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A. Nonlinearity in the asynchronously
sampled autoregressive time series

Lemma 1. Ler X (t) be an AR(2) time series given by
X(t)=aX({t—1)+bX(t—2)+¢(t), (1)
where (£(t))i=1,2,... are i.i.d. error terms. Then

EX)|X(t—-1),X(t—k)] =apX(t—1)+ b X(t—k),

2
foranyt > k > 2, where ay, by, are rational functions of a
and b.

Proof. The proof follows a simple induction. It is sufficient

to show that

wi X (1) = v X (t—1) + "1 X (t — k) + Ep(t), k>2,
3)

where wy, = wg(a, b), vy, = vi(a,b) are polynomials given

by

(w2,v2) = (1,a) “4)
(W1, V11) = (—vg, —(bwg +avg)), k>2, (5)

and Eji(t) is a linear combination of {e(t — i),i =
0,1,...,k — 2}. Basis of the induction is trivially sat-
isfied via 1. In the induction step, we assume that 3
holds for k. For ¢ > k + 1 we have wp X (t — 1) =
v X(t —2) + bF X (t — k — 1) + Ex(t — 1). Multi-
plying sides of this equation by b and adding av, X (t — 1)
we obtain

(avgp + bwp) X (t—1) = vp(aX(t — 1) + DX (t — 2))
+ 0P X (t—k—1)+bE(t — 1).
(6)
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Since aX (t — 1) + bX (t — 2) = X (t) — &(t) we get

71}k+1X(t — 1) = 7wk+1X(t) + ka(t —k— 1)
+[bEr(t — 1) — vre(?)] (7

As Ej11(t) = bER(t — 1) — vie(t) is a linear combination
of {e(t—1i),i =0,1,...,k— 1}, the above equation proves
3fork=Fk+1.

O

B. Robustness of the proposed architecture

To see how robust each of the networks is, we add noise
terms to part of the input series and evaluate them on such
datapoints, assuming unchanged output. We consider vary-
ing magnitude of the noise terms, which are added only
to the selected 20% of past steps at the value dimension'.

Formally the procedure is following:

1. Select randomly N5 = 6000 observations (X,,, y»)
(half of which coming from training set and half from
test set).

2. Add noise terms to the observations )?;p = X, +
En - - for {7, },2 evenly distributed on [—60, 6],
where o is a standard deviation of the differences of

the series being predicted and

5, = [ G~Ul0] if5=01€(05,..55)
=T otherwise.

®)
3. For each p evaluate each of the trained models on

—~ Novs
dataset { an, yn} ' , separately for n’s originally
n=1

coming from training and test sets.

C. Artificial data generation

We simulate a multivariate time series composed of K noisy
observations of the same autoregressive signal. The simu-
lated series are constructed as follows:

!"The asynchronous series has one dimension representing the
value of the quote, one representing duration and others represent-
ing indicators of the source. See C for details.
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1. We simulate univariate stationary AR(10) time series
x with randomly chosen weights.

2. The series is copied K times and each copy z(*) is
associated with a separate noise process £*). We con-
sider Gaussian or Binomial noise of different scales;
for each copy it is either added to or multiplied by the
initial series (z(*) = 2 + e® or z(F) = 2 x (M),

3. We simulate a random time process 7" where differ-
ences between consecutive events are iid exponential
random variables.

4a. The final series is composed of K noisy copies of the
original process observed at times indicated by the
random time process, and a duration between observa-
tions.

4b. At each time T'(t) indicated by the random time pro-
cess T', one of the noisy copies k is drawn and its value
at this time xéf“()t) is selected to form a new noisy se-
ries «*. The final multivariate series is composed of
x*, the series of durations between observations and
K indicators of which observation was drawn at each

time.

Assume that (z4);—1 2, . is a stationary AR(v) series and
consider the following (random) noise functions

eo(x,c,p) = x + ¢(2e — 1),
e1(x, ¢, p) = (1 + ¢(2e — 1)),

62(1‘36,17) =+ CE€,

e ~ Bernoulli(p),

€ ~ Bernoulli(p),
e~ N(0,1),
e~N(0,1). (9)

Note that argument p of €2 and €3 is redundant and was
added just for notational convenience.

esz(z,¢,p) = x(1 + ce),

Let N; ~ Exp(\) be a series of i.i.d. exponential ran-
dom variables with some constant rate A and let T'(t) =
22:1 [N + 1]. Then T'(¢) is a strictly increasing series of
times, at which we will observe the noisy observations.

Letplap?v ..., DK € (0, ].) and define

x® ._ | kmoas) (Tt 27k p), k=1,..., K,
Lo T(t), k=K+1.
(10)

Let I(t) be a series of i.i.d. random variables taking values
in {1,2,..., K} such that P(I(t) = K) x ¢* for some
q > 0. Define

1, k< Kandk=1(t),
() 0, k< Kandk # I(t),
X, = 11
! XMW k=K 41, (n
T(t), k=K+2.

We call {X;}, and {X;}, synchronous and asyn-
chronous time series, respectively. We simulate both of
the processes for N = 10, 000 and each K € {16,64}.

D. Household electricity dataset

The original dataset has 7 features: global active power,
global reactive power, voltage, global intensity, sub-
metering 1, sub-metering 2 and sub-metering 3, as well
as information on date and time. We created asynchronous
version of this dataset in two steps:

1. Deterministic time step sampling. The durations be-
tween the consecutive observations are periodic and
follow a scheme [1min, 2min, 3min, 7min, 2min,
2min, 4min, 1min, 2min, Imin]; the original obser-
vations in between are discarded. In other words,
if the original observations are indexed according to
time (in minutes) elapsed since the first observation,
we keep the observations at indices n such that n
mod 25 =k € [0,1,3,6,13,15,17, 21, 22, 24].

2. Random feature sampling. At each remaining time
step, we choose one out of seven features that will be
available at this step. The probabilities of the features
were chosen to be proportional to [1,1.5,1.52,1.5%]
and randomly assigned to each feature before sampling
(so that each feature has constant probability of its
value being available at each time step.

At each time step the sub-sampled dataset is 10-dimensional
vector that consists information about the time, date, 7 indi-
cator features that imply which feature is available, and the
value of this feature. The length of the sub-sampled dataset
is above 800 thousand, i.e. 40% of the original dataset’s
length.

The schedule of the sampled timesteps and available features
is attached in the data folder in the supplementary material.

E. Results
E.1. Detailed results for Quotes dataset

Table 1 presents the detailed results for the Quotes dataset.

E.2. Offset and significant weights in Electricity dataset

In Figure 1 we visualize significance and offset activations
for three input series, from the network trained on electricity
dataset. Each row represents activations corresponding to
past values of a single feature.
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Table 1. Detailed results for each prediction task for the quotes dataset. Each task involves prediction of the next quote by one of the
banks. Numbers represent the mean squared errors on out-of-sample test set.

task CNN VAR LSTM Phased LSTM ResNet SOCNN
bank A 0993 1.123  0.999 0.893 1.086 0.530
bank B 1225 2.116 1.673 0.701  31.598 0.613
bank C 3208 3.952 2957 2.666 3.805 0.617
bank D 3.634 4.134  3.436 1.877 4.635 0.649
bank E  3.558 4.367 3.344 2.136 3.717 1.154
bank F 8541 8.150 7.880 3.362 8.274 1.553
bank G 0.248 0.278  0.132 0.855 1.462 0.063
bank1  4.777 4.853 3.933 3.016 4.936 0.400
bank J 1.094 1.172  1.097 1.007 1.216 0.773
bank K 2.521 4.307 2.573 3.894 4.731 0.926
bank L  1.108 1.448 1.186 1.357 1.312 0.743
bank M 1.743 1.816 1.741 0.941 1.808 1.271
bank N 3.058 3.232 2943 1.123 3.229 1.509
bank O 0539 0.532 0420 0.860 0.566 0.218
bank P 0.447 0.354 0470 0.627 0.510 0.283
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Figure 1. Activations of the significance and offset sub-networks for the network trained on Electricity dataset. We present 25 most recent
out of 60 past values included in the input data, for 3 separate datapoints. Note the log scale on the left graph.



