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A. Variance Reduction Theorem
Each of our results relies on a recent variance reduction technique, proposed by (Mokhtari et al., 2018a;b). We now present
Theorem 3, which appears as Lemma 2 in (Mokhtari et al., 2018a). Although the proof is essentially the same, we present it
here so that it is self-contained. When we apply Theorem 3 in the analysis of our algorithms, we will have that {at} are a
sequence of gradients, {ãt} are stochastic gradient estimates, and {dt} are the sequence of averaged gradient estimates.
Moreover, the upper bound on the norm of the difference of gradients ‖at − at−1‖ comes from the iterate update procedure
and smoothness of the objective function.
Theorem 3. Let {at}Tt=0 be a sequence of points in Rn such that ‖at − at−1‖≤ G/(t + s) for all 1 ≤ t ≤ T with
fixed constants G ≥ 0 and s ≥ 3. Let {ãt}Tt=1 be a sequence of random variables such that E[ãt|Ft−1] = at and
E[‖ãt − at‖2|Ft−1] ≤ σ2 for every t ≥ 0, where Ft−1 is the σ-field generated by {ãi}ti=1 and F0 = ∅. Let {dt}Tt=0 be a
sequence of random variables where d0 is fixed and subsequent dt are obtained by the recurrence

dt = (1− ρt)dt−1 + ρtãt

with ρt = 2
(t+s)2/3

. Then, we have

E[‖at − dt‖2] ≤ Q

(t+ s+ 1)2/3
,

where Q , max{‖a0 − d0‖2(s+ 1)2/3, 4σ2 + 3G2/2}.

We remark that we only need s ≥ 23/2 ≈ 2.83 in the statement of Theorem 3.

Proof. Let ∆t = ‖at − dt‖2. We have the following identity

∆t = ‖ρt(at − ãt) + (1− ρt)(at − at−1) + (1− ρt)(at−1 − dt−1)‖2.

Expanding the square and taking the expectation with respect to Ft−1 gives

E[∆t|Ft−1] ≤ ρ2
tσ

2 + (1− ρt)2 G2

(t+ s)2
+ (1− ρt)2∆t−1 + 2(1− ρt)2E[〈at − at−1,at−1 − dt−1〉|Ft−1].

Taking the expectation again gives

E[∆t] ≤ ρ2
tσ

2 + (1− ρt)2 G2

(t+ s)2
+ (1− ρt)2E[∆t−1] + 2(1− ρt)2E[〈at − at−1,at−1 − dt−1〉].

By Young’s inequality, we have

2〈at − at−1,at−1 − dt−1〉 ≤ βt‖at−1 − dt−1‖2 + (1/βt)
G2

(t+ s)2
.

Therefore we deduce

E[∆t] ≤ ρ2
tσ

2 + (1− ρt)2 G2

(t+ s)2
+ (1− ρt)2E[∆t−1] + (1− ρt)2

(
βtE[∆t−1] + (1/βt)

G2

(t+ s)2

)
≤ ρ2

tσ
2 +

G2

(t+ s)2
(1− ρt)2(1 +

1

βt
) + E[∆t−1](1− ρt)2(1 + βt).

We write zt for E[∆t]. Notice that (1− ρt)(1 + ρt/2) ≤ 1 as long as ρt ≥ 0. If we assume ρt ∈ [0, 1], setting βt = ρt/2
yields

zt ≤ ρ2
tσ

2 +
G2

(t+ s)2
(1− ρt)2(1 +

2

ρt
) + zt−1(1− ρt)2(1 +

ρt
2

)

≤ ρ2
tσ

2 +
G2

(t+ s)2
(1 +

2

ρt
) + zt−1(1− ρt).
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We set ρt = 2
(t+s)2/3

, where s2/3 ≥ 2. Since (t+ s)2 = (t+ s)4/3(t+ s)2/3 ≥ 2(t+ s)4/3, we have

zt ≤ (1− 2

(t+ s)2/3
)zt−1 +

4σ2

(t+ s)4/3
+

G2

(t+ s)2
+

G2

(t+ s)4/3

≤ (1− 2

(t+ s)2/3
)zt−1 +

4σ2

(t+ s)4/3
+

3G2

2(t+ s)4/3

≤ (1− 2

(t+ s)2/3
)zt−1 +

4σ2 + 3G2/2

(t+ s)4/3

≤ (1− 2

(t+ s)2/3
)zt−1 +

Q

(t+ s)4/3
.

We claim zt ≤ Q
(t+s+1)2/3

for ∀0 ≤ t ≤ T and show this by induction. It holds for t = 0 due to the definition of Q. Now
we assume that it is true for t = k − 1. We have

zk ≤ (1− 2

(k + s)2/3
)zk−1 +

Q

(k + s)4/3

≤ (1− 2

(k + s)2/3
)

Q

(k + s)2/3
+

Q

(k + s)4/3

= Q
(k + s)2/3 − 1

(k + s)4/3
.

In order to show that zk ≤ Q
(k+s+1)2/3

, it suffices to show that

((k + s)2/3 − 1)(k + s+ 1)2/3 ≤ (k + s)4/3.

The above inequality holds since (k + s+ 1)2/3 ≤ (k + s)2/3 + 1.

B. Proof of Theorem 1: Convex Case
We begin by examining the sequence of iterates x(1)

t ,x
(2)
t , . . . ,x

(K+1)
t produced in Algorithm 1 for a fixed t. By definition

of the update and because ft is L-smooth, we have

ft(x
(k+1)
t )− ft(x∗) = ft(x

(k)
t + ηk(v

(k)
t − x

(k)
t ))− ft(x∗)

≤ ft(x(k)
t )− ft(x∗) + ηk〈∇ft(x(k)

t ),v
(k)
t − x

(k)
t 〉+ η2

k

L

2
‖v(k)

t − x
(k)
t ‖2

≤ ft(x(k)
t )− ft(x∗) + ηk〈∇ft(x(k)

t ),v
(k)
t − x

(k)
t 〉+ η2

k

LD2

2
.

Now, observe that the dual pairing may be decomposed as

〈∇ft(x(k)
t ),v

(k)
t − x

(k)
t 〉 = 〈∇ft(x(k)

t )− d
(k)
t ,v

(k)
t − x∗〉+ 〈∇ft(x(k)

t ),x∗ − x
(k)
t 〉+ 〈d(k)

t ,v
(k)
t − x∗〉.

We can bound the first term using Young’s Inequality to get

〈∇ft(x(k)
t )− d

(k)
t ,v

(k)
t − x∗〉 ≤ 1

2βk
‖ft(x(k)

t )− d
(k)
t ‖2 + 2βk‖v(k)

t − x∗‖2

≤ 1

2βk
‖ft(x(k)

t )− d
(k)
t ‖2 + 2βkD

2
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for any βk > 0, which will be chosen later in the proof. We may also bound the second term in the decomposition of the
dual pairing using convexity of ft, i.e. 〈∇ft(x(k)

t ),x∗ − x
(k)
t 〉 ≤ ft(x∗)− ft(x

(k)
t ). Using these upper bounds, we get that

〈∇ft(x(k)
t ),v

(k)
t − x

(k)
t 〉 ≤

1

2βk
‖ft(x(k)

t )− d
(k)
t ‖2 + 2βkD

2 + ft(x
∗)− ft(x(k)

t ) + 〈d(k)
t ,v

(k)
t − x∗〉.

Using this upper bound on the dual pairing in the first inequality, we get that

ft(x
(k+1)
t )− ft(x∗)≤ (1−ηk)(ft(x

(k)
t )−ft(x∗))+ηk

[
1

2βk
‖ft(x(k)

t )−d(k)
t ‖2 +2βkD

2 +〈d(k)
t ,v

(k)
t −x∗〉+ηk

LD2

2

]
.

Now we will apply the variance reduction technique. Note that

‖∇ft(x(k+1)
t −∇ft(x(k)

t )‖≤ L‖x(k+1)
t − x

(k)
t ‖≤ Lηk‖x

(k)
t − v

(k)
t ‖≤

LD

k + 3

Where we have used that ft is L-smooth, the convex update, and that the step size is ηk = 1
k+3 . Now, using Theorem 3 with

G = LD and s = 3, we have that

E[‖ft(x(k)
t )− d

(k)
t ‖2] ≤ Qt

(k + 4)2/3
≤ Q

(k + 4)2/3
.

Where Qt , max{‖∇ft(x1)‖242/3, 4σ2 + 3(LD)2/2} and Q , max{42/3 max1≤t≤T ‖∇ft(x1)‖2, 4σ2 + 3(LD)2/2}
Thus, taking expectation of both sides of the optimality gap and setting βk = Q1/2

2D(k+4)1/3
yields

E[ft(x
(k+1)
t )]− ft(x∗) ≤ (1− ηk)(E[ft(x

(k)
t )]− ft(x∗)) + ηk

[
2Q1/2D

(k + 4)1/3
+ 〈d(k)

t ,v
(k)
t − x∗〉+ ηk

LD2

2

]
.

Now we have obtained an upper bound on the expected optimality gap E[ft(x
(k+1)
t )] − ft(x∗) in terms of the expected

optimality gap E[ft(x
(k)
t )]− ft(x∗) in the previous iteration. By induction on k, we get that the final iterate in the sequence,

xt , x
(K+1)
t , satisfies the following expected optimality gap

E[ft(xt)]− ft(x∗) ≤
K∏

k=1

(1− ηk) [ft(x1)− ft(x∗)] +

K∑
k=1

ηk

K∏
j=k+1

(1− ηj)
[

2Q1/2D

(k + 4)1/3
+ 〈d(k)

t ,v
(k)
t −x∗〉+ ηk

LD2

2

]
(2)

Recall that the Frank Wolfe step sizes are ηk = 1
k+3 . We may obtain upper bounds on product of the form

∏K
k=r(1− ηk) by

K∏
k =r

(1− ηk) =

K∏
k=r

(
1− 1

k + 3

)
≤ exp

(
−

K∑
k=r

1

x+ 3

)
≤ exp

(
−
∫ K+1

x=r

1

x+ 3
dx

)
=

r + 3

K + 4
≤ r + 3

K

Substituting step sizes ηk = 1
k+3 into Eq (2) and using this upper bound yields

(3)E[ft(xt)]− ft(x∗) ≤
4

K
[ft(x1)− ft(x∗)] +

K∑
k=1

(
1

k + 3
· k + 4

K

)[
2Q1/2D

(k + 4)1/3
+ 〈d(k)

t ,v
(k)
t − x∗〉+

LD2

2(k + 3)

]

Which may be further simplified by using
(

1
k+3 ·

k+4
K

)
≤ 4

3K to obtain

E[ft(xt)]− ft(x∗) ≤
4

K
[ft(x1)− ft(x∗)] +

4

3K

K∑
k=1

[
2Q1/2D

(k + 3)1/3
+ 〈d(k)

t ,v
(k)
t − x∗〉+

LD2

2(k + 3)

]
,
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As before, we can obtain the following upper bounds using integral methods:

K∑
k =1

1

k + 3
≤ log

(
K + 3

3

)
≤ log(K + 1) and

K∑
k =1

1

(k + 3)1/3
≤ 3

2

(
(K + 3)2/3 − 32/3

)
≤ 3

2
K2/3

Substituting these bounds into Eq (3) yields

E[ft(xt)]− ft(x∗) ≤
4

K
[ft(x1)− ft(x∗)] +

4Q1/2D

K1/3
+

4LD2 log(K + 1)

3K
+

4

3K

K∑
k=1

〈d(k)
t ,v

(k)
t − x∗〉.

Now, we can begin to bound regret by summing over all t = 1 . . . T to obtain

T∑
t =1

E[ft(xt)]−
T∑

t =1

ft(x
∗) ≤ 4

K

T∑
t=1

[ft(x1)− ft(x∗)] +
4TQ1/2D

K1/3

+
4TLD2 log(K + 1)

3K
+

4

3K

T∑
t=1

K∑
k=1

〈d(k)
t ,v

(k)
t − x∗〉

Recall that for a fixed k, the sequence {v(k)
t }Tt=1 is produced by a online linear minimization oracle with regretRET so that

T∑
t =1

〈d(k)
t ,v

(k)
t − x∗〉 ≤

T∑
t=1

〈d(k)
t ,v

(k)
t 〉 −min

x∈K

T∑
t=1

〈d(k)
t ,x〉 ≤ RET .

Substituting this into the upper bound and using M = max1≤t≤T [ft(x1)− ft(x∗)] yields

T∑
t =1

E[ft(xt)]−
T∑

t =1

ft(x
∗) ≤ 4TDQ1/2

K1/3
+

4T

K

(
M +

LD2

3
log(K + 1)

)
+

4

3
RET

Now, setting K = T 3/2 and using a linear oracle withRET = O(
√
T ) yields

T∑
t =1

E[ft(xt)]−
T∑

t =1

ft(x
∗) ≤ 4

√
TDQ1/2 +

4√
T

(
M +

LD2

3
(log T 3/2 + 1)

)
+

4

3
RET

= O(
√
T ).

C. Proof of Theorem 1: DR-Submodular Case
Using the smoothness of ft and recalling x

(k+1)
t − x

(k)
t = 1

Kv
(k)
t , we have

(4)

ft(x
(k+1)
t ) ≥ ft(x(k)

t ) + 〈∇ft(x(k)
t ),x

(k+1)
t − x

(k)
t 〉 −

L

2
‖x(k+1)

t − x
(k)
t ‖2

= ft(x
(k)
t ) + 〈 1

K
∇ft(x(k)

t ),v
(k)
t 〉 −

L

2K2
‖v(k)

t ‖2

≥ ft(x(k)
t ) +

1

K
〈∇ft(x(k)

t ),v
(k)
t 〉 −

LD2

2K2
.

We can re-write the term 〈∇ft(x(k)
t ),v

(k)
t 〉 as

(5)
〈∇ft(x(k)

t ),v
(k)
t 〉 = 〈∇ft(x(k)

t )− d
(k)
t ,v

(k)
t 〉+ 〈d(k)

t ,v
(k)
t 〉

= 〈∇ft(x(k)
t )− d

(k)
t ,v

(k)
t 〉+ 〈d(k)

t ,x∗〉+ 〈d(k)
t ,v

(k)
t − x∗〉

= 〈∇ft(x(k)
t )− d

(k)
t ,v

(k)
t − x∗〉+ 〈∇ft(x(k)

t ),x∗〉+ 〈d(k)
t ,v

(k)
t − x∗〉.
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We claim 〈∇ft(x(k)
t ),x∗〉 ≥ ft(x

∗) − ft(x
(k)
t ). Indeed, using monotonicity of ft and concavity along non-negative

directions, we have

(6)
ft(x

∗)− ft(x(k)
t ) ≤ ft(x∗ ∨ x

(k)
t )− ft(x(k)

t )

≤ 〈∇ft(x(k)
t ),x∗ ∨ x

(k)
t − x

(k)
t 〉

= 〈∇ft(x(k)
t ), (x∗ − x

(k)
t ) ∨ 0〉

≤ 〈∇ft(x(k)
t ),x∗〉.

Plugging Eq. (6) into Eq. (5), we obtain

(7)〈∇ft(x(k)
t ),v

(k)
t 〉 ≥ 〈∇ft(x

(k)
t )− d

(k)
t ,v

(k)
t − x∗〉+ 〈d(k)

t ,v
(k)
t − x∗〉+ (ft(x

∗)− ft(x(k)
t )).

Using Young’s inequality, we can show that

(8)〈∇ft(x(k)
t )− d

(k)
t ,v

(k)
t − x∗〉 ≥ − 1

2β(k)
‖∇ft(x(k)

t )− d
(k)
t ‖2 −

β(k)

2
‖v(k)

t − x∗‖2

≥ − 1

2β(k)
‖∇ft(x(k)

t )− d
(k)
t ‖2 − β(k)D2/2

Then we plug Eqs. (7) and (8) into Eq. (4), we deduce

ft(x
(k+1)
t )≥ ft(x(k)

t )+
1

K

[
− 1

2β(k)
‖∇ft(x(k)

t )−d(k)
t ‖2−β(k)D2/2+〈d(k)

t ,v
(k)
t −x∗〉+(ft(x

∗)−ft(x(k)
t ))

]
− LD

2

2K2
.

Equivalently, we have

(9)ft(x
∗)− ft(x(k+1)

t ) ≤ (1− 1/K)[ft(x
∗)− ft(x(k)

t )]

− 1

K

[
− 1

2β(k)
‖∇ft(x(k)

t )− d
(k)
t ‖2 − β(k)D2/2 + 〈d(k)

t ,v
(k)
t − x∗〉

]
+
LD2

2K2
.

Applying Eq. (9) recursively for 1 ≤ k ≤ K immediately yields

ft(x
∗)− ft(x(k+1)

t ) ≤ (1− 1/K)K [ft(x
∗)− ft(x(1)

t )]

+
1

K

K∑
k=1

[
1

2β(k)
‖∇ft(x(k)

t )− d
(k)
t ‖2 + β(k)D2/2 + 〈d(k)

t ,x∗ − v
(k)
t 〉
]

+
LD2

2K
.

Recall that the point played in round t is xt , x
(K+1)
t , the first iterate in the sequence is x(1)

t = 0, and that (1− 1/K)K ≤
1/e for all K ≥ 1 so that

ft(x
∗)− ft(xt) ≤

1

e
[ft(x

∗)− ft(0)] +
1

K

K∑
k=1

[
1

2β(k)
‖∇ft(x(k)

t )− d
(k)
t ‖2 + β(k)D2/2 + 〈d(k)

t ,x∗ − v
(k)
t 〉
]

+
LD2

2K
.

Since ft(0) ≥ 0, we obtain

(10)(1− 1/e)ft(x
∗)− ft(xt) ≤

1

K

K∑
k=1

[
1

2β(k)
‖∇ft(x(k)

t )− d
(k)
t ‖2 + β(k)D2/2 + 〈d(k)

t ,x∗ − v
(k)
t 〉
]

+
LD2

2K
.
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If we sum Eq. (10) over t = 1, 2, 3, . . . , T , we obtain

(1− 1/e)

T∑
t=1

ft(x
∗)

−
T∑

t=1

ft(xt) ≤
1

K

K∑
k=1

[
1

2β(k)

T∑
t=1

‖∇ft(x(k)
t )− d

(k)
t ‖2 + β(k)D2T/2 +

T∑
t=1

〈d(k)
t ,x∗ − v

(k)
t 〉

]
+
LD2T

2K
.

By the definition of the regret, we have
T∑

t =1

〈d(k)
t ,x∗ − v

(k)
t 〉 ≤ RET .

Therefore, we deduce

(1− 1/e)

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(xt)

≤ 1

K

K∑
k=1

[
1

2β(k)

T∑
t=1

‖∇ft(x(k)
t )− d

(k)
t ‖2 + β(k)D2T/2

]
+
LD2T

2K
+RET .

Taking the expectation in both sides, we obtain

(11)
(1− 1/e)

T∑
t=1

E[ft(x
∗)]−

T∑
t=1

E[ft(xt)]

≤ 1

K

K∑
k=1

[
1

2β(k)

T∑
t=1

E[‖∇ft(x(k)
t )− d

(k)
t ‖2] + β(k)D2T/2

]
+
LD2T

2K
+RET .

Notice that ‖∇ft(x(k)
t )−∇ft(x(k−1)

t )‖ ≤ L‖v(k)
t ‖/T ≤ LR/T ≤ 2LR/(k+ 3). By Theorem 3, if we set ρk = 2

(k+3)2/3
,

we have

(12)E[‖∇ft(x(k)
t )− d

(k)
t ‖2] ≤ Qt

(k + 4)2/3

≤ Q

(k + 4)2/3
,

where Qt , max{‖∇ft(0)‖242/3, 4σ2 + 6L2R2} and Q , max{max1≤t≤T ‖∇ft(x1)‖242/3, 4σ2 + 6L2R2}.

Plugging Eq. (12) into Eq. (11) and setting β(k) = (Q1/2)/(D(k + 3)1/3), we deduce

(1− 1/e)

T∑
t=1

E[ft(x
∗)]−

T∑
t=1

E[ft(xt)] ≤
TDQ1/2

K

K∑
k=1

1

(k + 4)1/3
+
LD2T

2K
+RET

Since
∑K

k=1
1

(k+4)1/3
≤
∫K

0
dx

(x+4)1/3
= 3

2 [(K + 4)2/3 − 92/3] ≤ 3
2K

2/3, we have

(1− 1/e)

T∑
t=1

E[ft(x
∗)]−

T∑
t=1

E[ft(xt)] ≤
3TDQ1/2

2K1/3
+
LD2T

2K
+RET .
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D. Proof of Theorem 2: Convex Case
Let f(x) = Eft∼D[ft(x)] denote the expected function. Because f is L-smooth and convex, we have

f(xt+1)− f(x∗) = f(xt + ηt(vt − xt))− f(x∗)

≤ f(xt)− f(x∗) + ηt〈∇f(xt),vt − xt〉+ η2
t

L

2
‖vt − xt‖2

≤ f(xt)− ft(x∗) + ηt〈∇f(xt),vt − xt〉+ η2
t

LD2

2
.

As before, the dual pairing may be decomposed as

〈∇f(xt),vt − xt〉 = 〈∇f(xt)− dt,vt − x∗〉+ 〈∇f(xt),x
∗ − xt〉+ 〈dt,vt − x∗〉.

We can bound the first term using Young’s Inequality to get

〈∇f(xt)− dt,vt − x∗〉 ≤ 1

2β
‖f(xt)− dt‖2 + 2β‖vt − x∗‖2

≤ 1

2β
‖f(xt)− dt‖2 + 2βD2.

for any β > 0, which will be chosen later in the proof. We may also bound the second term in the decomposition of the dual
pairing using convexity of f , i.e. 〈∇f(xt),x

∗ − xt〉 ≤ ft(x∗)− f(xt). Finally, the third term is nonpositive, by the choice
of vt, namely vt = arg minv∈K〈dt,v〉. Using these inequalities, we now have that

f(xt+1)− f(x∗) ≤ (1− ηt) (f(xt)− f(x∗)) + ηt

(
1

2β
‖f(xt)− dt‖2 + 2βD2

)
+ η2

t

LD2

2
.

Taking expectation over the randomness in the iterates (i.e. the stochastic gradient estimates), we have that

(13)E[f(xt+1)]− f(x∗) ≤ (1− ηt) (E[f(xt)]− f(x∗)) + ηt

(
1

2β
E[‖f(xt)− dt‖2] + 2βD2

)
+ η2

t

LD2

2
.

Now we will apply the variance reduction technique. Note that

‖∇f(xt+1)−∇f(xt)‖≤ L‖xt+1 − xt‖≤ Lηt‖xt − vt‖≤ LηtD

where we have used that f is L-smooth, the convex update, and the diameter. Now, using Theorem 3 with G = LD and
s = 3, we have that

E[‖f(xt)− dt‖2] ≤ Q

(t+ 4)2/3
,

where Q , max{42/3‖∇f(x1)‖2, 4σ2 + 3(LD)2/2}. Using this bound in Eq (13) and setting β = Q1/2

2D(t+4)1/3
yields

E[f(xt+1)]− f(x∗) ≤ (1− ηt) (E[f(xt)]− f(x∗)) + ηt
2Q1/2D

(t+ 4)1/3
+ η2

t

LD2

2
.

By induction, we have

E[f(xt+1)]− f(x∗) ≤
t∏

k=1

(1− ηk)M +

t∑
k=1

ηk

t∏
j=k+1

(1− ηj)
(

2Q1/2D

(k + 4)1/3
+ ηk

LD2

2

)
,



Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity

where M = f(x1)− f(x∗). Recall that the step size is set to be ηt = 1
t+3 . As in Appendix B, we can obtain the bounds∏t

k=1(1 − ηk) =
∏t

k=1(1 − 1
k+3 ) ≤ exp(−

∑t
k=1

1
k+3 ) ≤ exp(−

∫ t+1

1
dx
x+3 ) = 4/(t + 4) and similarly

∏t
j=k+1(1 −

1
j+3 ) ≤ k+4

t+4 . Using these bounds as well as the choice of step size ηt = 1
t+3 in the above yields

E[f(xt+1)]− f(x∗) ≤ 4M

t+ 4
+

t∑
k=1

(
1

k + 3
· k + 4

t+ 4

)(
2Q1/2D

(k + 4)1/3
+

1

k + 3

LD2

2

)

=
4M

t+ 4
+

4

3(t+ 4)

t∑
k=1

(
2Q1/2D

(k + 4)1/3
+

1

k + 3

LD2

2

)

where the second inequality used
(

1
k+3 ·

k+4
(t+4)

)
< 4

3(t+4) . As before in Section B, using the inequalities
∑t

k=1
1

k+3 ≤
log(t+ 1) and

∑t
k=1

1
(k+3)1/3

≤ 3
2 t

2/3 in the above yields

E[f(xt+1)]− f(x∗) ≤ 4M

t+ 4
+ 4Q1/2D

t2/3

t+ 4
+

4

3
LD2 log(t+ 1)

t+ 4
. (14)

To obtain a regret bound, we sum over rounds t = 1, . . . T to obtain

T∑
t=1

E[f(xt)]− Tf(x∗) ≤ 4M

(
T∑

t=1

1

t+ 4

)
+ 4Q1/2D

(
T∑

t=1

t2/3

t+ 4

)
+

4

3
LD2

(
T∑

t=1

log(t+ 1)

t+ 4

)

Using the integral trick again, we obtain the upper bounds
∑T

t=1
1

t+4 ≤ log(T + 1),
∑T

t=1
t2/3

t+4 ≤
3
2T

2/3, and∑T
t=1

log(t+3)
t+4 ≤ log2(T + 3). Substituting these bounds in the regret bound above yields

T∑
t=1

E[f(xt)]− Tf(x∗) ≤ 4M log(T + 1) + 6Q1/2DT 2/3 +
4

3
LD2 log2(T + 3) = O

(
T 2/3

)

E. Proof of Theorem 2: DR-Submodular Case
Since f is L-smooth, we obtain

f(xt+1) ≥ f(xt) + 〈∇f(xt),
1

T
vt〉 −

L

2
‖ 1

T
vt‖2

≥ f(xt) +
1

T
〈∇f(xt),vt〉 −

LD2

2T 2

= f(xt) +
1

T
〈dt,vt〉+

1

T
〈∇f(xt)− dt,vt〉 −

LD2

2T 2

≥ f(xt) +
1

T
〈dt,x

∗〉+
1

T
〈∇f(xt)− dt,vt〉 −

LD2

2T 2

= f(xt) +
1

T
〈∇f(xt)− dt,vt − x∗〉+

1

T
〈f(xt),x

∗〉 − LD2

2T 2
.

In the last inequality, we used the fact that vt = arg maxv∈K〈dt,v〉. Similar to Eq. (6) in Appendix C, we have
〈f(xt),x

∗〉 ≥ f(x∗)− f(xt). Again, Young’s inequality gives 〈∇f(xt)− dt,vt − x∗〉 ≥ −1
2 (βt‖vt − x∗‖2 + ‖f(xt)−

dt‖2/βt). Therefore, we deduce

f(xt+1) ≥ f(xt)−
1

2T
(βt‖vt − x∗‖2 + ‖f(xt)− dt‖2/βt) +

1

T
(f(x∗)− f(xt))−

LD2

2T 2

≥ f(xt)−
1

2T
(βtD

2 + ‖f(xt)− dt‖2/βt) +
1

T
(f(x∗)− f(xt))−

LD2

2T 2
.
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Re-arrangement of the terms yields

f(x∗)− f(xt+1) ≤ (1− 1/T )(f(x∗)− f(xt)) +
1

2T
(βtD

2 + ‖f(xt)− dt‖2/βt) +
LD2

2T 2
.

Recalling that (1− 1/T )T ≤ 1/e and f(x1) = f(0) ≥ 0, we have

f(x∗)− f(xt+1) ≤ (1− 1/T )t(f(x∗)− f(x1)) +
1

2T

t∑
i=1

(βiD
2 + ‖f(xi)− di‖2/βi) +

LD2

2T

≤ 1

e
f(x∗) +

1

2T

t∑
i=1

(βiD
2 + ‖f(xi)− di‖2/βi) +

LD2

2T
,

which in turn yields

(1− 1/e)f(x∗)− f(xt+1) ≤ 1

2T

t∑
i=1

(βiD
2 + ‖f(xi)− di‖2/βi) +

LD2

2T
.

Taking expectation in both sides gives

(1− 1/e)E[f(x∗)]− E[f(xt+1)] ≤ 1

2T

t∑
i=1

(βiD
2 + E[‖f(xi)− di‖2]/βi) +

LD2

2T
.

Notice that ‖∇f(xt) −∇f(xt−1)‖ ≤ L‖vt‖/T ≤ LR/T ≤ 2LR/(k + 3). By Theorem 3, if we set ρi = 2
(i+3)2/3

, we
have

E[‖f(xi)− di‖2] ≤ Q

(i+ 4)2/3

for every i ≤ T and Q = max{‖∇f(0)‖242/3, 4σ2 + 6L2R2}. If we set βi = Q1/2

D(i+4)1/3
, we have

(1− 1/e)E[f(x∗)]− E[f(xt+1)] ≤
t∑

i=1

DQ1/2

(i+ 4)1/3T
+
LD2

2T
≤ 3DQ1/2t2/3

2T
+
LD2

2T

since
∑t

i=1
1

(i+4)1/3
≤
∫ t

0
1

(x+4)1/3
dx = 3

2 [(x+ 4)2/3]t0 ≤ 3
2 [x2/3]t0 = 3

2 t
2/3.

Therefore we have

(1− 1/e)TE[f(x∗)]−
T∑

t=1

E[f(xt)]

= (1− 1/e)E[f(x∗)]− f(0) +

T−1∑
t=1

[(1− 1/e)E[f(x∗)]− E[f(xt)]]

≤ (1− 1/e)E[f(x∗)]− f(0) +

T−1∑
t=1

[
3DQ1/2t2/3

2T
+
LD2

2T

]
.

Since
∑T−1

t=1 t2/3 = 1 +
∑T−1

t=2 t2/3 ≤ 1 +
∫ T

1
t2/3dt = 3

5T
5/3 + 2

5 , we conclude

(1− 1/e)TE[f(x∗)]−
T∑

t=1

E[f(xt)] ≤ (1− 1/e)E[f(x∗)]− f(0) +
3DQ1/2

10
(3T 2/3 + 2T−1) +

LD2

2
= O(T 2/3).


