
Supplementary Material for “A Progressive Batching L-BFGS Method for
Machine Learning”

Raghu Bollapragada 1 Dheevatsa Mudigere 2 Jorge Nocedal 1 Hao-Jun Michael Shi 1 Ping Tak Peter Tang 3

A. Initial Step Length Derivation
To establish our results, recall that the stochastic quasi-Newton method is defined as

xk+1 = xk − αkHkg
Sk

k , (1)

where the batch (or subsampled) gradient is given by

gSk

k = ∇FSk
(xk) =

1

|Sk|
∑
i∈Sk

∇Fi(xk), (2)

and the set Sk ⊂ {1, 2, · · · } indexes data points (yi, zi). The algorithm selects the Hessian approximation Hk through
quasi-Newton updating prior to selecting the new sample Sk to define the search direction pk. We will use Ek to denote the
conditional expectation at xk and use E to denote the total expectation.

The primary theoretical mechanism for determining batch sizes is the exact variance inner product quasi-Newton (IPQN)
test, which is defined as

Ek

[(
(Hk∇F (xk))T (Hkg

i
k)− ‖Hk∇F (xk)‖2

)2]
|Sk|

≤ θ2‖Hk∇F (xk)‖4. (3)

We establish the inequality used to determine the initial steplength αk for the stochastic line search.
Lemma A.1. Assume that F is continuously differentiable with Lipschitz continuous gradient with Lipschitz constant L.
Then

Ek [F (xk+1)] ≤ F (xk)− αk∇F (xk)TH
1/2
k WkH

1/2
k ∇F (xk),

where

Wk =

(
I − Lαk

2

(
1 +

Var{Hkg
i
k}

|Sk|‖Hk∇F (xk)‖2
)
Hk

)
,

and Var{Hkg
i
k} = Ek

[
‖Hkg

i
k −Hk∇F (xk)‖2

]
.

Proof. By Lipschitz continuity of the gradient, we have that

Ek [F (xk+1)] ≤ F (xk)− αk∇F (xk)THkEk

[
gSk

k

]
+
Lα2

k

2
Ek

[
‖Hkg

Sk

k ‖2
]

= F (xk)− αk∇F (xk)THk∇F (xk) +
Lα2

k

2

(
‖Hk∇F (xk)‖2 + Ek

[
‖Hkg

Sk

k −Hk∇F (xk)‖2
])

≤ F (xk)− αk∇F (xk)THk∇F (xk) +
Lα2

k

2

(
‖Hk∇F (xk)‖2 +

Var{Hkg
i
k}

|Sk|‖Hk∇F (xk)‖2 ‖Hk∇F (xk)‖2
)

= F (xk)− αk∇F (xk)TH
1/2
k

(
I − Lαk

2

(
1 +

Var{Hkg
i
k}

|Sk|‖Hk∇F (xk)‖2
)
Hk

)
H

1/2
k ∇F (xk)

= F (xk)− αk∇F (xk)TH
1/2
k WkH

1/2
k ∇F (xk).

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

B. Convergence Analysis
For the rest of our analysis, we make the following two assumptions.
Assumptions B.1. The orthogonality condition is satisfied for all k, i.e.,

Ek

[∥∥∥Hkg
i
k −

(Hkg
i
k)

T (Hk∇F (xk))
‖Hk∇F (xk)‖2 Hk∇F (xk)

∥∥∥2]
|Sk|

≤ ν2‖Hk∇F (xk)‖2, (4)

for some large ν > 0.
Assumptions B.2. The eigenvalues ofHk are contained in an interval in R+, i.e., for all k there exist constants Λ2 ≥ Λ1 > 0
such that

Λ1I � Hk � Λ2I. (5)

Condition (4) ensures that the stochastic quasi-Newton direction is bounded away from orthogonality to −Hk∇F (xk), with
high probability, and prevents the variance in the individual quasi-Newton directions to be too large relative to the variance
in the individual quasi-Newton directions along −Hk∇F (xk). Assumption B.2 holds, for example, when F is convex and a
regularization parameter is included so that any subsampled Hessian ∇2FS(x) is positive definite. It can also be shown to
hold in the non-convex case by applying cautious BFGS updating; e.g. by updating Hk only when yTk sk ≥ ε‖sk‖22 where
ε > 0 is a predetermined constant (Berahas et al., 2016).

We begin by establishing a technical descent lemma.
Lemma B.3. Suppose that F is twice continuously differentiable and that there exists a constant L > 0 such that

∇2F (x) � LI, ∀x ∈ Rd. (6)

Let {xk} be generated by iteration (1) for any x0, where |Sk| is chosen by the (exact variance) inner product quasi-Newton
test (3) for given constant θ > 0 and suppose that assumptions (B.1) and (B.2) hold. Then, for any k,

Ek

[
‖Hkg

Sk

k ‖2
]
≤ (1 + θ2 + ν2)‖Hk∇F (xk)‖2. (7)

Moreover, if αk satisfies

αk = α ≤ 1

(1 + θ2 + ν2)LΛ2
, (8)

we have that

Ek[F (xk+1)] ≤ F (xk)− α

2
‖H1/2

k ∇F (xk)‖2. (9)

Proof. By Assumption (B.1), the orthogonality condition, we have that

Ek

∥∥∥∥∥Hkg
Sk

k −
(Hkg

Sk

k)T (Hk∇F (xk))

‖Hk∇F (xk)‖2 Hk∇F (xk)

∥∥∥∥∥
2
 ≤ Ek

[∥∥∥Hkg
i
k −

(Hkg
i
k)

T (Hk∇F (xk))
‖Hk∇F (xk)‖2 Hk∇F (xk)

∥∥∥2]
|Sk|

(10)

≤ ν2 ‖Hk∇F (xk)‖2.
Now, expanding the left hand side of inequality (10), we get

Ek

∥∥∥∥∥Hkg
Sk

k −
(Hkg

Sk

k)T (Hk∇F (xk))

‖Hk∇F (xk)‖2 Hk∇F (xk)

∥∥∥∥∥
2


= Ek

[
‖Hkg

Sk

k ‖2
]
−

2Ek

[(
(Hkg

Sk

k)T (Hk∇F (xk))
)2]

‖Hk∇F (xk)‖2 +

Ek

[(
(Hkg

Sk

k)T (Hk∇F (xk))
)2]

‖Hk∇F (xk)‖2

= Ek

[
‖Hkg

Sk

k ‖2
]
−

Ek

[(
(Hkg

Sk

k)T (Hk∇F (xk))
)2]

‖Hk∇F (xk)‖2
≤ ν2 ‖Hk∇F (xk)‖2.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

Therefore, rearranging gives the inequality

Ek

[
‖Hkg

Sk

k ‖2
]
≤

Ek

[(
(Hkg

Sk

k)T (Hk∇F (xk))
)2]

‖Hk∇F (xk)‖2 + ν2‖Hk∇F (xk)‖2. (11)

To bound the first term on the right side of this inequality, we use the inner product quasi-Newton test; in particular, |Sk|
satisfies

Ek

[(
(Hk∇F (xk))T (Hkg

Sk

k))− ‖Hk∇F (xk)‖2
)2]
≤

Ek

[(
(Hk∇F (xk))T (Hkg

i
k)− ‖Hk∇F (xk)‖2

)2]
|Sk|

≤ θ2‖Hk∇F (xk)‖4, (12)

where the second inequality holds by the IPQN test. Since

Ek

[(
(Hk∇F (xk))T (Hkg

Sk

k)− ‖Hk∇F (xk)‖2
)2]

= Ek

[(
(Hk∇F (xk))T (Hkg

Sk

k)
)2]
− ‖Hk∇F (xk)‖4, (13)

we have

Ek

[(
(Hkg

Sk

k)T (Hk∇F (xk))
)2]
≤ ‖Hk∇F (xk)‖4 + θ2‖Hk∇F (xk)‖4

= (1 + θ2)‖Hk∇F (xk)‖4, (14)

by (12) and (13). Substituting (14) into (11), we get the following bound on the length of the search direction:

Ek

[
‖Hkg

Sk

k ‖2
]
≤ (1 + θ2 + ν2)‖Hk∇F (xk)‖2,

which proves (7). Using this inequality, Assumption B.2, and bounds on the Hessian and steplength (6) and (8), we have

Ek[F (xk+1)] ≤ F (xk)− Ek

[
α(Hkg

Sk

k)T∇F (xk)
]

+ Ek

[
Lα2

2
‖Hkg

Sk

k ‖2
]

= F (xk)− α∇F (xk)THk∇F (xk) +
Lα2

2
Ek[‖Hkg

Sk

k ‖2]

≤ F (xk)− α∇F (xk)THk∇F (xk) +
Lα2

2
(1 + θ2 + ν2)‖Hk∇F (xk)‖2

= F (xk)− α(H
1/2
k ∇F (xk))T

(
I − Lα(1 + θ2 + ν2)

2
Hk

)
H

1/2
k ∇F (xk)

≤ F (xk)− α
(

1− LΛ2α(1 + θ2 + ν2)

2

)
‖H1/2

k ∇F (xk)‖2

≤ F (xk)− α

2
‖H1/2

k ∇F (xk)‖2.

We now show that the stochastic quasi-Newton iteration (1) with a fixed steplength α is linearly convergent when F is
strongly convex. In the following discussion, x∗ denotes the minimizer of F .

Theorem B.4. Suppose that F is twice continuously differentiable and that there exist constants 0 < µ ≤ L such that

µI � ∇2F (x) � LI, ∀x ∈ Rd. (15)

Let {xk} be generated by iteration (1), for any x0, where |Sk| is chosen by the (exact variance) inner product quasi-Newton
test (3) and suppose that the assumptions (B.1) and (B.2) hold. Then, if αk satisfies (8) we have that

E[F (xk)− F (x∗)] ≤ ρk(F (x0)− F (x∗)), (16)

where x∗ denotes the minimizer of F , and ρ = 1− µΛ1α.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

Proof. It is well-known (Bertsekas et al., 2003) that for strongly convex functions,

‖∇F (xk)‖2 ≥ 2µ[F (xk)− F (x∗)].

Substituting this into (9) and subtracting F (x∗) from both sides and using Assumption B.2, we obtain

Ek[F (xk+1)− F (x∗)] ≤ F (xk)− F (x∗)− α

2
‖H1/2

k ∇F (xk)‖2

≤ F (xk)− F (x∗)− α

2
Λ1‖∇F (xk)‖2

≤ (1− µΛ1α)(F (xk)− F (x∗)).

The theorem follows from taking total expectation.

We now consider the case when F is nonconvex and bounded below.

Theorem B.5. Suppose that F is twice continuously differentiable and bounded below, and that there exists a constant
L > 0 such that

∇2F (x) � LI, ∀x ∈ Rd. (17)

Let {xk} be generated by iteration (1), for any x0, where |Sk| is chosen by the (exact variance) inner product quasi-Newton
test (3) and suppose that the assumptions (B.1) and (B.2) hold. Then, if αk satisfies (8), we have

lim
k→∞

E[‖∇F (xk)‖2]→ 0. (18)

Moreover, for any positive integer T we have that

min
0≤k≤T−1

E[‖∇F (xk)‖2] ≤ 2

αTΛ1
(F (x0)− Fmin),

where Fmin is a lower bound on F in Rd.

Proof. From Lemma B.3 and by taking total expectation, we have

E[F (xk+1)] ≤ E[F (xk)]− α

2
E[‖H1/2

k ∇F (xk)‖2],

and hence
E[‖H1/2

k ∇F (xk)‖2] ≤ 2

α
E[F (xk)− F (xk+1)].

Summing both sides of this inequality from k = 0 to T − 1, and since F is bounded below by Fmin, we get

T−1∑
k=0

E[‖H1/2
k ∇F (xk)‖2] ≤ 2

α
E[F (x0)− F (xT)] ≤ 2

α
[F (x0)− Fmin].

Using the bound on the eigenvalues of Hk and taking limits, we obtain

Λ1 lim
T→∞

T−1∑
k=0

E[‖∇F (xk)‖2] ≤ lim
T→∞

T−1∑
k=0

E[‖H1/2
k ∇F (xk)‖2] <∞,

which implies (18). We can also conclude that

min
0≤k≤T−1

E[‖∇F (xk)‖2] ≤ 1

T

T∑
k=0

E[‖∇F (xk)‖2] ≤ 2

αTΛ1
(F (x0)− Fmin).

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

Table 1. Characteristics of all datasets used in the experiments.

Dataset # Data Points (train; test) # Features # Classes Source

gisette (6,000; 1,000) 5,000 2 (Chang & Lin, 2011)
mushrooms (7,311; 813) 112 2 (Chang & Lin, 2011)
sido (11,410; 1,268) 4,932 2 (Guyon et al., 2008)
ijcnn (35,000; 91701) 22 2 (Chang & Lin, 2011)
spam (82,970; 9,219) 823,470 2 (Cormack & Lynam, 2005; Carbonetto, 2009)
alpha (450,000; 50,000) 500 2 synthetic
covertype (522,910; 58,102) 54 2 (Chang & Lin, 2011)
url (2,156,517; 239,613) 3,231,961 2 (Chang & Lin, 2011)
MNIST (60,000; 10,000) 28× 28 10 (LeCun et al., 1998)
CIFAR-10 (50,000; 10,000) 32× 32 10 (Krizhevsky, 2009)

C. Additional Numerical Experiments
C.1. Datasets

Table 1 summarizes the datasets used for the experiments. Some of these datasets divide the data into training and testing
sets; for the rest, we randomly divide the data so that the training set constitutes 90% of the total.

The alpha dataset is a synthetic dataset that is available at ftp://largescale.ml.tu-berlin.de.

C.2. Logistic Regression Experiments

We report the numerical results on binary classification logistic regression problems on the 8 datasets given in Table 1. We
plot the performance measured in terms of training error, test loss and test accuracy against gradient evaluations. We also
report the behavior of the batch sizes and steplengths for both variants of the PBQN method.

0 20 40 60 80 100
Gradient Evaluations

10−4

10−3

10−2

10−1

100

101

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

10−2

10−1

100

101

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Te
st

Lo
ss

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

50

60

70

80

90

100

Te
st

A
cc

ur
ac

y

SG
SVRG
PBQN-MB
PBQN-FO

0 20 40 60 80 100 120 140
Iterations

0

1

2

3

4

5

6

B
at

ch
S

iz
es

×103

PBQN-MB
PBQN-FO

0 20 40 60 80 100 120 140
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 1. gisette dataset: Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap) and
full-overlap (FO) approaches, and the SG and SVRG methods.

ftp://largescale.ml.tu-berlin.de

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

0 5 10 15 20 25 30 35 40
Gradient Evaluations

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

10−5

10−4

10−3

10−2

10−1

100

101

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

Lo
ss

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

40

50

60

70

80

90

100

Te
st

A
cc

ur
ac

y

SG
SVRG
PBQN-MB
PBQN-FO

0 10 20 30 40 50 60 70
Iterations

0

1

2

3

4

5

6

7

8
B

at
ch

S
iz

es
×103

PBQN-MB
PBQN-FO

0 10 20 30 40 50 60 70
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 2. mushrooms dataset: Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap) and
full-overlap (FO) approaches, and the SG and SVRG methods.

0 20 40 60 80 100
Gradient Evaluations

10−5

10−4

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

Lo
ss

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

50

60

70

80

90

100

Te
st

A
cc

ur
ac

y

SG
SVRG
PBQN-MB
PBQN-FO

0 50 100 150 200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
at

ch
S

iz
es

×104

PBQN-MB
PBQN-FO

0 50 100 150 200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 3. sido dataset: Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap) and full-overlap
(FO) approaches, and the SG and SVRG methods.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

0 10 20 30 40 50 60
Gradient Evaluations

10−6

10−5

10−4

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

10−5

10−4

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

Lo
ss

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

50

55

60

65

70

75

80

85

90

95

Te
st

A
cc

ur
ac

y

SG
SVRG
PBQN-MB
PBQN-FO

0 20 40 60 80 100 120 140 160
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
B

at
ch

S
iz

es
×104

PBQN-MB
PBQN-FO

0 20 40 60 80 100 120 140 160
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 4. ijcnn dataset: Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap) and full-
overlap(FO) approaches, and the SG and SVRG methods.

0 10 20 30 40 50 60 70
Gradient Evaluations

10−6

10−5

10−4

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

10−4

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

Lo
ss

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

50

60

70

80

90

100

Te
st

A
cc

ur
ac

y

SG
SVRG
PBQN-MB
PBQN-FO

0 50 100 150 200 250 300 350
Iterations

0

1

2

3

4

5

6

7

8

9

B
at

ch
S

iz
es

×104

PBQN-MB
PBQN-FO

0 50 100 150 200 250 300 350
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 5. spam dataset: Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap) and full-
overlap (FO) approaches, and the SG and SVRG methods.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

0 20 40 60 80 100
Gradient Evaluations

10−6

10−5

10−4

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

Lo
ss

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

50

55

60

65

70

75

80

Te
st

A
cc

ur
ac

y

SG
SVRG
PBQN-MB
PBQN-FO

0 50 100 150 200 250 300 350 400
Iterations

0

1

2

3

4
B

at
ch

S
iz

es

×105

PBQN-MB
PBQN-FO

0 50 100 150 200 250 300 350 400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 6. alpha dataset: Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap) and full-
overlap (FO) approaches, and the SG and SVRG methods.

0 20 40 60 80 100
Gradient Evaluations

10−6

10−5

10−4

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

10−5

10−4

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

0.50

0.55

0.60

0.65

0.70

Te
st

Lo
ss

SG
SVRG
PBQN-MB
PBQN-FO

0 2 4 6 8 10
Gradient Evaluations

50

55

60

65

70

75

80

Te
st

A
cc

ur
ac

y

SG
SVRG
PBQN-MB
PBQN-FO

0 100 200 300 400 500 600
Iterations

0

1

2

3

4

5

6

B
at

ch
S

iz
es

×105

PBQN-MB
PBQN-FO

0 100 200 300 400 500 600
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 7. covertype dataset: Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap) and
full-overlap (FO) approaches, and the SG and SVRG methods.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient Evaluations

10−3

10−2

10−1

100

Tr
ai

ni
ng

E
rr

or

SG
SVRG
PBQN-MB
PBQN-FO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

Lo
ss

SG
SVRG
PBQN-MB
PBQN-FO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient Evaluations

30

40

50

60

70

80

90

100

Te
st

A
cc

ur
ac

y

SG
SVRG
PBQN-MB
PBQN-FO

0 50 100 150 200 250 300
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

B
at

ch
S

iz
es

×106

PBQN-MB
PBQN-FO

0 50 100 150 200 250 300
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 8. url dataset: Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap) and full-overlap
(FO) approaches, and the SG and SVRG methods. Note that we only ran the SG and SVRG algorithms for 3 gradient evaluations since
the equivalent number of iterations already reached of order of magnitude 107.

C.3. Neural Network Experiments

We describe each neural network architecture below. We plot the training loss, test loss and test accuracy against the total
number of iterations and gradient evaluations. We also report the behavior of the batch sizes and steplengths for both variants
of the PBQN method.

C.3.1. CIFAR-10 CONVOLUTIONAL NETWORK (C) ARCHITECTURE

The small convolutional neural network (ConvNet) is a 2-layer convolutional network with two alternating stages of 5× 5
kernels and 2× 2 max pooling followed by a fully connected layer with 1000 ReLU units. The first convolutional layer
yields 6 output channels and the second convolutional layer yields 16 output channels.

C.3.2. CIFAR-10 AND MNIST ALEXNET-LIKE NETWORK (A1,A2) ARCHITECTURE

The larger convolutional network (AlexNet) is an adaptation of the AlexNet architecture (Krizhevsky et al., 2012) for
CIFAR-10 and MNIST. The CIFAR-10 version consists of three convolutional layers with max pooling followed by two
fully-connected layers. The first convolutional layer uses a 5×5 kernel with a stride of 2 and 64 output channels. The second
and third convolutional layers use a 3× 3 kernel with a stride of 1 and 64 output channels. Following each convolutional
layer is a set of ReLU activations and 3× 3 max poolings with strides of 2. This is all followed by two fully-connected
layers with 384 and 192 neurons with ReLU activations, respectively. The MNIST version of this network modifies this by
only using a 2× 2 max pooling layer after the last convolutional layer.

C.3.3. CIFAR-10 RESIDUAL NETWORK (R) ARCHITECTURE

The residual network (ResNet18) is a slight modification of the ImageNet ResNet18 architecture for CIFAR-10 (He et al.,
2016). It follows the same architecture as ResNet18 for ImageNet but removes the global average pooling layer before the
1000 neuron fully-connected layer. ReLU activations and max poolings are included appropriately.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

101 102 103 104

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

101 102 103 104

Iterations

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Te
st

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

101 102 103 104

Iterations

20

30

40

50

60

70

Te
st

A
cc

ur
ac

y

SG
Adam
PBQN-MB
PBQN-FO

0 50 100 150 200
Gradient Evaluations

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

0 50 100 150 200
Gradient Evaluations

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Te
st

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

0 50 100 150 200
Gradient Evaluations

20

30

40

50

60

70

Te
st

A
cc

ur
ac

y

SG
Adam
PBQN-MB
PBQN-FO

0 100 200 300 400 500
Iterations

0

1

2

3

4

5

B
at

ch
S

iz
es

×104

SG
Adam
PBQN-MB
PBQN-FO

0 500 1000 1500 2000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 9. CIFAR-10 ConvNet (C): Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap)
and full-overlap (FO) approaches, and the SG and Adam methods. The best results for L-BFGS are achieved with θ = 0.9.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

101 102 103 104

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

101 102 103 104

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te
st

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

101 102 103 104

Iterations

70

75

80

85

90

95

100

Te
st

A
cc

ur
ac

y

SG
Adam
PBQN-MB
PBQN-FO

0 10 20 30 40 50
Gradient Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

0 10 20 30 40 50
Gradient Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te
st

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

0 10 20 30 40 50
Gradient Evaluations

70

75

80

85

90

95

100

Te
st

A
cc

ur
ac

y

SG
Adam
PBQN-MB
PBQN-FO

0 200 400 600 800 1000
Iterations

0

1

2

3

4

5

6

B
at

ch
S

iz
es

×104

SG
Adam
PBQN-MB
PBQN-FO

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 10. MNIST AlexNet (A1): Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap) and
full-overlap (FO) approaches, and the SG and Adam methods. The best results for L-BFGS are achieved with θ = 2.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

101 102 103 104

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

101 102 103 104

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Te
st

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

101 102 103 104

Iterations

20

30

40

50

60

70

Te
st

A
cc

ur
ac

y

SG
Adam
PBQN-MB
PBQN-FO

0 200 400 600 800 1000
Gradient Evaluations

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

0 200 400 600 800 1000
Gradient Evaluations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Te
st

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

0 200 400 600 800 1000
Gradient Evaluations

20

30

40

50

60

70

Te
st

A
cc

ur
ac

y

SG
Adam
PBQN-MB
PBQN-FO

0 200 400 600 800 1000
Iterations

0

1

2

3

4

5

B
at

ch
S

iz
es

×104

SG
Adam
PBQN-MB
PBQN-FO

0 500 1000 1500 2000 2500 3000
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 11. CIFAR-10 AlexNet (A2): Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap)
and full-overlap (FO) approaches, and the SG and Adam methods. The best results for L-BFGS are achieved with θ = 0.9.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

101 102 103

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

101 102 103

Iterations

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Te
st

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

101 102 103

Iterations

20

30

40

50

60

70

Te
st

A
cc

ur
ac

y

SG
Adam
PBQN-MB
PBQN-FO

0 50 100 150 200
Gradient Evaluations

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

0 50 100 150 200
Gradient Evaluations

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Te
st

Lo
ss

SG
Adam
PBQN-MB
PBQN-FO

0 50 100 150 200
Gradient Evaluations

20

30

40

50

60

70

Te
st

A
cc

ur
ac

y

SG
Adam
PBQN-MB
PBQN-FO

0 200 400 600 800 1000
Iterations

0

1

2

3

4

5

B
at

ch
S

iz
es

×104

SG
Adam
PBQN-MB
PBQN-FO

0 200 400 600 800 1000 1200 1400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

S
te

pl
en

gt
h

PBQN-MB
PBQN-FO

Figure 12. CIFAR-10 ResNet18 (R): Performance of the progressive batching L-BFGS methods, with multi-batch (MB) (25% overlap)
and full-overlap (FO) approaches, and the SG and Adam methods. The best results for L-BFGS are achieved with θ = 2.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

D. Performance Model
The use of increasing batch sizes in the PBQN algorithm yields a larger effective batch size than the SG method, allowing
PBQN to scale to a larger number of nodes than currently permissible even with large-batch training (Goyal et al., 2017).
With improved scalability and richer gradient information, we expect reduction in training time. To demonstrate the potential
to reduce training time of a parallelized implementation of PBQN, we extend the idealized performance model from (Keskar
et al., 2016) to the PBQN algorithm. For PBQN to be competitive, it must achieve the following: (i) the quality of its solution
should match or improve SG’s solution (as shown in Table 1 of the main paper); (ii) it should utilize a larger effective batch
size; and (iii) it should converge to the solution in a lower number of iterations. We provide an initial analysis for this by
establishing the analytic requirements for improved training time; we leave discussion on implementation details, memory
requirements, and large-scale experiments for future work.

Let the effective batch size for PBQN and conventional SG batch size be denoted as B̂L and BS , respectively. From
Algorithm 1, we observe that the PBQN iteration involves extra computation in addition to the gradient computation as
in SG. The additional steps are as follows: the L-BFGS two-loop recursion, which includes several operations over the
stored curvature pairs and network parameters (Algorithm 1:6); the stochastic line search for identifying the steplength
(Algorithm 1:7-16); and curvature pair updating (Algorithm 1:18-21). However, most of these supplemental operations are
performed on the weights of the network, which is orders of magnitude lower than computing the gradient. The two-loop
recursion performs O(10) operations over the network parameters and curvature pairs. The cost for variance estimation is
negligible since we may use a fixed number of samples throughout the run for its computation which can be parallelized
while avoiding becoming a serial bottleneck.

The only exception is the stochastic line search, which requires additional forward propagations over the model for different
sets of network parameters. However, this happens only when the step-length is not accepted, which happens infrequently in
practice. We make the pessimistic assumption of an addition forward propagation every iteration, amounting to an additional
1
3 the cost of the gradient computation (forward propagation, back propagation with respect to activations and weights).
Hence, the ratio of cost-per-iteration for PBQN CL to SG’s cost-per-iteration CS is 4

3 . Let IS and IL be the number of
iterations that it takes SG and PBQN, respectively, to reach similar test accuracy. The target number of nodes to be used for
training is N , such that N < B̂L. For N nodes, the parallel efficiency of SG is assumed to be Pe(N) and we assume that
for the target node count, there is no drop in parallel efficiency for PBQN due to the large effective batch size.

For a lower training time with the PBQN method, the following relation should hold:

ILCL
B̂L

N
< ISCS

BS

NPe(N)
. (19)

In terms of iterations, we can rewrite this as
IL
IS

<
CS

CL

BS

B̂L

1

Pe(N)
. (20)

Assuming target node count N = BS < B̂L, the scaling efficiency of SG drops significantly due to the reduced work per
single node, giving a parallel efficiency of Pe(N) = 0.2; see (Kurth et al., 2017; You et al., 2017). If we additionally assume
that effective batch size for PBQN is 4× larger, with SG large batch ≈ 8K and PBQN ≈ 32K as observed in our experiments
(from Section 4), this gives B̂L/BS = 4. PBQN must converge with about the same number of iterations as SG in order to
achieve lower training time. From Section 4, the results show that PBQN converges in significantly fewer iterations than SG,
hence establishing the potential for lower training times. We refer the reader to (Das et al., 2016) for a more detailed model
and commentary on the effect of batch size on performance.

References
Berahas, A. S., Nocedal, J., and Takác, M. A multi-batch L-BFGS method for machine learning. In Advances in Neural

Information Processing Systems, pp. 1055–1063, 2016.

Bertsekas, D. P., Nedić, A., and Ozdaglar, A. E. Convex analysis and optimization. Athena Scientific Belmont, 2003.

Carbonetto, P. New probabilistic inference algorithms that harness the strengths of variational and Monte Carlo methods.
PhD thesis, University of British Columbia, 2009.

Supplementary Material for “A Progressive Batching L-BFGS Method for Machine Learning”

Chang, C. and Lin, C. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Cormack, G. and Lynam, T. Spam corpus creation for TREC. In Proc. 2nd Conference on Email and Anti-Spam, 2005.
http://plg.uwaterloo.ca/gvcormac/treccorpus.

Das, D., Avancha, S., Mudigere, D., Vaidynathan, K., Sridharan, S., Kalamkar, D., Kaul, B., and Dubey, P. Distributed deep
learning using synchronous stochastic gradient descent. arXiv preprint arXiv:1602.06709, 2016.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He, K. Accurate, large
minibatch SGD: Training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Guyon, I., Aliferis, C. F., Cooper, G. F., Elisseeff, A., Pellet, J., Spirtes, P., and Statnikov, A. R. Design and analysis of the
causation and prediction challenge. In WCCI Causation and Prediction Challenge, pp. 1–33, 2008.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778, 2016.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. On large-batch training for deep learning:
Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

Krizhevsky, A. Learning multiple layers of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems, pp. 1097–1105, 2012.

Kurth, T., Zhang, J., Satish, N., Racah, E., Mitliagkas, I., Patwary, M. M. A., Malas, T., Sundaram, N., Bhimji, W.,
Smorkalov, M., et al. Deep learning at 15pf: Supervised and semi-supervised classification for scientific data. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 7.
ACM, 2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

You, Y., Gitman, I., and Ginsburg, B. Scaling SGD batch size to 32k for ImageNet training. arXiv preprint arXiv:1708.03888,
2017.

	Initial Step Length Derivation
	Convergence Analysis
	Additional Numerical Experiments
	Datasets
	Logistic Regression Experiments
	Neural Network Experiments
	CIFAR-10 Convolutional Network (C) Architecture
	CIFAR-10 and MNIST AlexNet-like Network (A1, A2) Architecture
	CIFAR-10 Residual Network (R) Architecture

	Performance Model

