Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity

A. Variance Reduction Theorem

Each of our results relies on a recent variance reduction technique, proposed by (Mokhtari et al., 2018a;b). We now present
Theorem 3, which appears as Lemma 2 in (Mokhtari et al., 2018a). Although the proof is essentially the same, we present it
here so that it is self-contained. When we apply Theorem 3 in the analysis of our algorithms, we will have that {a;} are a
sequence of gradients, {a;} are stochastic gradient estimates, and {d;} are the sequence of averaged gradient estimates.
Moreover, the upper bound on the norm of the difference of gradients ||a; — a;_1 || comes from the iterate update procedure
and smoothness of the objective function.

Theorem 3. Let {a;}- , be a sequence of points in R™ such that ||a; — a;_1||< G/(t + s) for all 1 < t < T with
fixed constants G > 0 and s > 3. Let {&a;}]_, be a sequence of random variables such that E[a;|F,_1] = a; and
E[||a; — a;||?|Fi—1] < o2 for every t > 0, where F;_1 is the o-field generated by {a;}!_, and Fo = @. Let {d;}]_, be a
sequence of random variables where dg is fixed and subsequent d; are obtained by the recurrence

di = (1 — p)di—1 + pray

with py = 0 Then, we have

2 __
t+s)2/3°

Q
Ellla; — do||?] € ——~—
llae =l < G~ 1yers
where Q £ max{||lag — dol|?(s + 1)¥/%, 402 + 3G?/2}.

We remark that we only need s > 23/2 ~ 2.83 in the statement of Theorem 3.
Proof. Let A; = ||a; — d;||>. We have the following identity
Ay = |lpe(ar — ag) + (1= pe)(ay — ag—1) + (1 — pe) (ar—1 — de—1)||.

Expanding the square and taking the expectation with respect to F;_ gives

2

(t+5)?

E[A|Fi—1] < pio” + (1= py)? + (1= p)?Ar 1 4201 — p)?El{ay — ap_1, 8,1 — dy_1)|Fioa).

Taking the expectation again gives
2

E[A] < p?o? + (1 — pt)Q(t—(is)Q + (1 = pe)’E[A 1]+ 2(1 — po)°E[{a; —a;_1,a;_1 — dy_1)].

By Young’s inequality, we have

G2
(t+s)*

2(ay —ar—1,ai-1 —de—1) < Bellag—1 — dt71||2 +(1/B)

Therefore we deduce

2

2
E[A] < pfo? + (1 - pt>2<tfs)2 + (1= p)E[A 1] + (1= pr)? (ﬂtmt—ﬂ +{A/B)g f s>2>

2

< pjo®+ (tfs)g(l —p)*(1+ é) +E[A1](1 = p)*(1+ By).

We write z; for E[A,]. Notice that (1 — p;)(1 + p/2) < 1 aslong as p; > 0. If we assume p; € [0, 1], setting 3; = p;/2
yields

2 P p
< 2 2 = (1- 21 = (1 = 21 rt
2zt < pio +(t+8)2( pe)~( +pt)+2’t 1(L—=p) (1 + 2)
2 2 g 2
< pro” + 1+ =)+ z-1(1 = pe)-

(t+ )2 Pt
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We set p; = W, where s2/3 > 2. Since (t + 5)% = (t + 8)4/3(t + 5)%/% > 2(t + 5)*/3, we have
< 2 ) n 40 N G? 4 G?
z - )2
L= (t+ 923" T ()48 T (14 s)2 T (t45)43
< 2 ) n 40 n 3G?
— 72 )%—
= (t+ 923777 Tt )48 T 2t + 5)4/3
40% +3G?/2
<(l—-—>= Ny 42 T2
= (t + 5)2/3)Zt SR TS TR
2 Q
<(1———=7%)2- — -
=0 Gt g
We claim z; < for VO < ¢ < T and show this by induction. It holds for ¢ = 0 due to the definition of (). Now

m
we assume that it is true for t = k — 1. We have

2 Q
a=le (k+ S)Q/B’)Zk_1 " (k + s)4/3

2 Q Q
<(1-—
U= G Gr B T s

(k+5)%3 -1
(k + 5)4/3
In order to show that z;, < W, it suffices to show that

(k4 )% = 1)(k+ s+ 1)2/3 < (k + s)*/3.

The above inequality holds since (k + s + 1)%/% < (k + s)%/3 4 1. O

B. Proof of Theorem 1: Convex Case

We begin by examining the sequence of iterates x(l) §2), e ,ngH) produced in Algorithm 1 for a fixed ¢. By definition

of the update and because f; is L-smooth, we have

L) = £ = o (v = x) — fux)
< AxY) = fulx) + (VA (xE), v - <%+m2uw—gmﬁ

% LD?
< ™) = 1) VA ) v =)

Now, observe that the dual pairing may be decomposed as
k k k k k k * k * k k k *
(VA" v =) = (Vi) = di v = x) + (V) x = x4+ (@ v - x).

‘We can bound the first term using Young’s Inequality to get

k k k N 1 k B)
<Vﬂ@£57d£%%’fx><gﬁﬂﬂ< N = d® )2 4 28, v — x*|?

IN

1
—f:(x) = a®|? + 2, D*
2%
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for any /3, > 0, which will be chosen later in the proof. We may also bound the second term in the decomposition of the
dual pairing using convexity of fi, i.e. (Vft(xgk)), x* — xgk)> < felx*) — ft(xgk)). Using these upper bounds, we get that

(VL(x)v® = xy < £ — a2+ 28,02 + fo(x*) — fi(x) + (@ v - x).

< 25
Using this upper bound on the dual pairing in the first inequality, we get that

(k+1) k . 1 K k k) (k) s LD?
S = i) < mm) (™) = fi ) 4| 5 I =i 1P+ 28D 4 () v =) =5

Now we will apply the variance reduction technique. Note that

k1 k k+1 k k LD
IV A = VARG L™ =Pl 2l - viPl< =5

Where we have used that f; is L-smooth, the convex update, and that the step size is 7, = Now, using Theorem 3 with

G = LD and s = 3, we have that

k+3

IR - @

(k)
Efllfe(x;") —d (k+4)2/3 S (k+4)2/3"

Where Q; £ max{||Vf,(x1)||?4*/3, 40 + 3(LD)?/2} and Q £ max{4?%/3 max1$t§T\\Vft(x1)||2, 402 + 3(LD)?/2}

Thus, taking expectation of both sides of the optimality gap and setting 3; = w(%w yields
k+1 . k . 2Q'/2D k LD?
ELfi(xi" )] = £ < (U= m) (BLAG™)] = £ix) + [W (A v =) g

Now we have obtained an upper bound on the expected optimality gap E[ ft(xgkﬂ))] — fi(x*) in terms of the expected
optimality gap E[f; (xgk))} — f1(x*) in the previous iteration. By induction on k, we get that the final iterate in the sequence,

x; 2 ngH), satisfies the following expected optimality gap
K K K
. 2Q/?D B LD?
E[fe(x¢)] H L—mnk) [fe(x1) — fe(x )]+Z77k H (L—n;) [W’+<d( v —xty o 5
k=1 k=1  j=k+1
2
Recall that the Frank Wolfe step sizes are iy, = = +3 We may obtain upper bounds on product of the form H ey (1 —11) by
K K K K+1
1 1 1 r+3 r+3
1-— = 1-—) < — < — de | = <
H( ) H( k+3)—eXp Zx+3 = o /: 43" K+4~ K
k =r k=r k=r Tr=r

Substituting step sizes N = 35 +3 into Eq (2) and using this upper bound yields

K

o 4 1 k+4\[ 2QY°D By s LD?
E[ft(xt)]_ft(x)gg[ft(xl) fe(x Z(kJr?) K ) [(k+4)1/3+<d Vi - —X >+2(k+3)] 3)

Which may be further simplified by using (%H . k—j{“) < 33 to obtain

N

K 1/2 )
E[fi(x:)] = fe(x") < i[f,g(xl) Z{k?—g?ﬂ% <d(k),v£k)—x*>+2LD}’
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As before, we can obtain the following upper bounds using integral methods:

K K

1 K+3 1 3 ) 3
E — <1 — | <1 K 1 d E [ K /3 _ 32/3 <7[g2/3
= k+3 °g< 3 )Og( +1) an k_l(k+3)1/32(( +3) 3 )*2

Substituting these bounds into Eq (3) yields

402D ALD?log(K K
B[ ()] — fulx") < 2 i) = o)) + 0 sl 1) +£(];<d§k)7v§k)—x*>.

Now, we can begin to bound regret by summing over all ¢ = 1...T to obtain

T

T T 1/2
B - 3 ) < . > o) = £} + e

t =1

=

ATLD?log(K + 1) T E o .
722‘1()"’5)*’”

3K
t=1 k=1

Recall that for a fixed k, the sequence {vgk) }_ | is produced by a online linear minimization oracle with regret R% so that

(@Y. vi") —min (@ x) < RS
1 * t=1

E

Y@M v —x) <

t =1 t

Substituting this into the upper bound and using M = maxi<;<7 [fi(x1) — fe(x*)] yields

a ATDQY? AT LD? 4
;E[ft(xt)] - Z fe(x") < T% % (M+ 3 log(K + 1)) + gRé’:

Now, setting K = T/2 and using a linear oracle with RS, = O(v/T)) yields

T

T
Y Elfi(x)] = Y fulx) SAVTDQY? + % (M + L?DQ(logT?’/z + 1)) + %R%
_ : = O(VT).

C. Proof of Theorem 1: DR-Submodular Case

Using the smoothness of f; and recalling x(kH) xgk) K Ek) we have

k k k k k L, k
Fe™) 2 fio) + (V) Y =) DY =

. @
=ﬂ@9%ﬂ—Vﬂ@$>é% LML
LD?
=z ft(x'(fk)) <Vf( ) V§k)> K2’
We can re-write the term <Vft(x§k))’ ng)> as
<Vft(x§k))’vgk)> = <Vft(xy“)) _ dgk)’ (k)> +(d! a®, (k)>
(k) (k) (k: (k (5)
= <vft(xt ) — dt ,V > <d > +
(
¢

(df?,vi" —x*)
(
t

<Vft(X§k))—d’“),v§'“) x*) + <Vft<x’“)>, >+<d£ ) vy,
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We claim (V f; (xgk)), x*) > fi(x*) — ft( ) Indeed, using monotonicity of f; and concavity along non-negative
directions, we have

(Vft(xgk)) x*V x(k) ng)> (6)
= (V). (" = =) v o)
(
Plugging Eq. (6) into Eq. (5), we obtain

(V1) vy > (W fi(xP) = a? v — x4 @ v - x) + (x) — fix)). (7)

Using Young’s inequality, we can show that

(VAEY) —aP v x> - 1@ V) - = 22 e e ®
> (") = df?]? = sM D?/2

Then we plug Egs. (7) and (8) into Eq. (4), we deduce
RO 2 1)+ 1 [~ VA ) =i 7= 5007 2 (@ ) =)+ ()~ )| -
K | 28k 22

Equivalently, we have
fil) = i) < (- YR) — Sl ) ©)
% [ s VA = a2 = g0 D2 2 4 (P v - x*>} i

Applying Eq. (9) recursively for 1 < k£ < K immediately yields

folx®) = f () < (1 - /KK [fux) = fulx)))]
1
K

M=

; . LD?
’ {wwwft(xgk)) —d® |2+ 80 D22 4 (AN, x* - v§k>>} b

2K

e
Il

1

Recall that the point played in round ¢ is x; = ngH), the first iterate in the sequence is xgl) =0, and that (1 — 1/K)¥

1/efor all K > 1 so that

K
Je(x*) = fi(xe) < = [ft( )= fi Z {

LD?
) — P 4 50D 2 4 (1 vﬁ’”>]+ .
k:

23() 2K

Since f;(0) > 0, we obtain

K

(L=1/e)fe(x") = folxe) < = Z [26(“ IV £ (M) — dg’“)||2+ﬁ<k>D2/2+<d§’“),x*_v§"~‘>>} T

k:

LD?
2K

(10)
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If we sum Eq. (10) overt = 1,2,3,...,T, we obtain

(1—-1/e) XT:

1 E r LD2T
k k k * k
—th(xt) < }Z 25(,@ Zvat ¢y — a2+ p® D22 + 3 @ xt — vy | + S
t=1

k=1 t=1

By the definition of the regret, we have

Therefore, we deduce

(1-1/e) Z _th(xt)

t=1

K
1 k LD?T
kz::l l ZHVft —dV|? + BNDPT 2| + S + RS
Taking the expectation in both sides, we obtain
T T
(1 — 1/6) E Z]E ft Xt
t=1 t=1 (11
K T
1 1 (k)2 (k) 12 LD*T £
< E[ —d D*T/2 R5.
Notice that ||V £ (x{") = V fu(x{" )| < L|v{”||/T < LR/T < 2LR/(k +3). By Theorem 3, if we set pr. = 227>
we have
(k) Qe
< L
= (k+4)2/3°

where Q; = max{||V f;(0)||?4%/3, 402 + 6L?R?} and Q £ max{max;<;<7|V f;(x1)||?4%/3, 402 + 6L>R?}.
Plugging Eq. (12) into Eq. (11) and setting 8*) = (Q'/2)/(D(k + 3)'/3), we deduce

T T K
TDQ1/2 1 LD?*T .
(1-1 E[f E[ R
/6 ; ; ft Xt = K ;(/ﬂ+4)1/3+ 2K +Rr

Since Zk L (k+4)1/3 < fo W — 3[(K +4)%/3 — 92/3] < 3K2/3, we have

T T
3TDQ1/2 LD?T
(1-1/e)> E[f =) E[fi(x)] < s o TR
t=1 t=1
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D. Proof of Theorem 2: Convex Case

Let f(x) = Ey,~p[f:(x)] denote the expected function. Because f is L-smooth and convex, we have

f(xe1) = f(x7) = f(xe +m(ve —x0)) — f(xF)
FO0) = F6) + el Fx0), ve = x0) 07 5 v = el
J(x

2
(%) — Fuls®) + e (V F (), ve — x0) + 22

IN

IN

2

As before, the dual pairing may be decomposed as
(Vf(xe),ve = %) = (Vf(xe) = de, ve =x7) + (VF(x¢), X" = x¢) + (dy, vi — x7).

We can bound the first term using Young’s Inequality to get

(Vf(xt) —dp, v —x") < %Hf(xt) —dy||* + 28|ve — x*|)?

< 5l 76x) =l +250%

for any 8 > 0, which will be chosen later in the proof. We may also bound the second term in the decomposition of the dual
pairing using convexity of f,i.e. (Vf(x:),x* — x¢) < f:(x*) — f(x¢). Finally, the third term is nonpositive, by the choice
of v;, namely v, = argmin, ¢, (d, v). Using these inequalities, we now have that

Foxean) = F0) < (1m0 (7Gx = £+ (5l 9050 = uf? +260%) 4 225

Taking expectation over the randomness in the iterates (i.e. the stochastic gradient estimates), we have that

2

ELf (xe0)] — F(x*) < (1—n0) (B (x)] — F(x%)) + (;BE[IIf(Xt) 4P+ wDQ) LB )

Now we will apply the variance reduction technique. Note that
[V f(xe1) = VF(xe)[|S Lllxer — x¢l|< Lapel[xe — vel|[< Loy D

where we have used that f is L-smooth, the convex update, and the diameter. Now, using Theorem 3 with G = LD and
s = 3, we have that

4 —9
Bl ) — 4] < e
where Q £ max{4?/3||V f(x;)||?, 402 + 3(LD)?/2}. Using this bound in Eq (13) and setting 3 = % yields

201/2D LD?
@ + 07
t+4)1/3 2

Blf(xe1)] = f(x7) < (1= ne) (B[f (x0)] = £(x7)) + M7

By induction, we have

T i i 2Q'/2D LD?
Bl = /0) < [L 0 =m0+ 32 me [T =) (s 2.



Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity

where M = f(x1) — f(x*). Recall that the step size is set to be 1; = ; +3 As in Appendix B, we can obtain the bounds

t+1 g
HZ=1(1 — ) = H};:l( — k+3) < exp(— Zk 1 k+3 ) < exp(— f zd—_% = 4/(t + 4) and similarly Hj egr (1 —

3 < %+, Using these bounds as well as the choice of step size 7, = 5 in the above yields

t

o AM 1 k+4 2Q'/?D 1 LD?
E[f (xe41)] = f(x7) t+4+;<k+3.t+4) ((k+4)1/3+k+3 2 )

IN

M zt: 202D L1 LD?
t+4  3(t+4) g \(k+4)2 k43 2

where the second inequality used (ki3 (’zj_'j)) < 3059 + e As before in Section B, using the inequalities Z b=l %

log(t +1) and 3, _, Grgy7s < 5t7/% in the above yields

1
s <

Bl e — ) < ot 4@ LD Lppe B D),

T t+4 +4 3 t+4 (14)

To obtain a regret bound, we sum over rounds ¢ = 1,...7 to obtain
T T T ; T
1 t2/3 4 log(t + 1)
E E —Tf(x*) <4M § — 4QY?D § — —LD? E — 7
- Fl)] = T/ 0e7) < (t_1t+4>+ © Cot+d "3 14

Using the integral trick again, we obtain the upper bounds Zthl tﬁ < log(T + 1), Zthl

T 1 logtfrf’ < log?(T + 3). Substituting these bounds in the regret bound above yields

2/3
ttﬂ < %TQ/?’, and

3 E[f(x,)] — Tf(x*) < 4Mlog(T + 1) + 6QY/2DT?/3 + 2p? log*(T 4 3) = O (T?/3
3

t=1
E. Proof of Theorem 2: DR-Submodular Case

Since f is L-smooth, we obtain

- *II Vtll2

Fse1) 2 fOx0) + (VA (x0), v

2
> flx0) + 5 (9 x0) v) — i

212
! 1 LD?
= f(xe) + 5 {de,ve) + (Y (xe) = dive) = Ty
! 1 LD?
=z fxe) + f<dt7x*> + T<Vf(xt) —d¢, ve) — 5T
1 LD?

1 . .
= f(Xt) + T<Vf(Xt) —ds, v —x >—|— T<f(xt)’x > _ ﬁ

In the last inequality, we used the fact that v, = argmax,cx(ds, v). Similar to Eq. (6) in Appendix C, we have

(f(x¢),x*) = f(x*) — f(x¢). Again, Young’s inequality gives (V f(x;) — d¢, vi — x*) = —2(Be|[ve — x*[|2 + || f(x¢) —
d:||?/Bt). Therefore, we deduce

2
Fxea) = Fx0) = gm(Billve =2 + 17000 = dulP /) + () = F(x0) — 5

2
> (%)~ g (BD” 1 xe) — delP/B0) + 1 (Fx") — Fx) — oy
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Re-arrangement of the terms yields

1 LD?
FO) = flxen) < (1= YT)(F(x7) = f(x0)) + 57 (BD* + | (x0) = dil*/B81) +
Recalling that (1 — 1/7)T < 1/eand f(x1) = f(0) > 0, we have
1 « LD?
) = k) < (=1 = 1000 + g D™ + 1)~ P/ +
1 1 o LD?
S SfE)+ o5 ;(&Dz + £ (xi) = dill?/8:) + o7
which in turn yields
1 « LD?
(1= 1/)f(x) ~ Flxinn) < g DD+ 150x) — dilP/5) + o
i=1
Taking expectation in both sides gives
* 1§ 2 2 LD?
(1= 1/e)ELf(x")] = E[f (xe+1)] < o5 D (BiD* +E[[ f(x:) — dill)/8:) + 5
i=1
Notice that ||V f(x¢) — Vf(x¢—1)| < L||v¢||/T < LR/T < 2LR/(k + 3). By Theorem 3, if we set p; =
have
(1) — &IP] < o5
for every i < T and Q = max{[|V f(0)]?4%/3,40% + 6 L>R?}. If we set 3; = D(%i;/?,, we have

t
DQ'/? LD2 3DQY/?*t?/%  LD?
f(Xiq1) SZ <

p (i+4) 1/3T 2T 2T 2T

(1 —1/e)E[f(x")] -

since 3°0_, (i+i)1/3 < fy (m+i)1/3d33 = 3[(z + 4)¥/3) < 3[22/3]h = 3¢2/3,

Therefore we have

(1-1/e)TE[f(x*)] - > E[f(x

t=1

= (1= 1/E[f(x")] = f(0) + p_[(1 = 1/e)E[f(x*)] — E[f(x:)]]

}ﬂ
L

i
,Lr—t

< (1= 1/e)E[f(x")] = f(0) +

3DQ1/2t2/3 LD?
[ oT T

“
I
-

Since Y M2 =14+ B <1 4 f t¥/3dt = 3T°/3 + 2, we conclude

3DQ1/2

LD?
10 2

(1=1/e)TE[f(x*)] = > E[f(x:)] < (1 - 1/e)E[f(x*)] - £(0) + (37%3 42771 +

t=1

2
(i+3)2/3°

we

= O(T*?).



