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Abstract
Sampling methods that choose a subset of the
data proportional to its diversity in the feature
space are popular for data summarization. How-
ever, recent studies have noted the occurrence
of bias – e.g., under or over representation of a
particular gender or ethnicity – in such data sum-
marization methods. In this paper we initiate a
study of the problem of outputting a diverse and
fair summary of a given dataset. We work with
a well-studied determinantal measure of diver-
sity and corresponding distributions (DPPs) and
present a framework that allows us to incorpo-
rate a general class of fairness constraints into
such distributions. Designing efficient algorithms
to sample from these constrained determinantal
distributions, however, suffers from a complexity
barrier; we present a fast sampler that is provably
good when the input vectors satisfy a natural prop-
erty. Our empirical results on both real-world and
synthetic datasets show that the diversity of the
samples produced by adding fairness constraints
is not too far from the unconstrained case.

1. Introduction
A problem facing many services – from search engines and
news feeds to machine learning – is data summarization:
how can one select a small but representative, i.e., diverse,
subset from a large dataset. For instance, Google Images
outputs a small subset of images from its enormous dataset
given a user query. Similarly, in training a learning algo-
rithm one may be required to choose a subset of data points
to train on as training on the entire dataset may be costly.
However, data summarization algorithms prevalent in the
online world have been recently shown to be biased with re-
spect to sensitive attributes such as gender, race or ethnicity.
For instance, a recent study found evidence of systematic
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under-representation of women in search results (Kay et al.,
2015). Concretely, the above work studied the output of
Google Images for various search terms involving occupa-
tions and found, e.g., that for the search term “CEO”, the
percentage of women in top 100 results was 11%, signifi-
cantly lower than the ground truth of 27%. Through studies
on human subjects, they also found that such misrepresenta-
tions have the power to influence people’s perception about
reality. Beyond humans, since data summaries are used to
train algorithms, there is a danger that these biases in the
data might be passed on to the algorithms that use them;
a phenomena that is being revealed more and more in au-
tomated data-driven processes in education, recruitment,
banking, and judiciary systems, see (O’Neil, 2016).

A robust and widely deployed method for data summariza-
tion is to associate a diversity score to each subset and
select a subset with probability proportional to this score;
see (Hesabi et al., 2015). This paper focuses on a concrete
geometric measure of diversity of a subset S of a dataset
{vx}x∈X of vectors – the determinantal measure denoted
by G(S) (Kulesza & Taskar, 2012); and the resulting prob-
ability distribution is called a determinantal point process
(DPP). G(S) generalizes the correlation measure for two
vectors to multiple vectors and, intuitively, the larger G(S),
the more diverse is S in the feature space. Among benefits
of G(·) are its overall simplicity, wide applicability – not
depending on combinatorial properties of the data, and ef-
ficient computability. A potential downside might be the
additional effort required in modeling, i.e., to represent the
data in a suitable vector form so that the geometry of the
dataset indeed corresponds to diversity.

Despite the well-acknowledged ability of DPPs to produce
diverse subsets, unfortunately, there seems to be no obvi-
ous way to ensure that this also guarantees fairness in the
DPP samples in the form of appropriate representation of
sensitive attributes in the subset selected. Partially, this is
due to the fact that fairness could mean different things in
different contexts. For instance, consider a dataset in which
each data point has a gender. One notion of fairness, useful
in ensuring that the ground truth does not get distorted, is
proportional representation: i.e., the distribution of sensi-
tive characteristics in the output set should be identical to
that of the input dataset (Kay et al., 2015). Another notion
of fairness, argued to be necesseary to reverse the effect of
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historical biases (Koriyama et al., 2013), could be equal
representation – the representation of sensitive character-
istics should be equal independent of the ratio in the input
dataset. While these measures of fairness have natural gen-
eralizations to the case when the number of sensitive types
is more than two, and can be refined in several ways, one
thing remains common: they all operate in the combinato-
rial space of sensitive attributes of the data points. Simple
examples (see, e.g., Figure 1 in the Supplementary File)
show that, in certain settings, geometric diversity does not
imply fairness and vice-versa; however, there seems to be
no intrinsic barrier in attaining both.

We initiate a rigorous study of the problem of incorporating
fairness with respect to sensitive attributes of data in DPP-
based sampling for data summarization. Our contributions
are: A framework that can incorporate a wide class of no-
tions of fairness with respect to disjoint sensitive attributes
and, conditioned on being fair in the specified sense, outputs
subsets where the probability of a set is still proportional to
G()̇. In particular, we model the problem as sampling from a
partition DPP – the parts correspond to different sensitive at-
tributes and the goal is to select a specified number of points
from each. Unfortunately, the problem of sampling from
partition DPPs has been recently shown to be intractable
in a strong sense (Celis et al., 2017) and the question of
designing fast algorithms for it, at the expense of being ap-
proximate, has been open. Our main technical result is a
linear time algorithm (see Section 3.1) to sample from parti-
tion DPPs that is guaranteed to output samples from close
to the DPP distribution under a natural condition on the
data (see Definition 4). We prove that random data matrices
satisfy this condition in Section 3.3. We run our algorithm
on the Adult dataset (Blake & Merz, 1998) and a curated
image dataset with various parameter settings and observe a
marked improvement in fairness without compromising geo-
metric diversity by much. A theoretical justification of this
low price of fairness is provided in Section 4; while there
have been few works on controlling fairness, ours is the first
to give a rigorous, quantitative price of fairness guarantee
in any setting. Overall, our work gives a general and rigor-
ous algorithmic solution to the problem of controlling bias
in DPP-based sampling algorithms for data summarization
while maximizing diversity.

Related Work. There are several data pre-processing ap-
proaches to reduce bias in training data. For example, in
(Kamiran & Calders, 2012) or (He & Garcia, 2009), bias
is removed from training data by over- or under-sampling
from the dataset with appropriately defined cardinality con-
straints on the parts of a partition. The sampling approach
used is often either uniform or preferential (according to a
problem-dependent ranking). We show that sampling using
partition-DPPs has better results in ensuring diversity of the
sampled subset than any such sampling method.

DPP-based sampling has been deployed for many data sum-
marization tasks including text and images (Kulesza &
Taskar, 2011), videos (Gong et al., 2014), documents (Lin
& Bilmes, 2012), recommendation systems (Zhou et al.,
2010), and sensors (Krause et al., 2008); and the study of
DPPs with additional budget or resource constraints is of im-
portance. While for unconstrained DPPs there are efficient
algorithms to sample (Hough et al., 2006), the problem of
sampling from constrained DPPs is intractable; see (Celis
et al., 2017), where pseudopolynomial time algorithms for
partition DPPs are presented. There is also work on approxi-
mate MCMC algorithms for sampling from various discrete
point processes (see (Rebeschini & Karbasi, 2015; Anari
et al., 2016) and the references therein), and algorithms that
are efficient for constrained DPPs under certain restrictions
on the data matrix and constraints (see (Li et al., 2016) and
the references therein). To the best of our knowledge, ours
is the first algorithm for constrained DPPs that is near-linear
time. Our algorithm is a greedy, approximate algorithm, and
can be considered an extension of a similar algorithm for un-
constrained DPPs given by (Deshpande & Vempala, 2006).
Finally, our work contributes towards an ongoing effort
to measure, understand and incorporate fairness (e.g., see
(Barocas & Selbst, 2015; Caliskan et al., 2017; Dwork et al.,
2012; Zafar et al., 2017)) in fundamental algorithmic prob-
lems, including ranking (Celis et al., 2018b), voting (Celis
et al., 2018a), and personalization (Celis & Vishnoi, 2017).

2. Our Model
In this section we present the formal notions, model and
other theoretical constructs studied in this paper. X will
denote the dataset and we let m denote its size. We assume
that for each x ∈ X , we are given a (feature) vector vx ∈
Rn, where n ≤ m is the dimension of the data. Let V
denote the m × n matrix whose rows correspond to the
vectors vx for x ∈ X . For a set S ⊆ X , we use VS to
denote the submatrix of V that is obtained by picking the
rows of V corresponding to the elements of S. We can now
describe geometric diversity formally.

Definition 1. (Geometric Diversity) Given a dataset X
and the corresponding feature vectors V ∈ Rm×n, the
geometric diversity of a subset S ⊆ X is defined as
G(S) := det

(
VSV

>
S

)
, which is the squared volume of

the parallelepiped spanned by the rows of VS .

This volume generalizes the correlation measure for two
vectors to multiple vectors and, intuitively, the larger the
volume, the more diverse is S in the feature space; see
Figure 2 in the Supplementary File for an illustration. Geo-
metric diversity gives rise to the following distribution on
subsets known as a determinantal point process (DPP).

Definition 2. (DPPs and k-DPPs) Given a dataset X and
the corresponding feature vectors V ∈ Rm×n, the DPP is a
distribution over subsets S ⊆ X such that the probability
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P[S] ∝ det
(
VSV

>
S

)
. The induced probability distribution

over k-sized subsets is called k-DPP.

A characteristic of a DPP measure is that the inclusion of
one item makes including other similar items less likely.
Consequently, DPPs assign greater probability to subsets of
points that are diverse; for example, a DPP prefers search
results that cover multiple aspects of a user’s query, rather
than the most popular one.

Our Algorithmic Framework: We are given a dataset X
along with corresponding feature vectors V ∈ Rm×n and a
positive number k ≤ m that denotes the size of the subset
or summary that needs to be generated. The dataset X is
partitioned into p disjoint classes X1 ∪X2 ∪ · · · ∪Xp, each
corresponding to a sensitive class. A key feature of our
model is that we do not fix one notion of fairness; rather,
we allow for the specification of fairness constraints with
respect to these sensitive classes. Formally, we do this
by taking as input p natural numbers (k1, k2, . . . , kp) such
that

∑p
j=1 kj = k is the sample size. These numbers give

rise to a fair family of allowed subsets defined to be B :=
{S ⊆ X : |S ∩ Xj | = kj for all j = 1, 2, . . . , p}. By
setting (k1, . . . , kp) appropriately, the user can ensure their
desired notion of fairness. For example, if the dataset hasmi

items with the i-th sensitive attribute, then we can set ki :=
kmi/m to obtain proportional representation. Similarly,
equal representation can be implemented by setting ki =
k/p for all i.

The fair data summarization problem is to sample from a
distribution that is supported on B. However, there could be
many such distributions; we pick one that is “closest” to the
to the k-DPP described by V . We use the Kullback-Leibler
(KL) divergence between distributions q and q̃ defined as
DKL(q||q̃) :=

∑
S qS log qS

q̃S
.1 The following lemma char-

acterizes the distribution supported on B that has the least
KL-divergence to a given distribution (see Appendix B.1 in
the Supplementary File for the proof).

Lemma 1. Given a distribution q̃ with support set C, let
B ⊆ C and q be any distribution on B. Then the optimal
value of minqDKL(q||q̃) is achieved by the distribution q?,
such that q?S ∝ q̃S , for S ∈ B and 0 otherwise.

Thus, the distribution above can be thought of as the most
diverse while being fair; we call it partition DPP, or P -DPP.

Definition 3. (P -DPP) Given a dataset X , the corre-
sponding feature vectors V ∈ Rm×n, a partition X =
X1 ∪ X2 ∪ · · · ∪ Xp into p parts, and natural numbers
k1, . . . , kp, P -DPP defines a distribution q? over subsets
S ⊆ X of size k =

∑p
i=1 ki such that for all S ∈ B we

1Note that when there are only two parts, one can recover the
percentages of elements from each part from the KL-distance. For
multiple parts, the KL-distance is a natural (and general) single-
dimensional function of the percentage vector with which to mea-
sure the deviation from the target distribution.

have q?S :=
det(VSV

>
S )∑

T∈B det(VTV >T )
, and q?S = 0 otherwise.

Given the results of (Celis et al., 2017), we know that sam-
pling from P -DPPs is #P-hard and exact sampling algo-
rithm for P -DPPs are unlikely. Correspondingly, the flexi-
bility that our framework provides in specifying the fairness
constraints comes at a computational cost. In this paper, we
give a fast, approximate sampling algorithm for P -DPPs.

3. Our Algorithm
Notions of Volume and Projection. Let us recall the inter-
pretation of determinants in terms of volumes. For S ⊆ X ,
VS is the set of vectors {vx}x∈S . If the vectors in S
are pairwise orthogonal, then the matrix VSV >S is diago-
nal with entries {‖vx‖2}x∈S on the diagonal and, hence,
det(VSV

>
S ) =

∏
x∈S ‖vx‖

2. In the general case, the deter-
minant is not simply the (squared) product of the norms of
vectors, however a similar formula still holds. Let H ⊆ Rn
be any linear subspace and H⊥ be its orthogonal comple-
ment, i.e., H⊥ := {y ∈ Rn | 〈x, y〉 = 0 for all x ∈ H}.
Let ΠH : Rn → Rn be the orthogonal projection operator
on the subspace H⊥, i.e., whenever w ∈ Rn decomposes as
w1+w2 forw1 ∈ H andw2 ∈ H⊥, then ΠH(w) = w2. By
a slight abuse of notation, we also denote by Πv the operator
that projects a vector to another that is orthogonal to a given
vector v ∈ Rn, i.e., Πv(w) := w − 〈w, v〉 / ‖v‖2 .

The following lemma is a simple generalization of the for-
mula derived above for orthogonal families of vectors and
inspires our algorithm for P -DPPs. The proof of this lemma
is presented in Section B.3 in the Supplementary File.
Lemma 2 (Determinant Volume Lemma). Let
w1, . . . , wk ∈ Rn be the rows of a matrix W ∈ Rk×n, then
det(WW>) =

∏k
i=1 ‖ΠHi

wi‖2 , whereHi is the subspace
spanned by {w1, . . . , wi−1} for all i = 1, 2, . . . , k.

3.1. Our Sample and Project Algorithm
Before we describe our algorithms for sampling from P -
DPPs, it is instructive to consider the special case of k-DPPs
itself and the simple “orthogonal” scenario – where all the
vectors vx, for x ∈ X , are pairwise orthogonal. In such a
case, there is a simple iterative algorithm: sample x ∈ X
with probability ∝ ‖vx‖2, then add x to S and remove x
from X; repeat until |S| = k. It is intuitively clear, and
not hard to prove, that the final probability of obtaining a
given set S as a sample is proportional to

∏
x∈S ‖vx‖

2
=

det(VSV
>
S ) and, hence, recovers the k-DPP exactly.

In case of P -DPPs where all the vectors are pairwise orthog-
onal, and we need to sample ki vectors from partition Xi,
we can sample the required number of elements from each
partition independently using the procedure in the previous
paragraph. The orthogonality of the vectors and the disjoint-
ness of the parts implies that this sampling procedure gives
the right probability distribution.
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Algorithm 1 Sample-And-Project
1: Input: V, (X1, .., Xp), (k1, .., kp)
2: S ← ∅
3: k ← k1 + k2 + · · ·+ kp
4: Let wx := vx for all x ∈ X
5: while |S| < k do
6: Pick any2 i ∈ {1, . . . , p} such that |S ∩Xi| < ki
7: Define q ∈ RXi by qx := ‖wx‖2 for x ∈ Xi

8: Sample x̃ ∈ Xi from distribution
{

qx∑
y∈Xi

qy

}
x∈Xi

9: S ← S ∪ {x̃}
10: Let v := wx̃
11: For all x ∈ X , set wx := Πv(wx)
12: end while
However, when the vectors vx are no longer pairwise or-
thogonal, the above heuristic can fail miserably. This is
where we invoke Lemma 2. It suggests the following strat-
egy: once we select a vector, then we should orthogonalize
all the remaining vectors with respect to it before repeating
the sampling procedure. For the case of k-DPPs, it can be
shown that this heuristic outputs a set S with probability
no more than k! times its desired probability (Deshpande
& Vempala, 2006). The k! term is primarily because the
k vectors can be chosen in any of the k! orders. Taking
this simple heuristic as a starting point and incorporating an
additional idea to deal with partition constraints, we arrive
at our Sample and Project algorithm – see Algorithm 1.

Given that we have made several simplifications and infor-
mal “jumps” when deriving the algorithm one cannot expect
that the distribution over sets S produced by Algorithm 1 to
be exactly the same as P -DPP. Later in this section we give
evidence that in fact the distribution output by the “Sample
and Project” heuristic can be formally related to the P -DPP
distribution, and hence the constructed algorithm is provably
an approximation to a P -DPP. However, we first note an
attractive feature of this algorithm – it is fast and practical.
For a V ∈ Rm×n matrix and k =

∑p
i=1 ki, Algorithm 1

can be implemented in O(mnk) time.

Note that the size of the data for this problem is already
Θ(mn), hence, the algorithm does only linear work per
sampled point. For P -DPPs there is only one known exact
algorithm which samples in time mO(p), which is polyno-
mial only when p = O(1) (Celis et al., 2017).

Another possible approach for sampling from DPPs is the
Markov Chain Monte Carlo method. It was proved in (Anari
et al., 2016) that Markov Chains can be used to sample from
k-DPPs in time roughly Õ(mk4 + mn2) given a “warm
start”, i.e., a set S0 of significant probability. This ap-
proach does not extend to P -DPPs – indeed in (Anari et al.,
2016) the underlying probability distribution is required to
be Strongly Rayleigh, a property which holds for k-DPPs,
but fails for P -DPPs whenever the number of parts is at least

two. One can still formulate an analogous MCMC algorithm
for the case of P -DPPs – it fails on specially crafted “bad
instances” but seems to perform well on real world data.
However, even ignoring the lack of provable guarantees for
this algorithm, it does not seem possible to reduce its run-
ning time below O(mk4 +mn2), which significantly limits
its practical applicability.

3.2. Provable Guarantees for Our Algorithm

We now present a theorem which connects the output dis-
tribution of Algorithm 1 to the corresponding P -DPP. To
establish such a guarantee we require the following assump-
tion on the singular values of the matrices VXi

.

Definition 4 (β-balance). Let X be a set of m elements
partitioned into p parts X1, . . . , Xp and let V ∈ Rm×n be
a matrix. Denote by σ1 ≥ · · · ≥ σn the singular values
of V and for each i ∈ {1, 2, . . . , p}, let σi,1 ≥ · · · ≥ σi,n
denote the singular values of VXi

. For β ≥ 1, the partition
X1, . . . , Xp is called β-balanced with respect to V if for all
i ∈ {1, . . . , p} and for all j ∈ {1, . . . , n}, σi,j ≥ 1

βσj .

The β-balance property informally requires that the diversity
within each of the partitions VXi

, relative to V , is significant.
A more concrete geometric way to think about this condition
is as follows: if one thinks of the positive semidefinite matrix
V >V ∈ Rn×n as representing an ellipsoid in Rn whose
axes are the singular values, then the β-balance condition
essentially says that the ellipsoids corresponding to each of
the partitions are a β-approximation to that of V (see Figure
4 in the Supplementary File).

Importantly, Algorithm 1 never outputs a set S /∈ B, hence
the only way its output distribution could significantly differ
from the P -DPP would be if certain sets S ∈ B appeared
in the output with larger probabilities than specified by the
P -DPP. Our main theoretical result for Sample and Project
is that for β-balanced instances we can control the scale at
which such a violation can happen.

Theorem 1 (Approximation Guarantee). Let X be a set of
m elements partitioned into p parts X1, . . . , Xp, a matrix
V ∈ Rm×n and integers k1, . . . , kp, such that X1, . . . , Xp

is a β-balanced partition with respect to V and
∑p
j=1 kj .

Let B ⊆ 2X denote the following family of sets

B := {S ⊆ X : |S ∩Xj | = kj for all j = 1, 2, . . . , p}

Then Algorithm 1, with V , (X1, . . . , Xp) and (k1, . . . , kp)
as input, returns a subset S ∈ B with probability q̃(S) ≤
ηk · β2k · q?S where q?S =

det(VSV
>
S )∑

T∈B det(VTV >T )
, k =

∑p
j=1 kj

and ηk = k1! · k2! · · · kp!.

The proof of the approximation guarantee uses techniques
inspired by (Deshpande & Vempala, 2006) who prove a
similar bound for k-DPP sampling.
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We use the following lemmas in the proof of the theorem.
The proof of these lemmas appear in Appendix B.4 and
Appendix B.5 in the Supplementary File.

Lemma 3. For any matrix V ∈ Rm×n with m ≥ n ≥ k,∑
i1<i2<···<ik

σ2
i1σ

2
i2 · · ·σ

2
ik

=
∑

S:|S|=k

det(VSV
>
S )

where σ1, σ2, . . . , σn are the singular values of V and VS
is the sub-matrix of V with rows corresponding to S.
Lemma 4. Given a β-balanced partition, Algorithm 1 re-
turns a set S such that det(VSV

>
S ) is non-zero with proba-

bility one.

Proof of Theorem 1. Let π be the random variable repre-
senting the ordered output of the algorithm. Suppose that
the algorithm outputs the set S = {x1, . . . , xk}. Since the
partition X1, . . . , Xp is β-balanced with respect to V , by
Lemma 4 the algorithm will always output a set which has
non-zero determinant value, i.e, det(VSV

>
S ) 6= 0.

Consider any ordering of the set S, say, τ := (x1, . . . , xk).
Let Hj ⊆ Rn denote the linear subspace spanned by
the vectors corresponding to the first j − 1 elements, i.e.,
{vx1 , . . . , vxj−1}. We also define a mapping f : X →
{1, . . . , p} such that f(x) = i if x ∈ Xi.
In the first iteration say we choose partition X1. Then the
algorithm will sample an element from X1 with probability
proportional to the squared norm of the vector.
After (j − 1) iterations wx will be the orthogo-
nal projection of vx onto the subspace orthogonal to
span{vx1 , vx2 , . . . , vxj−1}. This is a consequence of the
fact that (Πvx1

Πvx1
· · ·Πvxj−1

) = ΠHj .

Hence in the (j − 1)-th iteration, wx = ΠHj
(vx) for all

x ∈ X . Therefore, the probability that the sequence τ is the
output of the algorithm is

P(π = τ) =

k∏
j=1

∥∥ΠHj
(vxj

)
∥∥2∑

x∈Xf(xj)

∥∥ΠHj
(vx)

∥∥2 . (1)

The numerator of (1) is det(VSV
>
S ) by Lemma 2. Let

Dx1,...,xk
denote the denominator. For each term in the

denominator
∑
x∈Xl

∥∥ΠHj (vx)
∥∥2 =

∥∥VXl
− V ′Xl

∥∥2
F

where

‖·‖F denotes the Frobenius norm and V ′Xl
is the rank j − 1

matrix with rows {v′x}x∈Xl
such that v′x is the projection of

vector vx on Hj . By a result on low rank approximations
(see Theorem 1), we can bound the above quantity as

∑
x∈Xl

∥∥ΠHj (vx)
∥∥2 ≥ n∑

t=j

σ2
l,t ≥

1

β2

n∑
t=j

σ2
t

where σl,t is the t-th singular value of VXl
and second

inequality is due to the β-balanced property of the partition.

Using above, the denominator of (1) becomes

Dx1,...,xk
≥

k∏
j=1

1

β2

n∑
t=j

σ2
t ≥

1

β2k

∑
t1<···<tk

σ2
t1 · · ·σ

2
tk
.

By applying Lemma 3, it then follows

Dx1,...,xk
≥ 1

β2k

∑
|S|=k

det(VSV
>
S ) ≥ 1

β2k

∑
S∈B

det(VSV
>
S ).

Thus, P(π = τ) ≤ β2k det(VSV
>
S )∑

T∈B det(VTV >T )
. Since the order

in which the partitions are considered by the algorithm is
fixed, the vectors of each Xi in τ can be permuted amongst
themselves and the output set will still be S. Correspond-
ingly there are ηk = k1! · k2! · · · kp! valid permutations of
τ . Let TS be the set of all valid permutations of elements of
S, then q̃S =

∑
τ∈TS

P(π = τ) ≤ ηk · β2k · q?S .

3.3. β-balanced property for random data

For a given matrix V ∈ Rm×n, suppose we choose the
partitions randomly. For each element x ∈ X , we put x in
Xi with probability 1/p. Using the Matrix Chernoff bounds
(Tropp, 2012), we prove the following theorem.
Theorem 2. Assume that all the rows vj (for j ∈ X =
{1, 2, . . . ,m}) of V ∈ Rm×n satisfy v>j (V >V )−1vj ≤

δ2

8p log(np) , where δ ∈ (0, 1) is a constant. If X is randomly
partitioned into X = X1 ∪X2 ∪ . . . ∪Xp then with prob-
ability at least 1

e , the partition X1, . . . , Xp is β-balanced
with respect to V , for β =

√
(1 + δ)p.

The proof of this theorem is given in Appendix B.6 in the
Supplementary File. The quantity v>j (V >V )−1vj is also
called the statistical leverage score of vj with respect to
V >V . For two partitions, the theorem states that if the
leverage score of all rows is O( 1

logn ), then the partitions are
β-balanced for β ≈

√
2.

4. Price of Fairness
In this section we present conditions under which the k-DPP
and P -DPP distributions are close to each other. Note that
the support of a P -DPP is a subset of the support of the
corresponding k-DPP. Thus, a natural definition of the price
of fairness is the KL-divergence between them.
Definition 5 (Price of Fairness). Given a matrix V ∈
Rm×n, partitions X1, . . . , Xp and integers k1, . . . , kp, let
k = k1 + · · · + kp. Suppose q is the distribution defined
by k-DPP over subsets of size k and q? is the distribution
defined by P -DPP over subsets with ki elements from each
Xi. Then, the price of fairness is DKL(q?||q).

We define the following property for the input data and
analyze its price of fairness.
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Figure 1. The mean relative unfairness measure D(·) = Dun(·) with respect to the uniform distribution over 4 classes, and the logarithm
of the geometric diversity lg(G(·)) are reported in the left and right figures respectively for n = 200 repetitions. Error bars represent the
standard error of the mean.

Definition 6 (δ-drop). For 0 ≤ δ ≤ 1, the partition
X1, . . . , Xp is called a δ-drop partition with respect to V
and k1, . . . , kp if for all i ∈ {1, . . . , p}, σi,ki+1 ≤ δσi,ki .
Here σi,j is the j-th largest singular value of VXi

.

Roughly, this says that, if δ is small, then each of the ma-
trices VXi is effectively a rank-ki matrix. Such a notion of
low effective rank appears frequently in the machine learn-
ing literature (Roy & Vetterli, 2007; Drineas et al., 1999).
We prove the following theorem that asserts that if the δ-
drop condition is satisfied, then we can be sure that most
of the probability mass is concentrated on subsets which
satisfy partition constraints. In such a case, sampling a k
sized subset using any k-DPP algorithm will output a subset
which satisfies partition constraints with high probability.
The proof of the theorem is provided in the Appendix B.7
in the Supplementary File.

Theorem 3. Let ε ∈ (0, 1) and suppose that the partition
X1, . . . , Xp is δ-drop w.r.t. V and k1, . . . , kp, with δ ≤
ε

nN0
and N0 :=

(
k+p−1
p−1

)
. If n ≥

√
2k ·

(
γ
σn

)2
(with γ :=

max{σi,1}i, where σi,1 is the largest singular value of VXi

and σn is the smallest non-zero singular value of V ) then
the price of ensuring fairness is DKL(q?||q) ≤ log 1

(1−ε) .

5. Empirical Results
5.1. Algorithms and Baselines

In each simulation, we compare several different proba-
bility distributions from which to select k samples from a
dataset: As benchmarks we consider the (unconstrained)
distributions, k-DPP (see Def 2), and UNIF, which selects a
uniformly random subset of size k from the dataset X . We
compare this against different methods which select from
a fair family of allowed subsets, P -DPP (see Def 3), and
ki-DPP (see Def 7 below).

Definition 7. (ki-DPP) Given a dataset X , the corre-
sponding feature vectors V ∈ Rm×n, a partition X =
X1 ∪ · · · ∪ Xp into p parts, and numbers k1, . . . , kp, ki-
DPP defines a distribution over k1 + · · ·+ kp-sized subsets
S ⊆ X that is a product distribution: for each i, we obtain

a sample Si ⊆ Xi of size ki independently with probability
proportional to P[Si] ∝ det

(
VSiV

>
Si

)
, and combine these

samples to output S = S1 ∪ · · · ∪ Sp.

Algorithms for ki-DPPs are simply obtained by indepen-
dently using a k-DPP sampler with k = ki on each part
Xi. For sampling from all the above listed distribution
we use the Sample and Project algorithm as described in
Section 3.1.

Metrics. In each simulation, we report the geometric di-
versity G(·) (see Def 1) and the fairness as measured by
the KL-divergence from the desired frequency over parts.
Formally, given a probability distribution q over the p
parts of the dataset, we define the relative unfairness mea-
sure of a set S ⊆ X as Dq(S) := DKL(q||s), where
s = (s1, . . . , sp) denotes the vector of frequencies, i.e.,
si = |Xi∩S|

|S| for i = 1, 2, . . . , p. In particular, typically we
want to have Dq(·) as small as possible – ideally equal to
0. When qi = 1/p for all i, we refer to Dq as Dun. When
qi = |Xi|/m, we refer to Dq as Dprop.

5.2. Empirical Results on the Image Dataset

Curated Dataset. We gathered a collection of images cu-
rated using Google image search as follows: Four search
terms were used: (a) “Scientist Male”, (b) “Scientist Fe-
male”, (c) “Painter Male”, and (d) “Painter Female” (Image-
dataset).

Following (Kulesza & Taskar, 2011), each image was pro-
cessed with the vlfeat toolbox to obtain sets of 128-
dimensional SIFT descriptors (Lowe, 1999; Vedaldi & Fulk-
erson, 2008). All such descriptors are collected in a single
set and subsampled to roughly 10% of its total size. The
resulting set of ≈ 104 descriptors was clustered using the
k-means algorithm where k = 128 is the number of means.
The feature vector for an image is the normalized histogram
of the nearest clusters to the descriptors in the image.

Empirical Results on the Biased Datasets. Our goal is to
understand how the bias in the underlying dataset can affect
the performance of the different sampling distributions with
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Gender Ethnicity
Dun(·) Dprop(·) logG(·) Dun(·) Dprop(·) logG(·)

Sampling Method mean std mean std mean std mean std mean std mean std

Unconstr. UNIF 0.075 0.019 0.001 0.002 -67 41 0.357 0.050 0.001 0.001 -67 41
k-DPP 0.027 0.009 0.011 0.005 489 11 0.268 0.038 0.005 0.004 487 12

Equal
ki-UNIF 0 0 0.069 0 -31 35 0 0 0.282 0 16 32
ki-DPP 0 0 0.069 0 410 16 0 0 0.282 0 366 16
P -DPP 0 0 0.069 0 490 11 0 0 0.282 0 476 12

Prop.
ki-UNIF 0.074 0 0 0 -64 29 0.358 0 0 0 -65 35
ki-DPP 0.074 0 0 0 409 17 0.358 0 0 0 426 15
P -DPP 0.074 0 0 0 482 13 0.358 0 0 0 488 12

Table 1. We report the unfairness (Dun(·) with respect to the uniform distribution over parts, and Dprop(·) with respect to the “proportional”
distribution, i.e. as in the whole dataset) and diversity (logG(·)) for the different sampling methods on the Adult dataset when (a) the
sensitive attribute is Gender or (b) the sensitive attribute is Ethnicity. Sets of size 400 were selected, and 100 samples were taken for
each. For the samplers that match fairness constraints, we consider both selecting subsets with equal representation and selecting subsets
with proportional representation. We note that P -DPP has the highest diversity out of all constrained sampling methods regardless of the
method of representation. Moreover, the diversity of P -DPP matches that of the unconstrained k-DPP for Gender under proportional
representation and for Ethnicity under equal representation.

respect to fairness and geometric diversity. We include all
female (b and d) images, but vary how many of the male
images (a and c) appear in the dataset in order to create
biased sets that have between 10% to 50% male images.
The male images are selected uniformly at random from the
set of all male scientists and male artists for each repetition
of the simulation. We sample 40 images from each biased
dataset; roughly the number that fits on the first page of
an image search result. We conduct 200 repetitions. We
place fairness constraints so that P -DPP and ki-DPP select
exactly 50% of their samples from the male (a and c) images
and female (b and d) images, regardless of the bias in the
underlying dataset. Note that we do not enforce constraints
across scientist (a and b) images and artist (c and d) images,
but measure the unfariness Dun(·) with respect to all four
attributes.

Results. With respect to Dun(·), P -DPP significantly
outperforms k-DPP, and UNIF (paired one-sided t-tests,
p < 0.05), see Figure 1. As expected, the bias in the under-
lying dataset can dramatically affect the fairness of UNIF
and k-DPP as neither approach is designed to correct for
such biases. However, P -DPP and ki-DPP both enforce
fairness constraints; note that this is despite the fact that
the sampling was only equal with respect to gender and not
profession. The latter does not appear to affect the outcome
here.

With respect to the diversity G(·), P -DPP has significantly
higher G(·) than UNIF and ki-DPP (paired one-sided t-
tests, p < 0.05). Moreover, P -DPP performs comparatively
to k-DPP; the mean diversity of k-DPP is higher, but not
significantly so. Thus, we observe that, when the underlying
data is biased, there is a tradeoff between Dun(·) (for which
P -DPP performs best) and G(·) (for which k-DPP performs
best); however the differences in geometric diversity are
negligible while differences in unfairness can be very large.

5.3. Empirical Results on Real-World Dataset

The Adult Dataset. The Adult income dataset (Blake &
Merz, 1998) consists of roughly 45000 records of subjects
each with 14 features such as age, ethnicity, education and a
binary label indicating whether a subject’s incomes is above
or below 50K USD.3 This dataset has been widely studied
in the context of fairness (see, (Yang & Stoyanovich, 2017;
Zafar et al., 2017; Zemel et al., 2013; Zadrozny, 2004)).

In preprocessing the data we filter out incomplete entries,
and from the remaining ones we pick a random subset of
5000 records for our simulations. We vectorize the data as
follows: Categorical fields (with a small number of possible
values) we turn into sets of binary fields. As the dimension n
of such feature vectors is quite small – 50 – the DPP frame-
work allows sampling sets of cardinality at most k ≤ 50.
For this reason we enrich the feature vectors in a standard
way – by adding pairwise products of all existing features
as separate ones – this, after removing redundant columns,
yields feature vectors of dimension 992.

Empirical Results on Equal and Proportional Represen-
tation. We conduct our simulations across either gender
or ethnicity as the sensitive attribute. For the former, we
use the gender categories provided in the dataset; all entries
were labeled either male (68.3%) or female (31.7%). For
the latter, we use the ethnicity categories provided in the
dataset; we consider the partition Caucasian (85.7%) and
non-Caucasian (14.3%).

In addition to the algorithms mentioned above, we report the
performance of an additional benchmark ki-UNIF, which
selects a uniformly random subset of size ki fromXi. In our
subsampling, we consider both equal representation, where

3Data downloaded from https://archive.ics.uci.
edu/ml/datasets/adult.

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
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Before Scaling After scaling
Dun(·) logG(·) Dun(·) logG(·)

Sampling Method mean std mean std mean std mean std

Unconstrained UNIF 0.066 0 455.7 1.4 0.064 0 228.6 215.8
k-DPP 0.063 0 457.3 1.3 5.2× 10−6 0 397.4 11.6
Scale-And-Sample 5.2× 10−6 0 457.5 1.1 - - - -

Constrained
ki-UNIF 0 0 455.7 1.3 0 0 226.5 20.8
P -DPP 0 0 457.2 1.1 0 0 397.5 9.2

Table 2. We report the unfairness (Dun(·) with respect to the uniform distribution over parts) and diversity for the different sampling
methods on a random dataset before and after scaling the singular values by a factor of 1/n. In this simulation we have m = 200 vectors
of dimension n = 150 divided into two partitions (partition 1 has m

3
elements and partition 2 has 2m

3
elements), and we want to sample

50 elements from each partition (k = 100).

each attribute makes up of 50% of the selected points, and
proportional representation, where each attribute is repre-
sented with the same ratio as in the original population.

Results. We observe that P -DPP has the highest diversity
out of all constrained sampling methods regardless of the
proportion of representation or sensitive attribute; see Table
1. Surprisingly, the diversity of P -DPP matches that of
the unconstrained k-DPP for Gender under proportional
representation and for Ethnicity under equal representation.
In the other two settings – Gender under equal representation
and Ethnicity under proportional representation – the P -
DPP score is lower than that of k-DPP, but minimally so,
and outperforms ki-DPP by several standard deviations.
We note that ki-UNIF, although it has very poor geometric
diversity as a whole, performs better under equal represen-
tation than it does under proportional representation. This
fact suggests that there could be value in selecting sensitive
attributes equally beyond the consideration of fairness.
The fact that P -DPP performs so well, especially when
significantly changing the distribution of sensitive attributes
(e.g., for ethnicity, from 14.3% non-Caucasian to 50% non-
Caucasian), is quite surprising. Overall, it appears that
one can support very dramatic changes to the underlying
distributions of attributes with minimal or even zero loss to
geometric diversity by using our P -DPP algorithm.

5.4. Empirical Results on the Price of Fairness
We look at the effect of the scaling of singular values, sug-
gested by Theorem 3, on the sampled subsets of our Algo-
rithm. In this simulation we take an instance of random
vectors and use different sampling methods to sample a
subset from the dataset, and report the Dun(·) and logG(·)
value of the sampled subset. Following this, we scale the
tail singular values of the partition matrices by δ = O(1/n)
and again report the Dun(·) and logG(·) values.

We also present a heuristic approach, Scale-And-Sample, for
constrained sampling which will use any k-DPP algorithm
as a sub-routine. The algorithm is simple. For each VXi ,
scale the smallest (n − ki) singular values by 1/n. Then
sample a

∑p
i=1 ki sized subset using any k-DPP algorithm.

Results. The results are presented in Table 2. It can be
seen that after scaling the tail singular values of the par-
tition matrices, the mean Dun(·) value for k-DPP is very
low, and resembles closely the constrained sampling case.
We also note that the Scale-And-Sample approach to con-
strained sampling suggested earlier performs very well. The
mean relative unfairness measure Dun(·) is almost zero.
Furthermore, the value of the geometric diversity parameter
logG(·) is also similar to unscaled P -DPP.

6. Conclusion and Future Work
In this paper we initiated the study of fair and diverse DPP-
based sampling for data summarization. We provide a novel
and fast algorithm that can sample from a DPP that satisfy
fairness constraints based on the desired proportion of sam-
ples with a given attribute. Our algorithm gives provably
good guarantees when the data matrix satisfies a natural
β-balance property. We prove that a large class of datasets
satisfy the β-balance condition. We define a notion of price
of fairness, the KL-divergence between the fairness con-
strained distribution and the unconstrained distribution and
theoretically show that, when the data satisfies reasonable
properties, this price would be low. We further show in
silico that adding fairness constraints results in minimal loss
to diversity, even when the underlying dataset is very biased,
or when the proportion of attributes is changed significantly.

Several challenging problems remain from a technical stand-
point; naturally, a first question would be whether the theo-
rems can be improved either by attaining better approxima-
tion guarantees, or by weakening the necessary conditions.
Extending these results to arbitrary group structures (as op-
posed to partitions) would be very relevant, but appears to
be significantly more challenging.

From a practical point of view, it remains to be seen what
effect de-biasing a sampler has on the end result of an ML
algorithm (e.g., classification), both on its accuracy and on
the output bias. Indeed, this P -DPP model can be used to
pre-process the training data by taking a fair subsample;
evaluating the performance of ML algorithms in this regard
would be an interesting direction for future research.
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