u and radius
p, the number of points p in C such that ||p — pll2 > 2p is
at most |C| /4.

2, i.e., the “l% average” radius.

The proof follows by an averaging argument. Now, a can-
didate goal is to prove that for every optimum cluster C;
(center p;, radius p;), the algorithm chooses at least one
point at a distance < ap; from the center p; with high
probability, for some small a.

Unfortunately this statement is false in general. Suppose the
instance has an optimal cluster with small p; and a small
|C;| that is really far from the rest of the points (thus it is
essential to “find” that cluster). In this case, for r; that is
roughly p; (which is the scale at which we hope to find
a point close to this cluster), the bin containing C; may
contain many other points that are far away; thus a random
sample is unlikely to choose any point close to C;.

The fix for this problem comes from the observation that
small clusters (i.e. small |C;|) can afford to pay more per
point to the objective. We thus define the notion of “adjusted
radius” of a cluster. First, we define 6 to be the real number
satisfying OPT = nf?, i.e., the typical distance of a point to
its cluster center in the optimal clustering.* Now, we have:

Definition 2 (Adjusted radius). For a cluster C with ra-

dius p, we define the adjusted radius to be the quantity p
2

satisfying p* = p> + 6% + %.

Our main lemma about the algorithm is the following.

Lemma 4. Let C be a cluster in the optimal clustering with
adjusted radius p. With probability > 1/4, Algorithm 4.1
outputs a point that is at a distance < « - p from the center
of the cluster C, where oo = O(log nloglogn).

This is used to show the main result of this section.

Theorem 2. Let S’ be the union of the sets output by
O(log k) independent runs of Algorithm 4.1. For o =
O(lognloglogn), S’ gives an (a?,0(lognlogk)) bi-

criteria approximation for k-means, w.p. at least 9/10.

Proof of Theorem 2 assuming Lemma 4. First, let us ana-
lyze the number of points output. Note that in each run
of the algorithm, we output O(Lk) = O(k) points for each
radius range. There are O (log n) radius ranges and O (log k)
independent runs. Thus we have the desired bound.

Next, consider the approximation factor. As we take S’ to
be the union of O(log k) independent runs of Algorithm 4.1,

“We note that 6 is used solely for analysis purposes — the
algorithm is not assumed to know it.

the success probability in Lemma 4 can be boosted to 1 —
ﬁ, and by a union bound, we have that the conclusion of
the lemma holds for all clusters, with probability > 1/10.
Thus for every optimal cluster C; of adjusted radius p;,
Algorithm 4.1 outputs at least one point at a distance < a-p;,
for « as desired. Thus, assigning all the points in C; to one
such point would imply that the points of C; contribute at
most |C;|p? +a?|C;[p? to the objective.’ Thus the objective
value is at most

12 2|, 2 2 ng?
>_|Cilo? +a?(C (pz +0% + kl@l)

= (14 a?)OPT + o? - 2n6? < 4a*OPT.

7

This completes the proof. O

4.2. Distributed implementation

We now see how to implement algorithm from Theorem 2
in a distributed setting with a small number of rounds and
machines, while also using memory < s per machine. Our
final result is the following.

Theorem 3. There is a distributed algorithm that performs
[log, n] 4+ 2 rounds of MAPREDUCE computation, and
outputs a bi-criteria approximation to k-means, with the
same guarantee as Theorem 2. The number of machines

needed is O (m . %), and the space per machine is
s.

Note. Wbenever s > k, the bound on the number of ma-
chines is O(n/s), which is essentially optimal, because we
need n/s machines to hold n points, if each machine has a
memory of s.

While most parts of the algorithm from Theorem 2 can be
immediately parallelized, sampling from U; (which may
need to be split across machines) is the tricky part and
requires some work. The proof is deferred to Section 3 of
the supplement.

5. Lower Bound

We now show that even in the very simple setting of points
on a line, we have a tradeoff between the number of rounds
and memory. This matches the behavior of our algorithm,
up to an additive constant.

Theorem 4. Let « be any parameter that is poly(n). Then,
any « factor approximation algorithm for k-means with
k > 2 that uses poly(n) machines of memory < s requires
at least log, n rounds of MAPREDUCE.

The proof is by a simple reduction from Boolean-OR,° a

SThis follows from a “center-of-mass” theorem that is standard:
for a set T' of points with centroid 4, and any other point u’,
112 2 1112
Duerllv = w " =2 erllu — pll” + T[[lp — 1%
SThe input is the set of bits x1, .. ., x,, and the desired output

Distributed Clustering via LSH Based Data Partitioning

problem for which a round-memory trade-off was estab-
lished in (Roughgarden et al., 2016).

Proof. Suppose we have inputs z1, ..., x,, the inputs for
Boolean OR. We produce an instance of clustering with
k + n points, all on the line.

First, we place points at 1, 2, ..., k. Additionally, for 1 <
i <n,ifx; =1, weaddapointat k+«a+1. If z; = 0, add
a point at 1. Now if the OR of the z;’s is TRUE, then the
optimum solution places centersat 1,2, ..., k—1, k+a+1.
This results in an objective value of 1. If the OR is FALSE,
the optimum solution is to place centers at 1,2,...,k (0
cost). Thus an « factor approximation should be able to
distinguish between the two cases (because in the NO case,
it needs to have error 0, and in the YES case, this solution
will be a factor > « off. O

Note. The parameter o implicitly comes up in the reduction.
The number of bits necessary to write down the points z; is
nlog a. This is why we insist on o« = poly(n).

The lower bound above can be extended in order to rule
out both (a) the case in which we have a rough estimate
of the optimum (as in our algorithm), and (b) bi-criteria
approximations. To handle (a), we can perturb the NO case
so as to make the objective 1/p(na) for a large polynomial
p(+). In order to handle (b), i.e., to rule out an («, 3) bi-
criteria approximation, we need to add a multiplicity of Sk
for each of the points in the proof above. This leads to a
slightly weaker lower bound of log % rounds. The details
of these steps are straightforward, so we omit them.

6. Empirical Study

We evaluate our algorithmic ideas on two synthetic and
two real datasets, of varying sizes. In the former case, we
know the ground truth clustering, the “right £”, and the
optimum objective value. We use it to demonstrate how
the quality of clustering depends on the parameter ¢ — the
number of independent hashes we concatenate. In all the
datasets, we compare the objective value obtained by our
algorithm with the one obtained by k-means++ (part of
scikit-learn (Pedregosa et al., 2011)). This will only be
possible for small enough datasets, as k-means++ is a single
machine algorithm that uses 2(nk) memory.

6.1. Synthetic datasets

Both the datasets we consider are mixtures of Gaussians.
The first has n = 10° points in R%° and k£ = 100, while the
second has n = 106 point in R?° and k = 1000. For i € [k],
the centers are chosen uniformly from a box of length 400
in each dimension, maintaining a distance of 20 from one

is simply the OR of the bits.

| ™= number of buckets per cluster
mmm number of clusters per bucket
6 total number of buckets / k

number of hashes

Figure 2. This figure shows how number of buckets per cluster,
number of clusters per bucket, and the total number of buckets
change as number of hashes increases.

another. To form cluster C;, a random number of points are
chosen from the Gaussian N (p;, 1).

For the first dataset, we produce PLSH tuples using w =
15,t = 2, and vary £.We call the set of points that hash to
a given tuple a bucket of points. We measure the follow-
ing quantities: (a) the total number of non-empty buckets,
(b) the “purity” of the buckets, i.e., the number of distinct
clusters at intersect a non-empty bucket (on average), and
(c) the “spread” of a cluster, i.e., the number of buckets that
points of a cluster go to. The plots for these quantities as ¢
varies are shown in Figure 2. Note that it makes sense for
the spread to increase as £ increases, as even a difference in
one of the ¢ independent hashes results in unequal hashes.

Next, we study the objective value. For this we choose
¢ = 3. This results in 257 non-empty buckets. Now, from
each bucket, we output j points uniformly at random to form
a set S (and do this for different j). Even for j = 1, the
objective value is 41079, which is less than a factor 2 away
from the optimum, 26820. This is significantly better than
the guarantee we get from Theorem 2. It is also significantly
better than a random subset of 257 points, for which it turns
out that the objective is 5897317.

Intuitively, a random sample will be bad for this instance,
because there are many clusters of size < n/k, and no
points from such clusters will be chosen. This motivates
us to measure the cluster recall of our procedure — how
many clusters contribute to the 257 size set we output?
Interestingly, all 100 of the clusters do, for the above values
of the parameters. These results are consistent with the
theoretical observations that PLSH finds small-cardinality
clusters while a random sample does not.

Next, consider the larger synthetic dataset. Modulo n, k, the
data is generated as before. Here, we produce PLSH tuples
using w = 15,¢ = 3, and ¢ = 4. For these choices of n
and k, the single-machine k-means++ runs out of memory.
However, as we know the u;, we can estimate the optimum

Distributed Clustering via LSH Based Data Partitioning

Objective value of plsh coreset vs j

330000 4

320000 4

310000

300000

wuy

290000

280000 -

270000

Figure 3. Objective value vs size of coreset (determined by 7, the
number of points sampled from each PLSH bucket).

objective value, which is 251208.

In this dataset, we illustrate the use of our algorithm to
generate a coreset, as discussed in Section 1.2. We obtain
5722 buckets, from each of which we sample j points to
obtain a coreset S. We then run k-means on S with k£ =
1000, thus obtaining 1000 centers. We evaluate the k-means
objective with these centers. Results for different j are
shown in Figure 3. Note that even with j = 10, the objective
is within a 1.1 factor of the optimum.

6.2. Real datasets

‘We show our results on two datasets, both available via the
UC Irvine dataset repository.

SUSY. The first dataset is SUSY (see (P. Baldi, 2014)),
which contains 5SM points with 18 features. In order to
efficiently compare with k-means++, we use a sub-sample
of 100000 points. In this case we use the values of ¢, ¢ as
in our theoretical results. We also try different values for
w. We start with a guess of w = o(logn)3/2, where o
was obtained from k-means++ with k£ = 10 (which is very
fast). We then scale o from 274 to 22 in order to perform
the hashing in different radius ranges. After hashing and
finding S, we use it as a coreset and compute k-means.
Figure 4 shows the results, and also compares against a fully
random subset of points. Unlike the synthetic examples,
here a random set of points is not orders of magnitude
worse, but is still considerably worse than the output of our
algorithm. We also note that our values are within a factor
1.2 of k-means++ (which is sequential and significantly
slower). The number of buckets per cluster when &k = 600
for{=1,...,6are0.03,0.31,1.21,3.97,7,10.55.

FMA: A Dataset For Music Analysis This dataset
(see (Defferrard et al., 2017)) contains 518 features ex-
tracted from audio files available in the free music archive
(FMA). It has 106574 points. We perform the same ex-
periment we did for the SUSY dataset. Figure 5 shows

Objective values vs k

1000000 = pish

mm random
kmeans

900000

800000 -

700000 -

600000

500000

400000

300000

200000

0 100 200 300 400 500 600
P

Figure 4. SUSY dataset: objective values of k-means++, PLSH,
and a random set of points against k

lell Objective values vs k

1.6 m plsh
mm random

kmeans
1.4+

1.2 4

objective

1.0 1

0.8

0.6 4

0.44

100 200 300 400 500
k

Figure 5. Music dataset: objective values of k-means++, PLSH,
and a random set of points against k

the results, comparing the outputs with the output of k-
means++, as well as a random subset. The number of
buckets per cluster when £ = 512 for £ = 1,...,6 are
0.08,0.68,2.29, 5.27,9.43, 14.09 respectively.

References

Agarwal, P. K., Har-Peled, S., and Varadarajan, K. R. Ap-
proximating extent measures of points. Journal of the
ACM (JACM), 51(4):606-635, 2004.

Agarwal, P. K., Cormode, G., Huang, Z., Phillips, J., Wei,
Z., and Yi, K. Mergeable summaries. In Proceedings of
the 31st symposium on Principles of Database Systems,
pp- 23-34. ACM, 2012.

Ahmadian, S., Norouzi-Fard, A., Svensson, O., and Ward,
J. Better guarantees for k-means and euclidean k-median
by primal-dual algorithms. 2017 IEEE 58th Annual Sym-
posium on Foundations of Computer Science (FOCS), pp.
61-72,2017.

Andoni, A. and Indyk, P. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. In

Distributed Clustering via LSH Based Data Partitioning

47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2006), 21-24 October 2006, Berke-
ley, California, USA, Proceedings, pp. 459-468, 2006.
doi: 10.1109/FOCS.2006.49.

Arthur, D. and Vassilvitskii, S. K-means++: The advantages
of careful seeding. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’07, pp. 1027-1035, Philadelphia, PA, USA, 2007.
Society for Industrial and Applied Mathematics. ISBN
978-0-898716-24-5.

Arthur, D., Manthey, B., and Roglin, H. Smoothed analy-
sis of the k-means method. J. ACM, 58(5):19:1-19:31,
October 2011. ISSN 0004-5411. doi: 10.1145/2027216.
2027217.

Awasthi, P. and Sheffet, O. Improved spectral-norm bounds
for clustering. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques
- 15th International Workshop, APPROX 2012, and 16th
International Workshop, RANDOM 2012, Cambridge,
MA, USA, August 15-17, 2012. Proceedings, pp. 37-49,
2012. doi: 10.1007/978-3-642-32512-0_4.

Awasthi, P., Balcan, M., and White, C. General and ro-
bust communication-efficient algorithms for distributed
clustering. CoRR, abs/1703.00830, 2017.

Balcan, M., Ehrlich, S., and Liang, Y. Distributed k-
means and k-median clustering on general communica-
tion topologies. In Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada,
United States., pp. 1995-2003, 2013a.

Balcan, M.-F,, Ehrlich, S., and Liang, Y. Distributed cluster-
ing on graphs. In NIPS, pp. to appear, 2013b.

Bateni, M., Bhaskara, A., Lattanzi, S., and Mirrokni, V. S.
Distributed balanced clustering via mapping coresets. In
Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pp. 2591-2599, 2014.

Charikar, M., Chekuri, C., Feder, T., and Motwani, R. Incre-
mental clustering and dynamic information retrieval. In
Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC 97, pp. 626—635, New
York, NY, USA, 1997. ACM. ISBN 0-89791-888-6. doi:
10.1145/258533.258657.

Chen, J., Sun, H., Woodruff, D. P., and Zhang, Q.
Communication-optimal distributed clustering. In Ad-
vances in Neural Information Processing Systems 29:

Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain,
pp. 3720-3728, 2016.

Dasgupta, S. A cost function for similarity-based hierarchi-
cal clustering. In Proceedings of the Forty-eighth Annual
ACM Symposium on Theory of Computing, STOC ’16,
pp- 118-127, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4132-5. doi: 10.1145/2897518.2897527.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In Proceedings of the Twentieth Annual Sympo-
sium on Computational Geometry, SCG 04, pp. 253-262,
New York, NY, USA, 2004. ACM. ISBN 1-58113-885-7.
doi: 10.1145/997817.997857.

Dean, J. and Ghemawat, S. Mapreduce: Simplified data
processing on large clusters. In OSDI, pp. 137-150, 2004.

Defferrard, M., Benzi, K., Vandergheynst, P., and Bresson,
X. Fma: A dataset for music analysis. 2017.

Ene, A., Im, S., and Moseley, B. Fast clustering using
mapreduce. In KDD, pp. 681-689, 2011.

Guha, S., Mishra, N., Motwani, R., and O’Callaghan, L.
Clustering data streams. STOC, 2001.

Hastie, T., Tibshirani, R., and Friedman, J. The elements of
statistical learning: data mining, inference and predic-
tion. Springer, 2 edition, 2009.

Indyk, P. and Motwani, R. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, STOC 98, pp. 604-613, New
York, NY, USA, 1998. ACM. ISBN 0-89791-962-9. doi:
10.1145/276698.276876.

Indyk, P., Mahabadi, S., Mahdian, M., and Mirrokni, V.
Composable core-sets for diversity and coverage maxi-
mization. In unpublished, 2014.

Jaiswal, R., Kumar, A., and Sen, S. A simple d"2-sampling
based PTAS for k-means and other clustering problems.
CoRR, abs/1201.4206, 2012.

Johnson, W. B. and Lindenstrauss, J. Extensions of Lip-
schitz mappings into a Hilbert space. In Conference
in modern analysis and probability (New Haven, Conn.,
1982), volume 26 of Contemp. Math., pp. 189-206. Amer.
Math. Soc., Providence, RI, 1984.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D.,
Silverman, R., and Wu, A. Y. A local search approxima-
tion algorithm for k-means clustering. Computational
Geometry, 28(2):89 — 112, 2004. ISSN 0925-7721. doi:

Distributed Clustering via LSH Based Data Partitioning

https://doi.org/10.1016/j.comgeo0.2004.03.003. Special
Issue on the 18th Annual Symposium on Computational
Geometry - SoCG2002.

Karloff, H. J., Suri, S., and Vassilvitskii, S. A model of
computation for mapreduce. In SODA, pp. 938-948,
2010.

Kleinberg, J. An impossibility theorem for clustering. In
Proceedings of the 15th International Conference on Neu-
ral Information Processing Systems, NIPS’02, pp. 463—
470, Cambridge, MA, USA, 2002. MIT Press.

Kumar, A. and Kannan, R. Clustering with spectral norm
and the k-means algorithm. In 5/¢th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA, pp. 299—
308, 2010. doi: 10.1109/FOCS.2010.35.

Kumar, R., Moseley, B., Vassilvitskii, S., and Vattani, A.
Fast greedy algorithms in mapreduce and streaming. In
SPAA, pp. 1-10, 2013.

Laurent, B. and Massart, P. Adaptive estimation of a
quadratic functional by model selection. Ann. Statist., 28
(5):1302-1338, 10 2000. doi: 10.1214/a0s/1015957395.

Lloyd, S. P. Least squares quantization in pcm. /IEEE Trans.
Information Theory, 28:129—-136, 1982.

Ostrovsky, R., Rabani, Y., Schulman, L. J., and Swamy,
C. The effectiveness of lloyd-type methods for the k-
means problem. In 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2006), 21-24
October 2006, Berkeley, California, USA, Proceedings,
pp. 165-176, 2006. doi: 10.1109/FOCS.2006.75.

P. Baldi, P. Sadowski, D. W. Searching for exotic parti-
cles in high-energy physics with deep learning. Nature
Communications, 2014. doi: 10.1038/ncomms5308.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

Roughgarden, T., Vassilvitskii, S., and Wang, J. R. Shuffles
and circuits: (on lower bounds for modern parallel com-
putation). In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA
’16, pp. 1-12, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4210-0. doi: 10.1145/2935764.2935799.

Spring, R. and Shrivastava, A. Scalable and sustainable
deep learning via randomized hashing. In Proceedings
of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’17, pp.
445-454, New York, NY, USA, 2017. ACM. ISBN 978-
1-4503-4887-4. doi: 10.1145/3097983.3098035.

