
Supplementary Materials for
Learning K-way D-dimensional Discrete Codes for Compact Embedding

Representations

Ting Chen 1 Martin Renqiang Min 2 Yizhou Sun 1

1. Proofs of Lemmas and Propositions
Lemma 1. The number of embedding parameters used in
KD encoding isO(K

logK d
′ logN+C), whereC is the num-

ber of parameters of neural nets.

Proof. As mentioned, the embedding parameters include
code embedding matrix {W} and embedding transforma-
tion function θe. There are O(K

logK logN) code embed-
ding vectors with d′ dimensions. As for the number of
parameters in embedding transformation function such as
neural networks (LSTM) C that is in O(d′2), it can be
treated as a constant to the number of symbols since d′ is
independent ofN , provided that there are certain structures
presented in the symbol embeddings. For example, if we
assume all the symbol embeddings are within ε-ball of a fi-
nite number of centroids in d-dimensional space, it should
only require a constantC to achieve ε-distance error bound,
regardless of the vocabulary size, since the neural networks
just have to memorize the finite centroids.

.

Proposition 1. A linear composition function f with no
hidden layer is equivalent to a sparse binary low-rank fac-
torization of the embedding matrix.

Proof sketch. First consider when K = 2, and the com-
posed embedding matrix can be written as U = BC, where
B is the binary code for each symbol, andC is the code em-
bedding matrix. This is a low rank factorization of the em-
bedding matrix with binary code B. When we increase K,
by representing a choice of K as one-hot vector of size K,
we still have U = BC with additional constraints in B that
it is a concatenation of D one-hot vector. Due to the one-
hot constraint, each row in B will be sparse as only 1/K

1Department of Computer Science, University of California,
Los Angeles 2NEC Labs America. Correspondence to: Ting Chen
<tingchen@cs.ucla.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

ratio of entries are non-zero, thus corresponds to a sparse
binary low-rank factorization of the embedding matrix.

As the linear composition with no hidden layer can be lim-
ited in some cases as the expressiveness of the function
highly relies on the number of bases or rank of the factor-
ization. Hence, the non-linear composition may be more
appealing in some cases.
Proposition 2. Given the same dimensionality of the “KD
code”, i.e. K, D, and code embedding dimension d′, the
non-linear embedding transformation functions can recon-
struct the embedding matrix with higher rank than the lin-
ear counterpart.

Proof sketch. As shown above, in the linear case, we
approximate the embedding by a low-rank factorization,
U = BC. The rank will be constrained by the dimen-
sionality of binary matrixB, i.e. KD. However, if we con-
sider a nonlinear transformation function f , we will have
U = f(B,C). As long as that no two rows in B and no
two columns in C are the same, i.e. every data point has its
quite code and every code has its unique embedding vector,
then the non-linear function f , such as a neural network
with enough capacity, can approximate a matrix U that has
much higher rank, even full rank, than KD.

2. The LSTM Code Embedding
Transformation Function

Here we present more details on the LSTM code embed-
ding transformation function. Assuming the code embed-
ding dimension is the same as the LSTM hidden dimension,
the formulation is given as follows.

tj = σ(Wj
cj + hj−1Ut + bt)

ij = σ(Wj
cj + hj−1Ui + bi)

oj = σ(Wj
cj + hj−1Ut + bt)

mj = tj ◦mj−1 + ij ◦ tanh(Wj
cj + Umhj−1 + bm)

hj = oj ◦ tanh(mj),

where σ(·) and tanh(·) are, respectively, standard sigmoid
and tanh activation functions. Please note that the symbol

Title Suppressed Due to Excessive Size

index i is ignored for simplicity.

3. Examples and Applications
Our proposed task-specific end-to-end learned “KD Encod-
ing" can be applied to any problem involving learning em-
beddings to reduce model size and increase efficiency. In
the following, we list some typical examples and applica-
tions, for which detailed descriptions can be found in the
supplementary material.

Language Modeling Language modeling is a fundamen-
tal problem in NLP, and it can be formulated as predicting
the probability over a sequence of words. Models based
on recurrent neural networks (RNN) with word embedding
(Mikolov et al., 2010; Kim et al., 2016) achieve state-of-
the-art results, so on which we will base our experiments.
A RNN language model estimates the probability distribu-
tion of a sequence of words by modeling the conditional
probability of each word given its preceding words,

P (w0, ..., wN) = P (w0)

N∏
i=1

P (wi|w0, ..., wi−1), (1)

where wi is the i-th word in a vocabulary, and the condi-
tional probability P (wi|w0, ..., wi?1) can be naturally mod-
eled by a softmax output at the i-th time step of the RNN.
The RNN parameters and the word embeddings are model
parameters of the language model.

Text Classification Text classification is another impor-
tant problem in NLP with many different applications. In
this problem, given a training set of documents with each
containing a number of words and its target label, we learn
the embedding representation of each word and a binary or
multi-class classifier with a logistic or softmax output, pre-
dicting the labels of test documents with the same vocab-
ulary as in the training set. To test the “KD Encoding" of
word embedding on several typical text classification ap-
plications, we use several different types of datasets: Ya-
hoo answer and AG news represent topic prediction, Yelp
Polarity and Yelp Full represent sentiment analysis, while
DBpedia represents ontology classification.

Graph Convolutional Networks for Semi-Supervised
Node Classification In (Kipf & Welling, 2016), graph
convolutional networks (GCN) are proposed for semi-
supervised node classification on undirected graphs. In
GCN, the matrix based on standard graph adjacency matrix
with added self connections after normalization, Â, is used
to approximate spectral graph convolutions. As a result,
ReLU(ÂXW) defines a non-linear convolutional feature
transformation on node embedding matrixX with a projec-
tion matrix W and non-linear activation function ReLU .

0 50 100 150 200 250 300
Code embedding dimensions

76

78

80

82

84

86

88

90

P
er

pl
ex

ity

Embedding transformation
Lniear
RNN

Figure 1. The perplexity on PTB as a function of different code
embedding dimensions as well as the embedding transformation
functions.

This layer-wise transformation can be repeated to build a
deep network before making predictions using the final out-
put layer. Minimizing a task-specific loss function, the net-
work weights W s and the node embedding matrix X are
learned simultaneously using standard back-propagation.
A simple GCN with one hidden layer takes the following
form:

Z = f(X,A) = softmax(ÂReLU(ÂXW0)W1), (2)

where W0 and W1 are network weights, and softmax is
performed in a row-wise manner. When the labels of only
a subset of nodes are given, this framework is readily ex-
tended for graph-based semi-supervised node classification
by minimizing the following loss function,

L = −
L∑

l=1

F∑
f=1

Ylf lnZlf , (3)

where L is the number of labeled graph nodes, F is the to-
tal number of classes of the graph nodes, and Y is a binary
label matrix with each row summing to 1. We apply our
proposed KD code learning to graph node embeddings in
the above GCN framework for semi-supervised node clas-
sification.

Hashing The learned discrete code can also be seen as a
data-dependent hashing for fast data retrieval. In this paper,
we also perform some case studies evaluating the effective-
ness of our learned KD code as hash code.

4. Additional Experimental Results
We also test the effects of different code embedding dimen-
sions, and the result is presented in Figure 1. We found
that linear encoder requires larger code embedding dimen-
sionality, while the non-linear encoder can work well with
related small ones. This again verifies the proposition 2.

Table 1 shows the effectiveness of variants of the tricks in
continuous relaxation based optimization. We can clearly

Title Suppressed Due to Excessive Size

Table 1. Effectiveness of different optimization tricks. Here,
CR=Continuous Relaxation using softmax, STE=straight-through
estimation, CDG=continuous distillation guidance.

Variants PPL
CR 90.61
CR + STE 90.15
CR + STE + temperature scheduling 89.55
CR + STE + entropy reg 89.03
CR + STE + entropy reg + PDG (w/o autoencod.) 83.71
CR + STE + entropy reg + PDG (w/ autoencod.) 83.11

see that the positive impacts of temperature scheduling,
and/or entropy regularization, as well as the auto-encoding.
However, here the really big performance jump is brought
by using the proposed distillation guidance.

5. Notations
For clarity, Table 1 provides explanations to major nota-
tions used in our paper.

Table 2. Notations
Notations Explanation

c Codes.
o One-hot representations of the code.
ô Continuously relaxed o.
π code logits for computing ô.
W Code embedding matrix.
T The transformation from symbol to the

embedding , T = f ◦ φ.
φ The transformation from symbol to code.
f The code transformation function maps

code to embedding. It has parameters θ =
{W, θe}

fe The embedding transformation function
maps code embedding vectors to a symbol
embedding vector.

v The composite symbol embedding vector.
Θ The task-specific (non-embedding) param-

eters.
U Pre-trained symbol embedding matrix.
u Pre-trained symbol embedding vector.
d Symbol embedding dimensionality.
d′ Code embedding dimensionality.

References
Kim, Yoon, Jernite, Yacine, Sontag, David, and Rush,

Alexander M. Character-aware neural language models.
In Proceedings of the Thirtieth AAAI Conference on Ar-
tificial Intelligence, pp. 2741–2749. AAAI Press, 2016.

Kipf, Thomas N and Welling, Max. Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Mikolov, Tomáš, Karafiát, Martin, Burget, Lukáš, Čer-
nockỳ, Jan, and Khudanpur, Sanjeev. Recurrent neu-
ral network based language model. In Eleventh Annual
Conference of the International Speech Communication
Association, 2010.

