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A. Figures
Figure 1 provides example sets of images displaying trade-
offs between fairness and geometric diversity and highlights
our goal to produce a subset of images that is visually dis-
tinct and demographically varied, as depicted in the bottom
row.

Figure 2 demonstrates how volume represents diversity. The
vectors represent features of elements in the ground set, and
the diversity can be seen to be captured by the volume of
the parallelepiped formed by the vectors.

Figure 3 represents an iteration of the Algorithm 1. The
algorithm selects a partition and samples the vector from
that partition. The figure shows the effect of removing the
projection of the sampled vector from other vectors.

Figure 4 gives an example to motivate the β-balanced con-
dition. Suppose matrix V has vectors v1, v2, v3, v4 as rows,
and partitions VX1 contains v1, v2 and VX2 contains v3, v4.
Negative Example (A) : For v1 = (2, 0), v2 = (2, ε),
v3 = (0, 2), v4 = (ε, 2), as ε goes to zero, both non-zero
singular values of V approach 2

√
2. However for both VX1

and VX2
, the smallest singular value approaches 0 as ε de-

creases.
Positive Example (B) : For v1 = (2, 0), v2 = (2, 3),
v3 = (0, 2), v4 = (3, 2), the singular values of V are 5.38
and 2.23. The singular values of both VX1

and VX2
are

3.81 and 1.57, which is more than half of the corresponding
singular values of V . Therefore X1, X2 is β-balanced for
β = 2.

B. Appendix
B.1. Proof of Lemma 1

Proof. We need to show that q?, as defined below, is the
optimal (closest to q̃ in KL-distance) distribution over C

q?(S) =

{
α · q̃(S) for S ∈ C
0 otherwise

where α = 1/
∑
S∈C q̃(S). Note first that DKL(q?||q̃) =

logα. Consider any distribution q over C, it remains to show

Figure 1. . The top row of images is diverse in the geometric sense
but not fair with respect to gender of race. The second row of
images seems fair with respect to these sensitive features but is not
diverse in the feature space. The bottom row is visually distinct
and demographically varied.

that DKL(q||q̃) ≥ logα. We have

DKL(q||q̃) =
∑
S∈C

qS log
qS
q̃S

=
∑
S∈C

qS log
qS
αq̃S

+ logα

= DKL(q||q?) + logα

≥ logα,

since DKL(q||q?) ≥ 0. Therefore, the minimum possible
value of DKL(q||q̃) is logα, which is achieved for q = q?.

B.2. Low rank approximation

We use the following low rank approximation lemma in the
proof of Theorem 1.

Lemma 1 (Low Rank Approximation, see e.g. (Golub &
Van Loan, 2012)). For a matrix A ∈ Rm×n, with m ≥ n,
let A =

∑m
j=1 σjujz

>
j be its singular value decomposition.

Then A′ =
∑k
j=1 σjujz

>
j is the best rank k approximation

of A, i.e., min
B: rank(B)=k

‖A−B‖2F is achieved for B = A′

and attains the value
∑n
j=k+1 σ

2
j .
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Figure 2. (A) depicts how diversity relates to the volume of the parallelepiped formed by the feature vectors: more the volume, more the
diversity. All the vectors in (B) are pairwise orthogonal and their collection has a large determinant and, hence, the parallelepiped has a
large volume. The parallelepiped in (C), has a low volume which tends to zero as the angle between u1, u2 decreases or between u2, u3

increases. For a matrix with these vectors as rows, the determinant will be small, since the orthogonal projection of u1 on u2 is very small,
and similarly for u2, u3. If they become parallel, the determinant becomes zero since one row is then linearly dependent on another.
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Figure 3. This figure represents an iteration of the Algorithm 1 for
input X = {1, 2, 3}, VX1 = {w1} (red) and VX2 = {w2, w3}
(blue). If the algorithm selects the partition X1 and samples the
vector w1, it removes the projection of w1 from w2 and w3 to
obtain Πw1(w2) and Πw1(w3).

B.3. Proof of Lemma 2

Proof. We will prove this lemma by induction. For the base
case where there is just one row in W , det(WW>) is equal
to ‖w1‖2 which is equal to ‖ΠH1

w1‖2.

Let W ′ be the matrix with {w1, . . . , wk−1} as rows. As-
sume that the statement is true for k − 1 rows, i.e.,

det(W ′W ′>) =

k−1∏
i=1

‖ΠHi
wi‖2 .

Then for W we have,

WW> =

[
wk
W ′

] [
w>k W ′>

]
=

[
‖wk‖2 W ′>wk
w>kW

′ W ′W ′>

]
.
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Figure 4. This figure gives a negative (A) and a positive example
(B) of β-balanced condition, as described above. The colors rep-
resent the partitions. For the positive example, the partitions are
β-balanced with β = 2.

The first row of this matrix is

[
w>k wk w>k wk−1 . . . w>k w1

]
.

Note that elementary row product or addition transforma-
tions do not change the determinant. We will apply these
transformation to make the entries of first row and first
column go to zero.

Let (i) denote the i-th row of the above matrix andWW>(i,j)
denote the (i, j) entry. Then the transformation

(1)− w>k wk−1
w>k−1wk−1

(2)

will make the WW>(1,2) entry go to zero. For the rest of the
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elements,

WW>(1,i) = w>k wk−i+1 −
w>k wk−1
w>k−1wk−1

w>k−1wk−i+1

= w>k−i+1Πwk−1
(wk).

In particular,

WW>(1,1) = w>k wk −
w>k wk−1
w>k−1wk−1

w>k−1wk.

= w>k Πwk−1
(wk).

We continue this way and next apply the transformation

(1)−
w>k−2Πwk−1

(wk)

w>k−2wk−2
(3).

This will make the WW>(1,3) entry go to zero and
by the similar analysis as above we get WW>(1,i) =

w>k−i+1ΠH′2
(wk), where H ′i is the subspace spanned by

the vectors {wk−1, . . . , wk−i}. After applying k − 1 row
transformations of the form

(1)−
w>k−j+1ΠH′j−1

(wk)

w>k−j+1wk−j+1
(j)

we get that the entries WW>(1,i) = 0, for i 6= 1 and

WW>(1,1) = w>k ΠH′k
(wk) =

∥∥∥ΠH′k
(wk)

∥∥∥2 .
Note that H ′k = Hk defined in the statement of the lemma.

We can apply similar column operations to make all the en-
tries of the first column, except WW>(1,1), go to zero. Since
these elementary operations do not affect the determinant,
we get

Therefore

det(WW>) = det

[
‖wk‖2 W ′>wk
w>kW

′ WW ′>

]
= det

[
‖ΠHk

(wk)‖2 0
0 W ′W ′>

]
.

Using the induction hypothesis we get,

det(WW>) = ‖ΠHk
(wk)‖2 · det(W ′W ′>)

=

k∏
i=1

‖ΠHi
(wi)‖2 .

B.4. Proof of Lemma 3

Proof. Consider two forms of the characteristic polynomial
of the matrix −V V > ∈ Rm×m, i.e.,

det(xI + V V >) =

m∏
i=1

(x+ σ2
i ),

where σ1, . . . , σm are the singular values of V .

The coefficient of xm−k in
∏m
i=1(x + σ2

i ) is equal to∑
1≤i1<i2<...<ik≤m σ

2
i1
σ2
i2
· . . . · σ2

ik
.

LetWk be the set of all principal k-minors of V V >. It is
a well known fact in linear algebra that the coefficient of
xm−k in det(xI + V V >) is equal to∑

W∈Wk

det(W ) =
∑

S:|S|=k

det(VSV
>
S ).

Therefore,∑
i1<i2<···<ik

σ2
i1σ

2
i2 · . . . · σ

2
ik

=
∑

S:|S|=k

det(VSV
>
S ).

B.5. Proof of Lemma 4

Proof. We first show that for every part i, the corresponding
matrix VXi

has rank at least k. For this, first note that V
has at least k non-zero singular values, i.e., σk > 0. This
follows from the fact that the number of non-zero singular
values determines the rank of V . The rank of V is certainly
at least k, since otherwise the diversity of every subset of
size k would be zero.

From the β-balance condition it follows that the number of
non-zero singular values of VXi

is the same as for V , and
hence also the rank of VXi

is at least k, as claimed.

Note now that the set of vectors output by the algorithm has
determinant zero if and only if for an iteration j there exists
a partition Xi such that |S ∩Xi| < ki and ‖wx‖ = 0 for all
x ∈ Xi, where S = {x1, . . . , xj−1}.

This is equivalent to saying that all vectors in VXi
belong

to the subspace spanned by the vectors in S. Since the size
of S is j − 1, the dimension of the subspace spanned by
the vectors in VS is at most j − 1. Since, by assumption
for every x ∈ Xi the projection of vx onto the subspace
span{vy : y ∈ S} is 0, it implies that the dimension of
subspace spanned by vectors in VXi

is less than j ≤ k. This
would contradict the claim proved at the very beginning –
that this dimension is at least k, hence the lemma follows.
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B.6. Proof of Theorem 2

To prove Theorem 2 we will use the following matrix con-
centration inequality.

Theorem 1 (Matrix Chernoff bound, see e.g. (Tropp,
2012)). Given independent, random, Hermitian matrices
M1, . . . ,Mm that satisfy

Mi � 0 and λmax(Mi) ≤ R for all i

it holds

P
[
λmin

( m∑
i=1

Mi

)
≤ (1− δ)µmin

]
≤ n · e−δ

2µmin/2R

where 0 ≤ δ ≤ 1, µmin = λmin(
∑m
i=1 E[Mi]).

Proof of Theorem 2. To use the Matrix Chernoff bound, we
design our random experiment in the following way. We are
given vectors v1, . . . , vm ∈ Rn which are rows of matrix
V ∈ Rm×n. Note that the singular values σ1 ≥ · · · ≥ σn
are the eigenvalues of M := V >V =

∑m
i=1 viv

>
i . We

will form partitions by putting each vector in Xi with 1/p
probability.

Consider the formation of one such partition Xi. Let Yj
be the random variable taking value vjv>j with probability
1/p and 0 with probability (1− 1/p). Xi will be all those
elements for which we do not sample 0. Then for this
instance we have that

Mi := V >Xi
VXi =

m∑
j=1

Yj .

Let uj := (pV >V )−
1
2 vj , Zj = uju

>
j and M̃i :=∑m

j=1 Zj . Then it can be seen that

E
[
M̃i

]
= I.

Let ε = δ/2. Note that

(1− ε) · I � M̃i ⇔ (1− ε) ·M � pMi.

We know that ifA � B, then for all j, λj(A) ≤ λj(B) – see
e.g. (Bhatia, 2013). Therefore if we show that (1− ε) · I �
M̃i, then for all j ∈ {1, . . . , n},

λj(Mi) ≥
1− ε
p

λj(M).

This implies that VXi
will satisfy the β-balanced condition

for β =
√

p
1−ε .

To show that M̃i � (1−ε)·I holds (with decent probability),
it is enough to show that λmin(M̃i) ≥ (1− ε).

We will show it using Matrix concentration inequalities. But
first we need to bound λmax(Zj).

λmax(Zj) ≤ ‖uj‖2 = pv>j (V >V )−1vj ≤
ε2

2 log(np)

Using Theorem 1, we get

P
[
λmin

(
M̃i

)
≤ (1− ε)

]
≤ n · e−ε

2/2R

= n · e− log(np) =
1

p
.

From the above two inequalities, we have that

P
[
M̃i � (1− ε) · I

]
≥ 1− P

[
λmin

(
M̃i

)
≤ (1− ε)

]
≥ 1− 1

p
.

Hence the probability that all the partitions satisfy this β-
balanced condition, for β =

√
p

1−ε , is atleast(
1− 1

p

)p
=

1

e
.

Since ε = δ/2 and 0 ≤ δ ≤ 1, it can be seen that

1

1− ε
≤ 1 + 2ε = 1 + δ.

Therefore the partition is β-balanced, for β =
√

(1 + δ)p,
with probability ≥ 1/e.

B.7. Proof of Theorem 3

Recall that

B := {S ⊆ X : |S ∩Xj | = kj for all j = 1, 2, . . . , p},

and let
C := {S ⊆ X : |S| = k}.

We will use the following lemma in the proof.

Lemma 2. For every ε ∈ (0, 1), if∑
S∈C\B

det(VSV
>
S ) ≤ ε

∑
S∈C

det(VSV
>
S )

then
DKL(q?||q) ≤ log

1

(1− ε)
.

Proof. From the assumption it follows

(1− ε)
∑
S∈C

det(VSV
>
S ) ≤

∑
S∈B

det(VSV
>
S ).
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Hence, for all S ∈ C,

det(VSV
>
S )

(1− ε)
∑
S∈C det(VSV >S )

≥ det(VSV
>
S )∑

S∈B det(VSV >S )
,

which translates to

q∗(S)

q(S)
≤ 1

(1− ε)
.

Finally, we obtain

DKL(q∗||q) =
∑
S∈B

q∗(S) log
q∗(S)

q(S)
≤ log

1

(1− ε)
.

Proof of Theorem 3. We start by decomposing the terms in∑
S∈C\B det(VSV

>
S ) and analyzing each term individually

using Lemma 2.

Given a set S ⊆ X , let Si := S ∩Xi. Then S =
⋃p
i=1 Si.

Using this, the family C \ B can be decomposed as

C \ B = {S ⊆ X | ∃j |S ∩Xj | 6= kj}

=

{
p⋃
i=1

Si | ∀j Sj ⊆ Xj and ∃j |Sj | 6= kj

}
.

Let S(j1,...,jp) denote the following family of subsets

S(j1,...,jp) := {S ⊆ X | |S ∩Xi| = ji}

and, for brevity, let J denote the following set integer tuples
(all but (k1, k2, . . . , kp))

J := Np≥0 \ {(k1, k2, . . . , kp)}.

Given this notation, we can write the following sum as∑
S∈C\B

det(VSV
>
S ) =

∑
(j1,...,jp)∈J

∑
S∈S(j1,...,jp)

det(VSV
>
S ).

We analyze each term of the above summation individually.
We start by noting that

det(VSV
>
S ) ≤

p∏
i=1

det(VSi
V >Si

),

where for all i, Si = S ∩Xi, this is a simple consequence
of the fact that V V > is positive semidefinite. Therefore,

∑
S∈S(j1,...,jp)

det(VSV
>
S ) ≤

p∏
i=1

∑
Si⊆Xi,|Si|=ji

det(VSi
V >Si

).

Whenever a set S of cardinality k does not belong to
B, for at least one i, we have that |Si| = |S ∩ Xi| >
ki. Let us now analyze how does a sum of the form∑
T⊆Xi,|T |=j det(VTV

>
T ) behave depending on whether

j ≤ ki or j > ki.

Case 1. j ≤ ki :

∑
T⊆Xi,|T |=j

det(VTV
>
T ) =

∑
1≤l1<···<lj≤n

j∏
j′=1

σ2
i,lj′

≤
j∑
l=0

(
ki
l

)
γ2l
(
n− ki
j − l

)
(γδ)2(j−l)

= γ2j
j∑
l=0

(
ki
l

)(
n− ki
j − l

)
δ2(j−l)

≤ γ2j
j∑
l=0

(
ki
l

)
(n− ki)j−lδ2(j−l).

Since δ < ε
nN0

,∑
T⊆Xi,|T |=j

det(VSV
>
S ) ≤ γ2j2ki

Case 2. j > ki :

∑
T⊆Xi,|T |=j

det(VTV
>
T ) =

∑
1≤l1<···<lj≤n

j∏
j′=1

σ2
i,lj′

≤
ki∑
l=0

(
ki
l

)
γ2l
(
n− ki
j − l

)
(γδ)2(j−l)

= γ2j
ki∑
l=0

(
ki
l

)(
n− ki
j − l

)
δ2(j−l)

= γ2j
ki∑
l=0

(
ki
l

)
(n− ki)j−lδ2(j−l).

Since δ < ε
nN0

,

∑
T⊆Xi,|T |=j

det(VTV
>
T ) ≤

( ε
N0

)j−ki
γ2j

ki∑
l=0

(
ki
l

)
1

nj−l
.

Since j > ki,

1

nj−l
≤ 1

ki
j−l ≤

1

ki
ki−l · ki

and (
ki
l

)
1

nj−l
≤ kiki−l

1

ki
j−l · ki

≤ 1

ki
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Therefore,

∑
T⊆Xi,|T |=j

det(VTV
>
T ) ≤

(
ε

N0

)j−ki
γ2j ≤ ε

N0
γ2j .

Using the above inequalities, we obtain that for every
(j1, . . . , jp) ∈ J∑

S∈S(j1,...,jp)

det(VSV
>
S ) ≤ ε

N0
γ2k2k.

Note that the size of the set of tuples J is bounded from
above by |J | ≤

(
k+p−1
p−1

)
= N0.

Therefore,∑
S∈C\B

det(VSV
>
S ) =

∑
(j1,...,jp)∈J

∑
S∈S(j1,...,jp)

det(VSV
>
S )

≤ N0 ·
ε

N0
γ2k2k = εγ2k2k.

It remains to find a lower bound for
∑
S∈C det(VSV

>
S ).

Using Lemma 3, we obtain

∑
S∈C

det(VSV
>
S ) =

∑
1≤i1<···<ik≤n

k∏
j=1

σ2
ik
≥
(
n

k

)
· σ2k

n .

By using the inequality
(
n
k

)
≥ nk

kk
we finally arrive at

∑
S∈C

det(VSV
>
S ) ≥

(n
k
σ2
n

)k
.

Therefore,

∑
S∈C\B det(VSV

>
S )∑

S∈C det(VSV >S )
≤ εγ2k2k(

n
kσ

2
n

)k ≤ ε ·
(√

2kγ2

nσ2
n

)k
.

Using the assumption that n ≥
√

2k ·
(
γ
σn

)2
we obtain

∑
S∈C\B

det(VSV
>
S ) ≤ ε

∑
S∈C

det(VSV
>
S )

and an application of Lemma 2 finishes the proof.
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