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A. Derivations

A.1. Getting the ELBO in Equation (2)

To utilize the variational principle and get
the ELBO, we introduce another distribution
Q = q(2f %, s% T\xl %, 25"F) to approximate
P = po 21k, stk|eik, 2{"). Starting with the

KL-divergence from Q to P, we have
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There are two things to be noticed about this equation First,
the expectations are under Q = g, (2{%, s7%|wi %, 25 F)
and py (x]#|z4") does not depend on it. Second, in our
generation model x is independent from s given z by its

design. Then we have
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We find that the tightness of this bound depends on how well
Q approximates the true posterior of latent variables given
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the inputs and initial parameters P, because the equality
holds if and only if Dk, (QHP) = 0. This requirement is

carefully taken into consideration in our inference model
design.

A.2. Factorizing the ELBO in Equation (5)

The first part of the F (6, ¢) can be factorized similarly as
Equation (1), as follows
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Here, Q" (z{") is the marginal distribution of z}!
in the variational approximation to the posterior
q¢ (21it|@i%, z§*L) and is defined as
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where O* (zt 1) denotes the marginal distribution of z
in the same way.

The second part of the F (6, ¢) can be factorized based on
the principle of minimum discrimination information (MDI).
First, we have
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where gy is a shorthand for g, (2{7%_,, 7%, |@i%, z5F).

Notice that g, (.) and py, (.) are the same and s is deter-
ministic given other variables and thus can be integrated out
(by using its value). Then, the first KL divergence term can
be further factorized as
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By recursively factorizing the last term of Equation (7), we
have
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where Q* is the marginalized distributions defined as previ-
ous. Finally, taking both Equation (6) and (8) leads to the
factorized ELBO in Equation (5).
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B. Baseline Descriptions
B.1. Simplified Models from MR-HDMM

To demonstrate the advantage of the learnable hierarchical
structure and the auxiliary connections, we compared two
simplified models derived from the proposed MR-HDMM.
The first baseline is named as Multi-Rate Deep Markov
Model (MR-DMM), which removes the hierarchical struc-
ture in the latent space from the model. The second base-
line, which is named as Hierarchical Deep Markov Model
(HDMM), removes the auxiliary connections between the
lower-rate time series and the higher level latent layers. The
other parts of the two models remains the same as MR-
HDMM. The generation models of MR-DMM and HDMM
are shown in Figure 4(a) and 4(b), respectively.
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(a) Generation model of MR-DMM.
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(b) Generation model of HDMM.
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Figure 4. Generation models of two baseline models derived from
the proposed MR-HDMM.

B.2. Implementation Details of KF-based Models

Kalman Filters (KF) We first up-sample all the MSR
and LSR features to make their sampling rate the same as
the HSR features. We then get single-rate multivariate time
series (SR-MTS) for both MIMIC-III dataset and USHCN
climate dataset. Then we train KF on the SR-MTS data

using EM algorithm to get the forecasting results.

Multiple Kalman Filters (MKF) We train three different
KF models on the HSR/MSR/LSR time series separately,
and then we concatenate the outputs (eg. forecasting results)
of these three KF models to obtain the final results.

Multi-rate Kalman Filters (MR-KF) Three different
KF models are trained on the HSR/MSR/LSR time series
separately to get their state estimations. Then a neural net-
work (multi-layer perceptron(MLP)) is employed to fuse
the estimated state vectors from each Kalman filter to ob-
tain the final prediction results. Similar to the other deep
learning methods, MR-KF is trained on the training set, the
best weights are chosen based on the performance on the
validation set, and the results are reported on the held-out
test set.



