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Reconstruction. Table 1 gives the pSNR scores for all
the methods. In particular below the lines, are DCGAN
and GLO trained with Lap1 but with images reconstruct
with MSE. Since the MSE is directly related to the pSNR,
this gives higher scores, even though it is the same model.
The difference between DCGAN and GLO stays the same
regardless of the reconstruction loss.

Figure 1 shows the distribution of pSNR scores for all the
methods and across all the datasets. It is surprising to see
that DCGAN pSNR scores have the same distribution as
VAE or GLO. We could have expected a few images to be
very well reconstruct from DCGAN if it was storing a few
images and drop the others, as a crude mode-dropping. This
result suggests that the “ mode-dropping” of GANs is more
subtle than simple matching a subset of images from the
dataset. That being said, these plots were made on only
1K images, which may not be enough to conclude anything
with certainty.

Probing the latent space. Figure 2 shows the cumulative
spectrum of the covariance matrix of the latent variable.
This measure shows how much space is used by the model
to fit the dataset representations in the latent space. A plot
close to the diagonal means that the model use as much
space as available to store its latent variables, leading to a
better reconstruction, but a sharper spectrum means that the
model is using a smaller space to store the representation,
which may either mean a worse reconstruction or a better
compression of the dataset.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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Figure 1. Distribution of the pSNR scores for all the methods on each dataset, out of 1K images. There are no obvious difference in the
shape of the distributions of the different models.
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Figure 2. Cumulative spectrum of the covariance matrix of the latent variable. The closer it is to the diagonal, the more the information is
well shared across the dimensions of the latent space. On the contrary, a cumulative that reach 1 rapidly means that the model only used a
few directions for its latent space.
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MNIST SVHN CelebA LSUN
32 32 64 128 64 128

train test train test train test train test train test train test

PCA 20.6 20.3 30.2 30.3 25.1 25.1 23.6 23.6 23.6 23.7 21.9 22.0

VAE 25.3 25.0 24.5 24.5 22.8 22.8 23.4 23.2 22.1 22.1 20.6 20.6
DCGAN 25.8 26.2 26.0 26.0 21.9 21.9 21.3 21.3 19.0 19.1 18.7 18.7
GLO 26.2 26.2 27.9 28.0 25.5 25.6 24.7 24.8 23.3 23.4 21.4 21.4

DCGAN 26.9 27.2 30.2 30.1 25.0 25.0 23.5 23.5 21.8 21.9 20.8 20.9
GLO 27.0 27.2 30.7 30.7 27.7 27.7 26.4 26.4 24.8 24.9 22.0 22.1

Table 1. pSNR of reconstruction for different models. Above the line, the codes were found using Lap1 loss (although the test error is still
measured in pSNR). Below the line, the codes were found using mean square error. Note that the generators of the VAE and GLO models
were trained to reconstruct in Lap1 loss.


