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Abstract
Softmax is the most commonly used output func-
tion for multiclass problems and is widely used in
areas such as vision, natural language processing,
and recommendation. A softmax model has lin-
ear costs in the number of classes which makes it
too expensive for many real-world problems. A
common approach to speed up training involves
sampling only some of the classes at each train-
ing step. It is known that this method is biased
and that the bias increases the more the sampling
distribution deviates from the output distribution.
Nevertheless, almost all recent work uses simple
sampling distributions that require a large sample
size to mitigate the bias. In this work, we propose
a new class of kernel based sampling methods and
develop an efficient sampling algorithm. Kernel
based sampling adapts to the model as it is trained,
thus resulting in low bias. It can also be easily ap-
plied to many models because it relies only on the
model’s last hidden layer. We empirically study
the trade-off of bias, sampling distribution and
sample size and show that kernel based sampling
results in low bias with few samples.

1. Introduction
Classification problems with a large number of classes are
common in many language tasks (Mikolov et al., 2013; Ben-
gio & Sénécal, 2008) and recommender systems (Covington
et al., 2016). A standard and effective approach to these
classification tasks is to use some model, such as a neural
network, to compute a logit for each class, and assume that
the class probabilities are a softmax of the logits. Comput-
ing class probabilities with softmax involves a normalization
step where a partition function over the logits of all classes
is computed. For learning the model parameters, an opti-
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mization algorithm, e.g., stochastic gradient descent, needs
to compute the gradients with respect to the loss. When the
number of classes, n, is large, computing the probability of
each class is often too slow, as the time for each training
step grows linearly with n. Sampled softmax, which creates
a sample of m < n classes in every update step, is com-
monly used when the number of classes becomes too large.
It is well known that sampled softmax is biased (Bengio &
Sénécal, 2008), i.e., it does not converge to the same loss as
a full softmax – no matter how many update steps are taken.
The only way to eliminate the bias is to sample from the
softmax distribution which is not efficient. For any other
sampling distribution, there are two directions to mitigate
the bias: (i) choose a sampling distribution that is closer
to softmax, or (ii) increase the sample size, m – which is
trivial but costly. Early work (Bengio & Sénécal, 2008) has
shown that a good sampling distribution should be adaptive
and should depend on the model’s output.

While the importance of the sampling distribution is known,
surprisingly, almost all recent applications use simple sam-
pling distributions such as uniform or global popularity,
which require large sample sizes to achieve an acceptable
bias. One reason for this trend could be that the models
have tended to get more complex, e.g. stacked LSTMs, very
deep networks, convolutional NN, etc. which makes it hard
to design an efficient sampling distribution that adapts to
the model.

In this work, we propose a new class of sampling distribu-
tions that approximate softmax but are efficient to compute.
The proposed sampling distributions are defined over the
model’s output, making them adaptive to the input, the
model’s structure, and the current model parameters. The
main idea is to sample proportionally to a non-negative
kernel. We show that kernels allow us to compute the parti-
tion function efficiently in the kernel space. This result can
be used in a divide and conquer algorithm that samples in
O(D log n) time, where D is the dimension of the kernel
space. We suggest the quadratic kernel as an approximation
for (absolute) softmax. See Section 3.3 for details. Kernel
based sampling is generic and can be applied directly to
any model where the final layer is a dot product between a
hidden layer and class embeddings.

We study the bias of uniform, quadratic kernel and softmax
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sampling empirically and show that the quadratic kernel
needs one to two orders of magnitude less samples than
uniform to reach the same quality as full softmax. A second
observation is that once the bias is eliminated, more samples
usually do not increase the convergence speed.

2. Modelling Large Multiclass Problems
In this section, we first formalize the multiclass softmax and
then recap its sampling version.

Let y ∈ [0, 1]n with
∑n

i=1 yi = 1 be a distribution over n
classes for an input x ∈ X . The goal of supervised learning
is to find a function that explains a set of observed pairs
(x,y) of input x and label y. Let o : X ×Θ→ Rn be such
a function that maps an input x to a raw score for each class.
The model function o is parameterized by model parameters
θ ∈ Θ. To shorten notation, we drop the arguments x and θ
from o and all derived functions, whenever the dependency
is clear.

2.1. Full Softmax

A softmax model links the model outputs o to a class proba-
bility distribution p ∈ [0, 1]n with

∑n
i=1 pi = 1 by applying

an exponential function

pi :=
exp(oi)∑n
j=1 exp(oj)

(1)

The denominator of pi is also known as the partition func-
tion and takes at least O(n) time to compute. For softmax,
the output o is often referred to as the logits. The loss L
of a parameter setting θ is measured by the cross entropy
between y and p

L(y,p) := −
n∑

i=1

yi log pi = log

n∑
i=1

exp(oi)−
n∑

i=1

yi oi

This full softmax loss depends on all classes. Thus, learning
a full softmax is expensive when the number of classes, n,
is large.

2.2. Sampled Softmax

Sampled softmax aims to approximate a full softmax during
model training (Bengio & Sénécal, 2008; 2003). Rather
than computing the loss over all classes, only the positive
class and a sample of m negative classes are considered.
Each negative class is sampled with probability qi with
replacement. For the rest of the paper, we assume w.l.o.g.
that there is one positive class per training example, i.e.,
y ∈ {0, 1}n. The vector s ∈ {1, . . . , n}m+1 represents a
sample of classes and stores the index of the positive and
the index of the m sampled negative classes. For instance,
s = (2, 6, 7, 6, 3), represents a sample of size m = 4 with

the positive class at index 2 and four negative classes, where
the class at index 6 was sampled twice, and the classes at
index 7 and 3 once each.

Just as o, y, and p with cardinality n refer to important char-
acteristics of all the classes, o′, y′, and p′ with cardinality
m+1 reflect similar values for a sample s. First, each index
i ∈ {1, . . . ,m+ 1} of the sample s is assigned an adjusted
logit o′i.

o′i :=

{
osi − ln(mqsi) if ysi = 0
osi − ln(1) = osi else (2)

The adjusted logit corrects the true logit osi by the expected
number of occurences of a class si in the sample s. This
correction ensures that in the limit of m → ∞, sampled
softmax is unbiased (Bengio & Sénécal, 2008).

Second, p′ is the softmax probability distribution computed
over adjusted logits o′, and y′ is a projection of the original
labels y to the sample s.

p′i :=
exp(o′i)∑m+1

j=1 exp(o′j)
, y′i := ysi (3)

The loss of a sample s is the cross entropyL(y′,p′) between
predicted probabilities p′ and labels y′. In contrast to full
softmax, the loss of sampled softmax depends only on (at
most) m+ 1 different classes.

2.3. Importance of the Sampling Distribution

Sampled softmax can be viewed as an algorithm that gener-
ates an estimator for the full softmax gradient with respect
to the logits. The full softmax gradient with respect to a
logit oi is

∂L(p,y)

∂oi
= pi − yi (4)

whereas the sampled softmax gradient with respect to an
original logit oi reads

∂L(p′,y′)

∂oi
=

m+1∑
j=1

I(sj = i)(p′j − y′j) (5)

=

m+1∑
j=1

I(sj = i)p′j − yi

Ideally, we would like to pick a sampling distribution such
that sampled softmax converges to the same value as full
softmax. At the very least, we would like to guarantee
convergence with infinitely small step size and infinitely
many steps. That is guaranteed if the sampled softmax
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estimator is unbiased:

E

[
∂L(p′,y′)

∂oi

]
?
=
∂L(p,y)

∂oi
(6)

⇔E

m+1∑
j=1

I(sj = i)p′j

 ?
= pi (7)

Bengio & Sénécal (2008) have shown that sampling propor-
tional to the softmax probability, qi = pi ∝ exp(oi), is an
unbiased estimator. In fact, qi = pi ∝ exp(oi) is the only
unbiased estimator.

Theorem 2.1. The gradient of sample softmax is an unbi-
ased estimator of the full softmax gradient iff qi = pi ∝
exp(oi).

We include a detailed proof in the supplementary material.

2.4. Properties of a Good Sampling Distribution

The last sections argued that sampled softmax is biased and
the only way to mitigate the bias are (1) choose a sampling
distribution qi closer to softmax pi or (2) increase the sam-
ple size, m. The closer the sampling distribution qi reflects
pi, the smaller the sampling size that is needed for low bias.
Finally, we highlight three properties of the softmax distri-
bution, pi ∝ oi(x, θ), that a good sampling distribution, q,
should meet as well.

1. Example dependent: Every input, x, has an individ-
ual sampling distribution, because the output, o(x),
depends on the input, x.

2. Model structure dependent: The sampling depends
on the functional structure of o. For instance, if o
is an LSTM, the sampling distribution should not be
represented by simple bigrams.

3. Model parameter dependent: The sampling distribu-
tion changes while the model is learned, because o
depends on the model parameters.

Common sampling schemes such as uniform or popularity
based sampling are neither example nor model dependent.
In the following section, we introduce a sampling algorithm
that meets these criteria and is efficient.

3. Kernel Based Sampling
Sampling directly from qi ∝ exp(oi) requires computing
the partition function and is as expensive as computing the
full softmax. The motivation for sampling is to avoid that
inefficiency, so sampling from qi ∝ exp(oi) is not a good
option. In this section, we propose efficient sampling distri-
butions that depend on the example x, the model structure
o and the model parameter θ as highlighted in Section 2.4.

So far, we have ignored how the logits o are computed. In
the following, we assume that oi is a dot product between
a context or query embedding, h ∈ Rd, and a class embed-
ding, wi ∈ Rd. This type of model is extremely common
with many examples such as deep neural networks and fac-
torization models. For example, h could be the last hidden
layer of a deep neural network andW ∈ Rn×d the last ma-
trix of weights, such that o = W Th. The cost of computing
the full softmax on a dot product model is O(nd).

3.1. Kernel Based Distributions

We consider sampling distributions that are proportional to
some function K : Rd ×Rd → R+. We assume that K is a
kernel function for aD dimensional space, i.e., there exists a
mapping φ : Rd → RD such that K(a, b) = 〈φ(a),φ(b)〉.
Thus, the sampling distribution can be written as:

qi =
K(h,wi)∑n
j=1K(h,wj)

=
K(h,wi)〈

φ(h),

n∑
j=1

φ(wj)︸ ︷︷ ︸
=:z∈RD

〉 (8)

The last step shows the key property that we gain from a
kernel: the summation over all classes can be isolated from
the query h – i.e., the partition function becomes a simple
dot product between a query vector and a summary vector z.
This summary vector is independent of the query and can
be precomputed.

3.2. Sampling with Divide and Conquer

The kernel gives the ability to compute the probability of
one class efficiently. Next, we discuss how this property can
be used for efficient sampling from all classes. Instead of
sampling a class directly from all the possible classes, we
sample a subset of classes recursively until the subset has
only one class (see Figure 1(a)). To formalize this algorithm,
we introduce C ⊆ {1, . . . , n} as a set of classes and define
z(C) :=

∑
j∈C φ(wj). Let C ′ ∪C ′′ = C be a partition of

C into two disjoint sets C ′ and C ′′ = C \ C ′. We define
the probability, qC′|C , of sampling the set C ′ from C, as the
sum of the probabilities of its elements:

qC′|C :=
∑
j∈C′

K(h,wj)∑
l∈C K(h,wl)

(9)

=
〈φ(h),

∑
j∈C′ φ(wj)〉

〈φ(h),
∑

l∈C φ(wl)〉
=
〈φ(h), z(C ′)〉
〈φ(h), z(C)〉

If we know z forC andC ′, we can sample from this distribu-
tion in O(D) time. This scheme can be applied recursively
to the sampled subset until the subset contains exactly one
class. With n classes and two sets of equal size at each step,
this takes log2 n steps and in total the time for sampling a
class proportional to q is O(D log2 n).
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{1,...,n}

{1,...,n/2} {n/2+1,...,n}

{i,i+1}

i i+1

q{1,...,n/2}|{1..n}

q{i}|{i,i+1} q{i+1}|{i,i+1}

q{n/2+1,...,n}|{1..n}

(a) sampling a class

{1,...,n}

{1,...,n/2}

{i,i+1}

i

z({i,i+1}) ← z({i,i+1}) +∆ (wi)

z({1,..,n/2}) ← z({1,..,n/2}) +∆ (wi)

z({1,..,n}) ← z({1,..,n}) +∆ (wi)

(b) updating statistics

{1,...,n}

{1,...,n/2} {n/2+1,...,n}

{k,...,k+D/d}

k k+D/di... ...k+1

(c) large branching factor for leaves

Figure 1. Divide and conquer algorithm for sampling from a kernel distribution q. Figure 1(a) shows how to sample subsets starting from
all classes {1, . . . , n} until a single item i is reached. After the class embedding, wi, of class i changes from wold

i to wnew
i , all statistics,

z, on the sampling path of i are updated by ∆φ(wi) := φ(wnew
i )− φ(wold

i ) (Figure 1(b)). To minimize storage costs for statistics z, it is
beneficial to use a higher branching factor of O(D

d
) for the leaves (Figure 1(c)).

3.2.1. ANALYSIS

Correctness The correctness of the divide and conquer
algorithm, i.e., that it samples proportional to the kernel
distribution (eq. 8), is easy to show. Assume the algorithm
samples class i and the intermediate sets were C1, C2, . . . ,
Clogn−1. The probability for sampling class i with the
divide and conquer algorithm is equal to qi:

qC1|{1,...,n} qC2|C1
. . . q{i}|Clog n−1

= (((((((〈φ(h), z(C1)〉
〈φ(h), z({1, . . . , n})〉

(((((((〈φ(h), z(C2)〉
(((((((〈φ(h), z(C1)〉

. . .
〈φ(h), φ(wi)〉
(((((((〈φ(h), zlogn−1〉

=
K(h,wi)

〈φ(h), z〉
= qi

Runtime The divide and conquer algorithm assumes that
z(C) is known for every set that is involved in sampling.
As sampling is independent of the particular choice of the
splits, we can choose any arbitrary (binary and balanced)
split and keep it fixed. In total, there are n many sets that
are arranged in a tree like structure and each class appears in
exactly log2 n many sets. This allows to precompute z(C)
for any of the n sets. If we update an embedding,wi during
training, we can also update all sets in which i appears in, in
timeO(D log n) by updating z(C) for every node along the
path from the root to that embedding. Figure 1(b) illustrates
the update process.

3.2.2. PRACTICAL CONSIDERATIONS

Less Memory The structure described so far has O(n)
nodes in total, each of which must store O(D) information
for z. This meansO(nD) space is required to store it. Here
we will describe how to reduce that to O(nd) space while
maintaining fast sampling and updating.

Instead of splitting sets until they reach the trivial size 1,
we suggest to stop splitting as soon as the size of a set is
O(D

d ). This leads to the tree having a total of O(nd
D ) sets,

and requires O(nd) memory. Figure 1(c) sketches the sam-
pling process with a larger branching factor for the leaves.
Increasing the branching factor seems very costly for the
final step because the algorithm has to sample from a set of
O(D

d ) many classes. However, for most kernels, K(a, b)
can be computed efficiently in O(d) time, e.g., for kernels
of the form K(a, b) = f(〈a, b〉). Thus, performing the
last step in the original space takes O(dD

d ) = O(D) time
even with a naive implementation. The proposed modifi-
cation decreases the height of the tree from O(log2 n) to
O(log2

nd
D ), and adds a final step to sampling with time

O(D). The total sampling time is thus O(D(1 + log2
nd
D )

which is still O(D log2 n).

Multiple Partial Samples Usually, we want to sample
several negatives from q. Instead of applying the divide and
conquer algorithm m times, a single run could return all the
D
d leaf nodes. This would require an additional correction in
sampled softmax to accept a weight on each sample. Then,
instead of qi being the probability of sampling a particular
class, it is the probability of sampling a class multiplied by
the weight given to that class when it is sampled. The draw-
back of this approach is that the samples are not independent
and likely more total samples would be needed. We do not
further investigate this approach, but in some applications,
faster sampling might justify the cost of requiring a few
more samples.

3.3. Quadratic Kernel

One obvious choice for a kernel is a quadratic function
K(h,wi) = α〈h,wi〉2 + 1. This function is conveniently
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always positive. Its feature representation is

φ(a) =
[√
α vec(a⊗ a), 1

]
(10)

with D = O(d2), allowing for O(d2 log n) sampling. It
is also a reasonably good approximation of exp near the
origin, where many logits tend to be. However, a quadratic
function is a poor approximation for negative logits and
would oversample classes with negative logits. To align the
sampling distribution q better with the prediction distribu-
tion p, we suggest a modification of the softmax probability,
p, in eq. (1) to an absolute softmax

pi =
exp(|oi|)∑n
j=1 exp(|oj |)

(11)

This modified prediction distribution does not negatively
impact the expressiveness because softmax is shift invariant,
i.e., qi ∝ exp(oi) ∝ exp(oi) exp(c) = exp(oi + c) for
any constant c ∈ R. In particular, any softmax solution has
a corresponding absolute softmax solution by shifting the
logits, o, of the softmax solution by any c large enough
to make all the logits nonnegative. We investigated also
empirically the quality of softmax and absolute softmax as
prediction distribution when learning without sampling, i.e.,
full softmax, and both performed very similarly1 on the
datasets of Section 4.1.1. Finally, analogous to Section 2.3,
for absolute softmax as the prediction distribution, the only
unbiased sampling distribution is absolute softmax. This
follows directly from Theorem 2.1 in the supplementary
material, because the analysis was shown for pi ∝ exp(oi)
and any output oi, so it also holds for the modified output
|oi|. Therefore, we suggest to use an absolute softmax as
prediction distribution when sampling from a symmetric
kernel like the quadratic kernel and a standard softmax in
other cases.

Another way to look at absolute softmax is to add an ad-
ditional layer to o that performs |o| and then passing the
result to a standard softmax.

4. Experiments
In this section, we empirically investigate the trade-off be-
tween bias, sampling distribution, and number of samples.

4.1. Experimental Setup

4.1.1. DATASETS AND MODELS

We study sampled softmax on a natural language processing
(NLP) problem and a recommender system dataset.

Penn Tree Bank For the NLP problem, we learn a lan-
guage model on the Penn Tree Bank dataset (Marcus et al.,

1Similar empirical findings were obtained by Brébisson & Vin-
cent (2015) on various tasks.

1999), a dataset with approximately 1 million training words
and a vocabulary of size 10,000. We use the well-studied
”medium regularized LSTM” implementation2 of Zaremba
et al. (2014). We made one minor modification, and changed
the units per layer from 650 to 200. Doing so ensures that
the expressiveness of the model is small enough that we do
not need to worry about early-stopping, and dropout on its
own is a sufficient regularizer. We report the perplexity loss
as in (Zaremba et al., 2014).

YouTube In this recommendation dataset, we predict
which video a user will watch next based upon various
user features and the three previously watched videos. We
train a deep neural network where the user features and
previous videos are the input and the output is the watch
probability over all videos. To study the effect on sampling,
we created two versions of the dataset: YouTube10k, and
YouTube100k with 10,000, and 100,000 videos (=classes)
respectively. The 10k dataset has about 113 million training
examples, and the 100k dataset about 187 million examples.
For recommender systems, a common evaluation protocol is
to rank videos by their scores and then use some ranking met-
ric (e.g. mean average precision) to measure the quality of
a model. Here, we only wish to measure how well sampled
softmax approximates a full softmax. Thus, we measure
the cross-entropy loss of full softmax. In our YouTube ex-
periments, the cross-entropy loss was also highly correlated
with ranking metrics such as mean average precision.

4.1.2. SAMPLING DISTRIBUTIONS

We test the performance of three sampling distributions:

1. Uniform distribution, qi ∝ 1, where every class is
sampled with the same probability. This provides a
convenient baseline.

2. Softmax distribution, qi ∝ exp(oi), which is the ideal
sampling distribution as shown in Theorem 2.1, but is
very expensive to sample from.

3. Quadratic distribution, qi ∝ 100(oi)
2 + 1, as proposed

in Section 3.3

4.2. Results and Analysis

4.2.1. BIAS OF SAMPLING

First, we study the bias of sampled softmax empirically.
According to Section 2.3, any sampled softmax is biased
unless softmax is chosen as the sampling distribution, and
this bias decreases as the sample size, m, increases. We
visualize the bias by learning models with different sampling

2https://www.tensorflow.org/tutorials/
recurrent

https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
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Figure 2. Final model quality when training a sampled softmax with different sampling distributions (uniform, quadratic, softmax) and
number of samples, m. The quadratic distribution needs one to two orders of magnitude less samples than uniform sampling to learn a low
bias model. Penn Tree Bank includes additional results for a unigram and a bigram sampler which are common sampling distributions
in NLP sequence tasks. The results for Penn Tree Bank also include a quartic sampler which is a 4-th degree polynomial kernel with
qi ∝ o4i + 1.
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Figure 3. Convergence speed for a varying sample size m ∈ {10, 20, 40, . . .}. Once enough samples are taken to remove the bias, adding
more samples does not increase convergence speed considerably. The results for YouTube10k and YouTube100k show a similar behavior
an can be found in the supplementary material.

strategies until convergence and reporting the final accuracy.
Very biased models perform poorly even when they are run
until convergence.

The results are shown in Figure 2. As expected from theo-
rem 2.1, the quality of softmax sampling, i.e., q ∝ exp(o),
is independent of the number of samples m. This verifies
that a ”good” sampling distribution does not need many sam-
ples. On the other hand, uniform and quadratic sampling are
both biased and their final quality improves with increasing
sample size, m. Again, it is important to note that training
for more epochs does not solve this issue because the loss
that sampled softmax optimized is biased when sampling
uniformly or according to a quadratic kernel for any fixed
size m. On all datasets, quadratic has a much lower bias
than uniform sampling and approaches the loss of softmax
with 10s to 100s of samples.

4.2.2. CONVERGENCE SPEED

Second, we study the speed of convergence by measur-
ing the progress of the loss against the number of training
epochs. Every update step consists of reading a batch of
training examples, samplingm negative classes per example
and performing the update with sampled softmax. We plot
loss against epochs instead of wall runtime to eliminate any
implementation specific artifacts. Please note that the larger
the sample size m, the more computationally expensive an
epoch.

Sample Size First, we study how the sample size,m, influ-
ences convergence speed. Figure 3 shows the convergence
for the three sampling strategies. As already discussed, we
see that the number of samples has a large effect on the
accuracy of the model for the uniform and quadratic sam-
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Figure 4. Convergence speed of different sampling distributions for a fixed sampling size. The convergence speed of all distributions
is similar only the bias is different. The supplementary material shows additional graphs for m ∈ {80, 160, 320} for Penn Tree Bank,
YouTube 10k, and YouTube 100k.

pler. Interestingly, once enough samples are taken to remove
the bias, adding more samples appears to have a small and
mostly unobservable effect on convergence speed. We previ-
ously discussed how bias of the sampled softmax estimator
affects the final optimum achieved. The variance of this
estimator affects how many steps we need to converge. The
variance has two sources: (i) The gradient computed on
a batch is a noisy (but unbiased) estimator of the gradient
on the entire training set and (ii) the gradient given a set
of sampled classes is an estimator of the gradient on that
batch. While taking a larger sample size can reduce the
variance from source (ii), if the variance from source (i) is
the dominate source, doing so will not appreciably increase
convergence speed. For our data sets, we found that once
we take a reasonable number of samples (only 10s), adding
more does not noticeably increase convergence speed. This
is likely because the variance from source (i) dominates that
from source (ii). For instance on Penn Tree Bank, quadratic
sampling with m ∈ {160, 320, . . .} samples does not show
any difference in convergence speed.

To summarize, the sample size m influences the bias but the
influence on the convergence speed is small and often not
noticeable.

Sampling Distribution Finally, we fix the number of sam-
ples m and vary the sampling distribution. Figure 4 shows
that all three sampling distributions have a comparable speed
of convergence, however, uniform converges to a much
worse loss due to its high bias. Quadratic and softmax con-
verge similarly although quadratic has a slightly worse loss
throughout the whole training process due to its bias.

5. Related Work
In this section, we summarize the main approaches for train-
ing classification models over many classes. All of them
make some approximation of the full softmax to lower the
computational complexity.

5.1. Sampled Softmax

Other works on sampled softmax have noted that a good
sampling distribution can boost performance and attempted
to come up with such distributions. Bengio & Sénécal
(2008) propose an adaptive sampler for language models.
They argue that the sampling distribution should track the
model distribution as closely as possible. They propose to
learn a mixture of unigrams, bigrams, trigrams, etc. that is
adapted while training. While the work of Bengio & Sénécal
(2008) needs a second model to track the trained model, our
work uses the trained model directly for sampling. This
makes our approach much easier to apply. Secondly, kernel
based sampling is more appealing for sophisticated model
structures where it is hard to come up with a simple model
that can track the trained model well. Labeau & Allauzen
(2017) study sampling distributions for noise contrastive es-
timation (NCE) (Gutmann & Hyvrinen, 2010). Their exper-
iments highlight the issues of simple sampling distributions
such as uniform, or unigram. Another idea to improve the
sampling distribution is the Two-Pass Approximate Adap-
tive Sampling for Softmax (TAPAS). In that work, Bai et al.
(2017) propose taking one large sample of classes, which
might be in the order of 100,000 (20% of all classes in their
case) and computing the logits from that sample. Then, a
smaller number of classes, e.g., 1,000, is chosen from those
100,000 classes based on the computed logits. This second
sample of 1,000 classes is used for the sampled softmax. By
using a distributed implementation and GPUs, it is possible
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to compute the logits of the larger sample quickly. While
the TAPAS sampler is adaptive and depends on the current
model’s output as in our work, it is computationally much
more expensive. Bakhtiary et al. (2015) also explore se-
lectively computing logits using hashing to obtain faster
training steps for large batch sizes.

5.2. Hierarchical Softmax and Its Variations

Hierachical Softmax (HSM) is an approximation of a full
softmax introduced in (Goodman, 2001) that is quickly
computable. It involves grouping the classes into clus-
ters, where each cluster is a latent variable.3 If cj is
the jth cluster and class i is in cj , then we factor pi as
p(yi|x) = p(cj |x) p(yi|cj). If we set the number of classes
in each cluster to beO(

√
n) and the cluster probabilities can

be computed in time O(d), then this version of hierarchical
softmax can be done in O(d

√
n).

Morin & Bengio (2005) extend this structure to a tree. In-
stead of having one layer of clusters they use a binary tree
where each internal node is a cluster and the leaf nodes are
the classes. The probability of a class is then the product of
the conditional probability of each node along the path from
the root to that class. Such a structure allows for O(d log n)
training time.

While hierarchical softmax can be much faster than a full
softmax, it often performs worse at convergence. For in-
stance, Chen et al. (2015) found full softmax to achieve a
perplexity more than 10% better than hierarchical softmax.
They also note that while hierarchical softmax can speed up
training, it slows down inference if the goal is to compute
the class or classes with the highest logits. In particular,
both a full softmax and sampled softmax can treat inference
as a maximum inner product search, which can be done
in sublinear time with methods such as locally sensitive
hashing (Shrivastava & Li, 2014) or clustering (Auvolat &
Vincent, 2015). The tree structure has a large effect both
on the final performance and the efficiency of each training
step, so there is much work on modifying that structure.
Various approaches have been used to build this tree, such
as by class similarity (Le et al., 2011), by frequency binning
(Mikolov et al., 2011), or to optimize the speed of the model
(Grave et al., 2017). See Zweig & Makarychev (2013) for
experimental results showing the effects of some common
tree structures.

5.3. Spherical Softmax and Kernels

Vincent et al. (2015) propose to optimize a variation of soft-

3Some of the literature refers to what we call classes as simply
words and uses classes to refer to what we call clusters. We chose
the term classes instead of words to stress that hierarchical softmax
can apply to contexts outside of NLP.

max referred to as spherical softmax. In spherical softmax,
the prediction distribution is changed by replacing the exp
in eq. (1) with a quadratic function. This alternative formula-
tion allows exact gradient computations without computing
all the logits, needing only O(d2) time. This time is thus
independent of the number of classes, resulting in a signif-
icant speedup. Brébisson & Vincent (2015) note that on
some problems, spherical softmax produces models with
comparable quality as full exponential softmax (eq. 1), but
on other problems the quality is considerably worse. Espe-
cially for problems with many classes, optimizing spherical
softmax seems to produce low quality results. We also found
the spherical formulation not to be as effective as an expo-
nential softmax on our datasets. Finally, our approach of
kernel based sampled softmax with a quadratic kernel can
be viewed as using the spherical softmax for sampling, and
then the normal exponential softmax formulation for com-
putation of the loss. As in our approach the quadratic kernel
is only used for sampling, the high quality of exponential
softmax is preserved. Rastogi & Durme (2015) propose
kernel feature maps to approximate the softmax partition
function during inference after a model has been learned. In
contrast to this, our work focuses on using kernels during
training which requires dealing with parameter updates.

6. Conclusion
This work shows the importance of the sampling distribu-
tion when learning a sampled softmax model. In particular,
any sampling distribution besides softmax is biased and con-
verges to a worse quality than full softmax – no matter how
many learning steps are taken. The only way to mitigate
the bias is to increase the sample size or to use a better
sampling distribution. A good sampling distribution should
depend on the model output, which requires the distribution
to be example dependent, model structure dependent and
model parameter dependent. We have introduced the new
class of kernel based sampling methods that sample based
on the model output. Kernels allow efficient sampling even
for a large number of classes as they depend only on the
dimension of the kernel space and with a divide and conquer
algorithm on the logarithm of the number of classes. On
several experiments, a quadratic kernel showed a one to two
order better sample efficiency than uniform sampling.

Both the sampling algorithm as well as the kernel func-
tion offer several directions for future work. Besides other
analytical kernels such as polynomial kernels, random fea-
ture maps (Rahimi & Recht, 2008) could provide another
rich class for constructing kernels. For particular classes
of kernels, more efficient sampling algorithms might exist,
e.g., for non-negative maps, φ, a clever use of Alias sam-
pling (Walker, 1977) could provide an O(D) time sampling
algorithm.
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