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Abstract

The representation and learning benefits of meth-
ods based on graph Laplacians, such as Lapla-
cian smoothing or harmonic function solution
for semi-supervised learning (SSL), are empir-
ically and theoretically well supported. Nonethe-
less, the exact versions of these methods scale
poorly with the number of nodes n of the graph.
In this paper, we combine a spectral sparsifica-
tion routine with Laplacian learning. Given a
graph G as input, our algorithm computes a sparsi-
fier in a distributed way in O(nlog®(n)) time,
O(mlog®(n)) work and O(nlog(n)) memory,
using only log(n) rounds of communication. Fur-
thermore, motivated by the regularization often
employed in learning algorithms, we show that
constructing sparsifiers that preserve the spectrum
of the Laplacian only up to the regularization level
may drastically reduce the size of the final graph.
By constructing a spectrally-similar graph, we are
able to bound the error induced by the sparsifica-
tion for a variety of downstream tasks (e.g., SSL).
We empirically validate the theoretical guarantees
on Amazon co-purchase graph and compare to
the state-of-the-art heuristics.

1. Introduction

Graphs are a very effective data structure to represent re-
lationships between entities (e.g., social and collaboration
networks, influence graphs). Over the years, many machine
learning problems have been defined and solved exploiting
the graph representation, such as graph-regularized least
squares (LAPRLS, Belkin et al. 2005), Laplacian smooth-
ing (LAPSMO, Sadhanala et al. 2016) graph semi-supervised
learning (SSL, Chapelle et al. 2010; Zhu et al. 2003), lapla-
cian embedding (LE, Belkin & Niyogi 2001, and spectral
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clustering (SC, Von Luxburg 2007). The intuition behind
graph-based learning is that the information expressed by
the graph helps to capture the underlying structure of the
problem (e.g., a manifold), thus improving the learning.
For instance, LAPSMO and SSL rely on the assumption
that nodes that are close in the graph are more likely to
have similar labels. Similarly, LE and SC try to find a low-
dimensional representation of the nodes using the eigenvec-
tors of the Laplacian of the graph. In general, given a graph
G of n nodes and m edges, most of graph-based learning
tasks require computing the minimum of a cost function
based on the associated n x n Laplacian matrix Lg, which
contains m non-zero entries. Solving exactly such optimiza-
tion problems amounts to O(n?) time and O(n?) space
complexity in the worst case and they become infeasible
even for mildly large/dense graphs.

A complete review of the literature on large-scale graph
learning is beyond the scope of this paper and we only
consider methods that reduce learning space and time com-
plexity starting from a given graph received as input.! We
identify mainly three possible approaches. We can (1) re-
duce runtime replacing the pseudo-inverse operator Lg with
an iterative solver, (2) reduce time and space complexity
replacing the large graph G with a sparser approximation H,
or (3) reduce runtime and increase memory capacity by dis-
tributing the computation across multiple machines.

Iterative solvers. Iterative methods can solve a number of
learning problems without explicitly constructing ng (e.g.,
gradient descent, GD, for LAPSMO, iterative averaging for
SSL, and the power method for SC). In this case we only
need O(m) time per iteration. Unfortunately, all simple
iterative methods (e.g., GD) converge in a number of itera-
tions proportional to the condition number of the Laplacian,
K = Amax(Lg)/Amin(Lg), which may grow linearly with
the number of nodes n, thus removing the advantage of the
iterative method, whose complexity tends to O(n?) in the
worst case. Advanced iterative methods, such as the pre-
conditioned conjugate gradient, use preconditioning to find
an accurate solution in a number of iterations independent
of k. Koutis et al. (2011) gives a nearly-linear solver for
Laplacians or strongly diagonally dominant (SDD) matri-

"Many algorithms reduce the complexity of graph learning ar
construction time but they cannot be applied to natural graphs
(e.g., social graphs) and therefore we do not review them.
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ces, that using a chain of preconditioners, converges in only
O(mlog(n)) time. As space and time costs scale with the
number of edges, a natural desire is to reduce m by sparsi-
fying and distributing the graph.

Graph sparsification. The objective of sparsification meth-
ods is to remove redundant edges, so that the resulting
sparse sub-graph can be easily stored in memory and effi-
ciently manipulated to compute final solutions. A simple
graph-sparsification technique is to sample ng (with g > 1)
edges from G with probabilities proportional to the edge
weights with replacement. While computationally very ef-
ficient, uniform sampling requires sampling a number of
edges proportional to O(nu(G)) (i.e., § < ©(G)), where
1(G) is the coherence of the Laplacian matrix, and it can
grow as large as n when the graph is highly structured (e.g.,
if there is a single edge e connecting two components of
the graph we need to sample all of the edges of the graph—
potentially O(n?)—to guarantee that we do not exclude
e and generate an inappropriate /). A more refined ap-
proach is the k-neighbors (kN) sparsifier (Sadhanala et al.,
2016), which performs local sparsifications node-by-node
by keeping all edges at nodes with degree smaller than @,
and samples them proportionally to their weights whenever
the degree is bigger than g. While in certain structured
graphs, this method may perform much better than uni-
form (Von Luxburg et al., 2014), in the general case g, still
needs to scale with the coherence 11(G). A more effective
method is to sample edges proportionally to their effective
resistance, which intuitively measures the importance of
an edge in preserving the minimum distance between two
nodes. As a result, only relevant edges are kept and the spar-
sified graph could be reduced to O(n polylog(n)) edges.
Nonetheless, computing effective resistances also requires
the pseudo-inverse L, thus being as expensive as solving
any graph-Laplacian learning problem.

Distributed computing. When the number of edges m is
too large to fit the whole graph in a single machine, we are
forced to distribute the edges across multiple machines. At
the same time, if the sparsifier construction or the down-
stream inference can be parallelized, we can also reduce
their runtime. Unfortunately, distributing data and compu-
tation across multiple machines can cause large commu-
nication costs. For example, simple GD or label propaga-
tion methods require O(k) iterations (and communication
rounds) to converge and access to non-local (e.g., neighbors
in a graph) data. While preconditioned solvers reduce the
number of iterations, almost none of their memory access
is local, thus making difficult to have efficient distributed
implementations.

Contribution. In this paper, we propose a new approach
that aims at integrating the benefits of the three different
methods above. Using the large memory and computational
capacity of distributed computing and leveraging the sequen-

tial sparsification methods of Kelner & Levin (2013) and Ca-
landriello et al. (2017), we show how to compute an accurate
sparsifier H of graph G in O(n log®(n)) time, O(n log?(n))
work and O(n log(n)) memory, using only log(n) rounds
of communication. Afterwards, learning tasks can be solved
directly on L on a single machine using near-linear time
solvers, resulting in an overall O(n log®(n)) runtime. More-
over, we show that the regularization used in some graph-
based learning algorithms allows using even sparser graphs.
In particular, we introduce the notion of ridge effective re-
sistance to obtain sparsifiers that are better adapted to solve
Laplacian-regularized learning tasks (e.g., LAPSMO, SSL)
and are smaller than standard spectral sparsifiers without
compromising the performance of downstream tasks.

2. Background

‘We use lowercase letters a for scalars, bold lowercase let-
ters a for vectors and uppercase bold letters A for matrices.
We use A < B to denote that B — A is positive semi-
definite (PSD), [A]; ; to indicate the (7, j)-th entry of A,
and ordered the eigenvalues as A1 (A) < ... < A, (A).

2.1. Graphs and graph Laplacian

We denote with G = (V, £), an undirected weighted graph
with n nodes V and m edges £. Each edge ¢; ; € £ has
a weight a., , measuring the “similarity” between nodes 4
and j. Given graphs G and G’ over the same set of nodes V),
G + G’ denotes the graph obtained by summing the weights
of their edges. For graph G, we introduce the weighted
adjacency matrix Ag with entries [Ag]; ; = a, ;, the total
weights A = >~ _ a. , and the diagonal degree matrix Dg
with entries [Dg]; ; £ 2_j Ge, ;- The Laplacian of G is the
PSD matrix Lg £ Dg — Ag. Furthermore, we assume
that G is connected and thus Lg has only one eigenvalue
equal to 0 and Ker(Lg) = 1. Let L be the pseudoinverse
of Lg and L;l/Q = (L§)1/2. For any node ¢ = 1,...,n,
we denote with x; € R"™, the indicator vector, so that b, £
Vae(xi — x;) is the “edge” vector. If we denote with Bg
the m x n signed edge-vertex incidence matrix, then the
Laplacian can be written as Lg = >__b.b! = B} Bg.

2.2. Learning on graphs

Given graph G and its Laplacian Lg, we denote with f € R”,
a labeling of its nodes, where [f]; is the value associated
with the i-th node. Many graph learning algorithms assume
that the optimal labeling £* is smooth w.r.t. the graph, i.e.,
the quantity " ac([f*]e, — [f*]¢,)? = £*TLgf* is small.
In the following, we review examples from the supervised,
semi-supervised and unsupervised learning with graphs.

Laplacian smoothing (LAPSMO) with Gaussian noise.
Given a graph G on n nodes, let y £ f* + ¢ be a noisy
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measurement of f* with [¢]; ~ AN(0,0%). The goal of
LAPSMO is to find a vector f that accurately reconstructs f*
under the graph smoothness assumption by solving

f 2 argmin(f — y)T(f—y) + MTLgf
fern

= (\Lg + D)y, (D)
where ) is a regularization parameter.

Graph semi-supervised learning (SSL). In SSL, the input
f, is a partial observation of the labels f* for a subset S C
[n] of nodes. The goal is to predict the labels f,, of the
unrevealed nodes. The harmonic function solution (HFS)
by Zhu et al. (2003) solves the optimization problem

/f\HFS £ arg min %(f —y)Us(f —y) + MTLgf
fERP

= (MLg +1Is)"ys, ()

where ¢ = |S| is the number of labeled nodes received as
input, Is € R™*"™ is the identity matrix with zeros at nodes
notin S, and ys £ Isy € R™. Similarly, in local transduc-
tive regression (LTR) (Cortes et al., 2008), the optimization
problem is

fim 2 arg min(f —y)TC(f —y) + T (Lg + A\I)f
feRn

=(C (Lg + M) + )" 'ys, 3)

where C is a diagonal matrix with entries ¢, for nodes
in S, ¢, for entries notin S, and ¢, > ¢,, > 0.

Spectral clustering (SC). Applying the Laplacian smooth-
ness assumption, the goal of SC is to find % disjoint sub-
set assignments such that the clusters are smooth w.r.t. the
Laplacian. Let {f.}*_, be the cluster indicator vectors such
that [f.]; = 1 if node 4 is in the c-th cluster and [f.]; £ 0
otherwise. Denote with F € R™** the matrix containing
the assignments, and let C be the space of feasible cluster-
ing, such that all f. are binary and each row of F' contains
only one non-zero entry. Since computing the minimum
ratio-cut is NP-hard (Von Luxburg, 2007; Lee et al., 2014),
even under constraints (Cucuringu et al., 2016), SC defines
instead the relaxed problem

F2 Tr(FTLF).

arg min
F:FTF=I; f. 11

Once the relaxed solution is computed, we can use different
heuristics to recover the clustering, such as thresholding or
performing a k-means clustering on the F' matrix.

Computational complexity. The problems above require
either to compute an eigendecomposition of the Laplacian
Lg or to solve a linear system involving Lg. Computing
these exactly is not feasible when the number of nodes n
and edges m grows. In particular, (a) storing Lg in memory

requires O(m) space, and it is not feasible when m is large,
(b) even if Lg is sparse and m is small, the pseudo-inverse
L might be dense, and thus computing and storing L
exactly requires up to O(n?) time and O(n?) space.

3. Distributed Spectral Sparsification

In this section, we describe a new, sequential, distributed,
and efficient algorithm for graph sparsification that can be
used as a preprocessing step to solve a large variety of
downstream learning tasks, without significantly affecting
their performance. We point out that while distributing
data-agnostic sparsifiers (e.g. uniform sampling) is straight-
forward, distributing the computation of sparsifiers based on
effective resistances requires a careful merging procedure to
guarantee satisfactory memory vs. accuracy tradeoff, which
is what we provide in this section.

3.1. (&, y)-spectral sparsifiers

We start with the introduction of the notion of (e,~)-
sparsifier that is adapted for the learning tasks that use
sparsified graph Laplacian.

Definition 1. A (g,~)-spectral sparsifier of G is a re-
weighted sub-graph H C G whose Laplacian Ly, satisfies

(1-¢e)Lg —er I XLy X (1+¢)Lg +e7l. (4

For v = 0, this definition reduces to the standard notion of
e-spectral sparsifier (Spielman & Teng, 2011). The main
difference is that an (&, y)-spectral sparsifier allows for an
extra additive error of order 7. This change is directly
motivated by the fact that the sparsifier { may be used
in learning tasks whose solution may not be sensitive to
small (additive) errors. As a result, (&,~)-spectral sparsi-
fiers are able to further reduce the size of H w.r.t. (g,0)-
sparsifiers, without significantly affecting the final learning
performance. Formally, an e-sparsifier preserves all the
quadratic forms up to a small multiplicative (constant) error,
and thus can be used to provide an accurate approximation
to many important quantities such as graph cuts or eigenval-
ues. In fact, for all i € [n], an e-sparsifier guarantees that
(1 —e)Ai(Lg) < \i(Ly) < (1 +¢e)Ai(Lg). Nonetheless,
in many learning tasks (e.g., LTR) the noise level in the sig-
nal f requires regularizing the solution so that the Laplacian
Lg itself is eventually replaced by Lg + AI (e.g., Eq. 1).
This corresponds to soft-thresholding the eigenvalues of the
Laplacian, so that eigenvalues below A are partially ignored.
If \ is properly tuned w.r.t. the noise, the regularization in-
creases stability and improves the learning performance.
Therefore, constructing a sparsifier that accurately recon-
structs all eigenvalues of Lg may be wasteful, as it may
require keeping most of the edges. As a result, in tasks
where Lg is regularized, it is better to use (&, «y)-sparsifiers,
as their additive error 41 is homogeneous with the regu-
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larization AI and their smaller size allows scaling to up.’
We now extend the results of Spielman & Srivastava (2011)
for the construction of e-spectral sparsifiers to the general
case of (e,)-sparsifiers. We redefine the edge effective
resistance to account for the regularization.

Definition 2. The ~v-effective resistance of an edge e in
graph G is defined as

re(7) 2 b (Lg +~1) b, )

The “effective dimension” of the graph is the total sum of
the y-effective resistances, doy(v) £ S, e (7).

We can now construct a sparsifier H by sampling g times
each edge with a probability proportional to its y-effective
resistance. More formally, the resulting (random) graph
contains g. ~ B(r.(\);q) copies of each edge, where B
is the Binomial distribution, and its associated Laplacian
is Lyg = 3.9, qe/(Gre(7))beb], which is an unbiased
estimator of Lg. We can then apply existing results from
sketching of PSD matrices (Alaoui & Mahoney, 2015) to
prove that # is a valid (e, y)-sparsifier.

Proposition 1 (Cohen et al. 2017). Lete > 0 and v > 0
be the accuracy parameters and 0 < § < 1 the probability
of error. Let H be the graph obtained by sampling edges
in G with a probability proportional to their ~y-effective
resistances. If § > 41og(4n/8)/e?, then w.p. 1 — 6, H is an
(e,7)-sparsifier with O(d.z(~)q) edges.

We first notice that this result reduces to the one of Spielman
& Srivastava (2011) for v = 0. In fact, degr(0) = n — 1
for all graphs, thus matching the space requirement g for
e-sparsifiers. Nonetheless, as « increases, the size of H
reduces significantly. Using Lg = BEBQ, the effective
dimension deg(7y) can be conveniently rewritten as

Zx\ Lg -‘r’Y

thus showing that deg(7y) is the “soft” rank of the Laplacian,
where 7y significantly reduces the contribution of small eigen-
values to the total sum. While in the worst case deg(y) can
be as large as n — 1, for a variety of graphs with rapidly de-
caying spectrum (Jamakovic & Mieghem, 2006; Samukhin
et al., 2008; Zhan et al., 2010; Akoglu et al., 2015), deg(7y)
may be significantly smaller than n — 1, thus reducing the
number of edges g required to obtain an (e, y)-sparsifier.

dete(v) = Tr (B{Bg(BiBg+1I) ™!

3.2. The algorithm

As pointed out in the introduction, the main limitation of
effective-resistance-based sparsification is that the computa-
tion of r, requires inverting the Laplacian matrix, thus re-
sulting in a computational cost that already matches the cost

2Whenever no regularization is required in the learning task
(i.e., HFS, SC), we set v = 0 and consider “standard” e-sparsifiers.

Algorithm 1 The DiSRe algorithm.
Input: G
Output: Hg
1: Partition G into k sub-graphs:
2 Hl,l — Gy {(ei,j7QS = 17§1,e = 1)}
3: Initialize set Sy = {H1,0}5_,
4: forh=1,....k—1do
5: Pick two sparsifiers Hyp, i+, Hp, i from S,
6
7
8
9

H < Merge-Resparsify(Hp i, Hni)
Place H back into S, ;

: end for

: Return Hg, the last sparsifier in Sy

Algorithm 2 Merge-Resparsify

Require: (e, )-sparsifiers 1y, ;, Hp i+ of graphs Gy, i, G v
Ensure: 7, an (g, ) sparsifier of Gy, ; + Gp, &
1: Initialize H = Hpi + Hpir
2: For all e € H, use a fast SDD solver to compute
Thite(y) < (1 —e)b] (Lyy + (1 +e)7I) b,
3: Set probabilities pj 41, < min{ry41.¢(7), Ph.e}
4: SampleE;L+1,e from B(Dh+1,e/Dh,es Ghe)
5: Return H < {(€; j, qn+1,e,Phr1,e)} forall gnyre >0

of the learning tasks themselves. Moreover, large graphs
cannot be stored in memory, and multiple passes over the
graph would result in a disk access overhead larger than the
computational cost. In order to avoid these problems, we
adapt our previous work (Calandriello et al., 2017) in online
sparsification and randomized linear algebra (see a thor-
ough discussion and comparison at the end of the section)
to obtain the distributed sequential resparsification (DiSRe)
algorithm (Alg. 1).’

The structure. We represent a sparsifier  as a collection
of weighted edges # = {(e; ;, qe, Pe) }, and the Laplacian
can be reconstructed as Ly, £ 3,5, 1/Pe(ge/q)beb/. In-
tuitively, each edge e has an associated weight based on its
probability p., and a number of included copies ¢.. Keep-
ing multiple copies of each edge helps the random Ly to
concentrate towards Lg, where the maximum number of
copies ¢ for an edge trades-off success probability and the
size of H. We assume we have k£ machines. DiSRe begins
by partitioning the graph G into k sub-graphs G, on n ver-
tices and m, > n edges, such that G = {gg};;z In other
words, it splits the matrix B¢ into submatrices Bg, by arbi-
trarily selecting a subset of rows. The sub-graphs are small
enough that they can be stored in memory,* and they are

3Whenever the original graph contains m < O(de(7y))edges,
there is no need to run DiSRe as the (&, y)-sparsifiers would not
reduce the size of the graph.

“Whenever this is not possible (i.e., m/k is too large to be
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Figure 1. Merge tree for Alg. 1.

also obviously sparsifiers of themselves, therefore we can
define an initial set of sparsifiers S; £ {H1,}5_,, with
Hie 2 {(€ijsq1e = G P1e = 1)}ecg,- With this defini-
tion, H; ¢ contains edges e; ; with unit weight p; . = 1 and
Hi,e = G¢. Starting from these initial sparsifiers, DiSRe
proceeds through a sequence of merge and sparsify oper-
ations where two sparsifiers are first combined and then
sparsified again to keep having manageable-size graphs at
each step. While DiSRe can run on any arbitrary sequence
of merges, we consider the most (computationally) effective
scheme, where sparsifiers are merged two-by-two in par-
allel, thus inducing a balanced full binary merge tree (see
Fig. 2). For notational convenience, we consider that at each
iteration h, the inner loop of Alg. I only merges two arbi-
trary sparsifiers from the pool of available sub-graphs Sy,
and merges them into a new sparsifier. In practice, multiple
merge-and-sparsify operations can be executed in a parallel
and asynchronous way. The size of Sy, number of sparsifiers
present at layer h, is |Sp| = k — h+ 1. Therefore, a node in
the tree corresponding to a sparsifier is uniquely identified
by two indices {h, £} where h is the height of the layer and
¢ < |Sp| is the index of the node in the layer. We also
define the graph Gyj, ¢y as the union of all sub-graphs G/
that are reachable from node {h, £} as leaves (descendants
of {h,¢}). For example, in Fig. 2, sparsifier 73 ; in node
{3, 1} approximates the graph Gr3 oy = G3 + G4, where we
highlight in red the descendant tree.

The resparsification. In Alg. 2 we detail how two arbitrary
sparsifiers are combined to obtain a temporary graph 7.
While the merge operation simply combines H;, ; and Hy, ;v
by summing their weights, the resparsification aims at gen-
erating a valid sparsifier from the “original” sub-graph
(Gh,i+Gn,ir), as if it was directly sparsified at the beginning.
We first compute estimates 7°(~y) of the ~y-effective resistance
by using fast solvers to invert the strongly diagonal dominant
Lz; + 71 matrix. Instead of sampling edges in H directly
proportionally to 7(+y) (more precisely pr1,¢), we perform
a “resampling” scheme where an edge e is preserved with a
“reweighted” probability pp,+1,¢/Dh,c. Intuitively, the overall

stored on a single machine), we can simply apply the same merging
scheme of DiSRe by loading small enough chunks of the graph
and sparsifying them sequentially.

sequence of resampling guarantees that at each step h + 1,
an edge e € (Gp; + Gpiv) has the “correct” probability
Dh+1,e of being included in the sparsifier.

Performance. We now study the performance of DiSRe
and its complexity. Time complexity refers to the amount
of time necessary to compute the final solution and work
complexity refers to the total amount of operations carried
out by all machines to compute the final solution.

Theorem 1. Let ¢ > 0 be the accuracy, 0 < § < 1 the
probability of error; and p = (1 + 3¢) /(1 — ¢). Given an
arbitrary graph G and an arbitrary merge tree structure, if
DiSRe is run with parameter § = 26plog(3n/6) /<2, then
each sub-graphs Hyy, ¢y is an (g, y)-sparsifier of Gy, oy with
at most 3Gd(vy) edges with probability 1 — §. Whenever
the merge tree is balanced and k is big enough such that
m/k < 3qde(7y),” then merge operations can be run in
parallel across the machines with an overall time complex-
ity of O(des(v) log®(n)), a total work O(mlog®(n)), and
O(log(n)) rounds of communication.

Discussion. Kelner & Levin (2013) proposed a sequen-
tial algorithm for graph sparsification that closely emulates
the batch sampling of Spielman & Srivastava (2011) in
a semi-streaming setting and incrementally constructs an
e-sparsifier. However, their proof had a flaw since they
treated dependent variables as independent (Calandriello
et al., 2016). Kyng et al. (2016) resolved the issues in
the proof of Kelner & Levin (2013) and showed that a
slightly modified algorithm can construct a sparsifier with
O(nlog(n)/e?) edges in O(mlog®(n)/c?) time, matching
the space complexity of batch sampling. The method pro-
posed by Kyng et al. (2016) can be further improved by
parallelizing its computation over multiple machines. Using
the parallel sparsification algorithm of Koutis & Xu (2016),
the time complexity can be reduced up to O(log®(n)).
Nonetheless, since these methods require random access
to the edges, they cannot be easily distributed (it would
have O(m polylog(n)) communication cost) and scaled to
graphs that cannot be stored on a single machine. Fur-
thermore, the algorithm of Kyng et al. (2016) accurately
reconstructs the whole spectrum of the Laplacian, which
leads to sparsifiers whose number of edges scales linearly
with n. On the other hand, in regularized learning tasks,
the presence of multiplicative and additive spectral error
allows creating smaller sparsifiers whose size scales with
deir(7y). Notice that, for +y large enough, this possibly means
sparsifiers with less than n — 1 edges, necessarily leading to
disconnected graphs. Finally, note that merging two tradi-
tional e-sparsifiers gives an e-sparsifier, merging two (v, €)-
sparsifiers produces a less accurate (2, £)-sparsifier. There-
fore simple merge-and-reduce strategies (Feldman et al.,

SThis implies that there are enough machines so that the leaves
in the merge tree already have relatively sparse sub-graphs.
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2013), which address every resparsification as independent,
would either cumulate errors or require multiple passes over
the data. Similarly to Kyng et al. (2016), DiSRe’s sequential
Merge-Resparsify solves this problem (Appendix B).

Mixed additive-multiplicative reconstruction is studied more
extensively in randomized matrix algebra (Drineas & Ma-
honey, 2017). Cohen et al. (2016) developed an effi-
cient method to spectrally sparsify generic matrices up to
(1 + €) multiplicative and ~-additive errors using an incre-
mental sampling method based on ridge leverage scores
(i.e., the analog of vy-effective resistances for matrices).
If applied to graph Laplacians, their method adds edges
incrementally and returns an (g, y)-sparsified graph with
O(degr(7)log?(n)) edges in O(mlog(n)) time. Nonethe-
less, Cohen et al. (2016) provided only e-sparsifiers, sug-
gesting to set v as small as possible, and did not explore
the advantages possible in machine learning. Moreover,
no existing (&, y)-sparsifier construction method can lever-
age both distribution and fast solvers. Cohen et al. (2016)
can only add edges (but not remove them as DiSRe), pre-
venting repeated merge-and-resparsify. Other streaming
RLS sampling methods, such as by Cohen et al. (2017),
use dense intermediate sketches, such as frequent directions
(Ghashami et al., 2016), that are not Laplacians of a sub-
graph and cannot be easily paired with near-linear solvers
for Laplacians.

4. Downstream Guarantees

We now show how the spectral reconstruction guarantees
provided by (&, y)-sparsifiers translate into guarantees on
the quality of the approximate solutions computed using H
instead of G. We first introduce a result for e-sparsifiers in
SSL and then show how for regularized problems, (e, )-
sparsification can further improve computational perfor-
mance without loss in accuracy in LAPSMO.

4.1. Generalization bounds for SSL

Given the closed form solutions of HFS (Eq.2) and LTR
(Eq. 3), we simply replace Lg with L4, and then run a nearly-
linear time solver to obtain approximate solutions ?Hps and
fLTR. We compare approximate solutions to their exact
counterparts in the context of algorithmic stability.

Definition 3. Let L be a transductive learning algorithm.
We denote by f and f' the solutions obtained by running
L on datasets V = (S,T) and V = (S',T") respectively.
L is uniformly [3-stable w.r.t. the squared loss if there exists
B > 0 such that for any two partitions (S,T) and (S',T")
that differ by exactly one training (and test) point and for
all i € n], we have |([f]; — [y]:)? — (1€l — [y}:)?] < B.

The stability of LTR was proven by Cortes et al. (2008).
On the other hand, the singularity of the Laplacian may

lead to unstable behavior in HFS due to the (yv/Lg + Is)™
pseudo-inverse, with drastically different results for small
perturbations of the dataset. For this reason, we take the
Stable-HFS algorithm by Belkin et al. (2004), where an ad-
ditional regularization term is introduced to restrict the space
of admissible solutions to the space F = {f : (f,1) = 0}
of solutions orthogonal to the null space of Lg (i.e., cen-
tered functions). As shown by Belkin et al. (2004), to satisfy
the constraint, it is sufficient to set an additional regulariza-
tion parameter y to p = ((7/Lg + Is)tys)"1/((v/Lg +
Is)*1)T1, and compute the solution ?STA as ?STA £
(7/Lg + Is) " (ys — ul). While Stable-HFS is more sta-
ble and thus more suited for theoretical analysis, its space
and time requirement remains O(m) and cannot be applied
to graphs with a large number of edges. Therefore, we again
replace ?STA with an approximate solution FSTA computed
using Ly,. Define R(f) £ ‘ LS (f(i) — y(x4))? as the
empirical error and R(f) £ 2 3" | (f(2;) —y(x;))? as the
generalization.

Theorem 2. Let G be a fixed (connected) graph with eigen-
values 0 = A (G) < Aa(G) < ... < A\ (G), and H an
e-sparsifier of G. Let y € R™ be the labels of the nodes in G
with |y (x)| < c and F be the set of centered functions such
that |f(z) — y(z)| < 2c. Let S C V be a random subset
of labeled nodes, if the labels y s are centered, then w.p. at
least 1 — § (w.r.t. the random generation of the sparsifier H
and the random subset of labeled points S) the resulting
Stable-HFS solution satisfies

~ o~

§R(f)+6+(26+4

1 214 £)ely A2 (G)e 7
i (((1 ~ ()~ >2) ’

R(F)

2 (ju—i— u))

where £ and T are computed on H and G,

w(lu) 2 lu 2max{l,u} and
{4+ u—0.52max{l,u} — 1
< RIOVA 4c

(= 902@) - 12 " 1= 2a(G) — 1

Thm. 2 (full proof in Appendix A) shows how approximat-
ing G with ‘H impacts the generalization error as the number
of labeled samples ¢ increases. If we set e = 0, we recover
the bound of Cortes et al. (2008), which depends only on
R(f) and B. When ¢ > 0, we see from Eq. 6 that the two
terms already present in the exact case are either unchanged
(R( )) or increase only by a constant factor 3. Because of
the approximation, a new error term (the last one in Eq. 6) is
added to the bound, but we can see that it is negligible com-
pared to 3. In fact, it converges to zero as O(? /£*(1 — ¢)%)
as ¢ grows and it is dominated by S for any constant value
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of . This means that increasing € corresponds to a constant
increase in the bound, regardless of the size of the problem.
Consequently, € can be freely chosen to trade off accuracy
and space complexity (Thm. 1) depending on the problem
constraints. Finally, because the eigenvalues present in the
bound are the ones of the original graph, any additional
knowledge on the spectral properties of the input graph can
be easily included in the analysis. Therefore, it is straightfor-
ward to provide stronger guarantees for Sparse-HFS when
combined with assumptions on the graph generating model.
Finally, we remark the level of generality of this result that
holds for the integration between HFS and any e-accurate
spectral sparsification method. We postpone computational
considerations to the following subsection.

4.2. Generalization bounds for LAPSMO

Starting from the closed form solution of LAPSMO (Eq. 1)
we can replace the Lg matrix with a sparsified Laplacian
Ly, and using a fast linear solver, compute an approximate
solution f = (ALy + I)"ly in O(nlog?(n)) time and
O(nlog(n)) space. Finally, we can decompose the error
as ||f* — f||2 < ||f* — F||2 + || — £||2. The first term can
be bounded using classical results from empirical process
theory (Biithlmann & Van De Geer, 2011). We bound the

second term in the following theorem.
Theorem 3. For an arbitrary graph G and its (e,7)-

sparsifier, let  be the LAPSMO solution computed using Lg
and £ the solution computed using L. Then,

52

f_f)2 <
[ o<1

(0.25+ M) (XETLGE + A E3),

where X is the regularization of LAPSMO.

For e-sparsifiers, Sadhanala et al. (2016) derive a similar
bound ||f — f||2 < O(MfTLgF). Setting v = 0, we re-
cover their bound up to constants. When v > 0 instead,
additional error terms emerge due to the introduced bias.
In particular, the term )\'y||/f\||§ depends on the norm of the
exact solution ?, which in turn depends on the value of A.
Nonetheless, when [|f*||3 is small, as is the case in our
experiments, setting v = 1/)\ makes this term a constant,
which is reflected by the good empirical performance. Com-
putationally, for both Stable-HFS and LAPSMO, passing
from computing a solution on the full graph to computing
a solution on the sparsifier reduces the number of edges,
which makes the memory and runtime plummet. Moreover,
carefully distributing the sparsification process across mul-
tiple machines allows computing a final solution in a time
independent from the number of edges, since the prepro-
cessing sparsification step takes only O(nlog®(n)) time,
and the solution step only O(n log?(n)). Up to logarithmic
terms, this results in an overall 6(n) near-linear runtime,

without any assumptions on the input graph. For graphs
with a particularly favorable spectrum and problems with
enough regularization, this is only O(deg(y)), resulting in
a potentially sub-linear runtime. This result, only possible
due to a particular structure of learning problems, opens
up unexplored possibilities that would not be possible for
general graph problems.

4.3. Bounds for other problems

Many other problems can be well approximated using (g, )-
sparsifiers. For example, the cost of a SC solution evaluated
on Ly, is very close to the cost evaluated on Lg.

Proposition 2. For any rank k orthogonal projection F'F,
if H is an (e, v)-sparsifier of G, we have

Tr(FTLyF) < (1 +¢) Tr(FTLgF) + evk.

Therefore, a clustering that well separates the sparsifier
will also separate well the true graph. Similarly, we can
obtain strong approximation guarantees for a variety of
other Laplacian-based algorithms. Regularized problems
such as LTR (Cortes et al., 2008), Laplacian-regularized
least squares, and Laplacian SVM (Belkin et al., 2005) are
of particular interest since the additive -y error is absorbed
by the regularization and it is possible to provide strong
generalization guarantees.

5. Experiments

We empirically validate our theoretical findings by testing
how (e, 7)-sparsifiers improves computational complexity
without sacrificing final accuracy.

Dataset. We run experiments on the Amazon co-purchase
graph (Sadhanala et al., 2016). This graph fits our setting:
It cannot be generated from vectorial data and is only artifi-
cially sparse, since the crawler that created it had no access
to the true private co-purchase network held by Amazon. To
compensate, Gleich & Mahoney (2015) use a densification
procedure that given the graph adjacency matrix Ag, com-
putes all k-step neighbors Ag ;, = Zle AG. We make the
graph unweighted for numerical stability. The final graph
has n = 334, 863 nodes and m = 98,465, 352 edges, with
an average degree of 294. We followed an approach similar
to Sadhanala et al. (2016) and introduce a hand-designed
smooth signal as a target. We then perform 2000 iterations
of the power method to compute an approximation of the
smallest eigenvector v,i,, which is used as a smooth func-
tion over the graph.

Baselines. For all setups, we compute an “exact” solution
(up to convergence error) using a fast linear solver. Com-
puting this EXACT baseline requires O(m log(n)) time and
O(m) space and achieves the best performance. Afterwards,
we compare three different sparsification procedures to eval-
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Alg. Parameters | |€] (x10°) | ErrSSL(¢=346) | Er:SSL({=672) | ErD(f)(c=10"%) | Err D(f) (0=10"?) |
EXACT 98.5 0312 £ 0.022 0.286 £ 0.010 0.067 = 0.0004 0.756 = 0.006
KN k =60 15.7 0329+0.0143 | 0311 £0.027 0.172 £ 0.0004 0.822 = 0.002
KN k =90 21.2 0.334 £ 0.024 0311 £ 0.024 0.125 = 0.0002 0.811 = 0.003
DiSRe v=0,7=100 15 0314 £0.0165 | 0.296+0.015 0.068 = 0.0003 0.758 £0.005
DiSRe y=0,3=150 22.8 0314 £0.0158 | 0310 0.024 0.068 £ 0.0004 0.756 £ 0.005
DiSRe | 4=10%g=100 7.3 - - 0.072 £ 0.0003 0.789 = 0.005
DiSRe | y=10%,g=100 | 11.8 —~ - 0.068 £ 0.0002 0.772 = 0.004
DiSRe | v=10,g=100 14.4 - - 0.068 £ 0.0004 0.760 = 0.004

Table 1. Results for the SSL and the smoothing problems.

uate if they can accelerate computation while preserving
accuracy. We run DiSRe with different values of v depend-
ing on the setting. For empirically strong heuristics, we
attempted to uniformly subsample the edges, but at the spar-
sity level achieved by the other methods, the uniformly
sampled sparsifier is disconnected and highly inaccurate.
Instead, we compare to the state-of-the-art k-neighbors (kN)
heuristic by Sadhanala et al. (2016), which is just as fast as
uniform sampling and more accurate in practice.

Experimental procedure. We repeat each experiment 10
times with different sparsifiers and report the average per-
formance of f on the specific task and its standard deviation.
More details on experiments are given in the Appendix C.

5.1. Laplacian smoothing with Gaussian noise

We set f* = wvp;, and test different levels of noise,
log,(0) € {—3,—2,—1,0}. After constructing the spar-
sifier H, we compute an approximate solution f using
LAPSMO (Eq.2) with A € {1073,1072,1071,1,10}. We
measure the performance by the squared error D(?) =
£ — £]12. As [|£*]|2 = |[vmm|/2 = 1, good values of
D(f) should be below 1.

Accuracy. In the interest of space, in Tab. 1, we report re-
sults for o = {0.001,0.01} and the best regularization X for
each method. We first notice that all sparsifiers are consider-
ably smaller than the original graph, keeping only a small
fraction of its edges. The smallest sparsifiers are obtained
by DiSRe when 7 is large. The comparison with DiSRe
with v = 0 (i.e., e-sparsifier) confirms that the additive error
translates into an extra compression of the resulting spar-
sifier. This also impacts the accuracy which degrades as ~y
increases. Nonetheless, we notice that while e-sparsifiers
perfectly match the accuracy of the exact method, even for
large v (and thus much smaller graph), DiSRe still outper-
forms kN, which has a significantly worse accuracy. Finally,
we note that for v = 0, the impact of g is as expected: In-
creasing ¢ increases the size of the sparsifier and slightly
improves the performance.

Computational complexity. All algorithms require 90s to
load the graph from disk. The preprocessing phase of kN
takes slightly less than Imin, while DiSRe’s takes 12min

on 4 machines. For the solving step, EXACT is unsurpris-
ingly the slowest, requiring 12min to compute an f solution.
Both kN and (e, v)-sparsifiers require 1-2min, depending
on the number of edges preserved. Overall, preprocessing
the graph with DiSRe before computing a solution does
not introduce any overhead compared to EXACT (both take
roughly 12min). We notice that while kN is overall faster,
the time for DiSRe could be easily reduced by increasing
the number of parallel processes when computing effective
resistances or with a better network topology allowing point-
to-point communication. Moreover, once we have access
to an accurate e-sparsifier, it is easier to solve problem re-
peatedly, e.g., to cross-validate regularization. For example,
computing a solution for 4 different values of A (see the ap-
pendix) is crucial for good performance and requires 48min
for EXACT and only 20min for DiSRe. Finally, memory us-
age is reduced by a factor of 3 as EXACT requires over 30GB
of memory to execute while DiSRe never exceeds 10GB.
We expect these advantages to only grow larger as we scale
to larger graphs.

5.2. SSL with harmonic function solution

We also test DiSRe on a SSL problem. The labels
are generated taking the sign of f* = wvp;, and £ €
{20, 346, 672, 1000} labels are revealed. The labeled nodes
are chosen at random so that 0 and 1 labels are bal-
anced in the dataset. We run Stable-HFS with A €
{1076,107%,1072,1}. 1In Tab. 1, we report results for
¢ = {346,672} and the best A for each method. We run
DiSRe with v = 0 as Stable-HFS does not have any regu-
larization and e-sparsifiers are preferable. The average size
of the sparsifiers is the same as before as they are agnostic
to the learning task. Similar to the smoothing case, DiSRe
achieves a performance that closely approximates the exact
solution, despite the significant compression of the original
graph. Furthermore, the effectiveness of the e-sparsifier
returned by DiSRe is confirmed by its comparison with kN,
whose error is significantly worse. Finally, we notice that
the computational analysis in the previous section holds for
SSL as well. In fact, although the learning task is different,
we use the same SSD solver to compute the HFS and thus
the running time are comparable in the two tasks.
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