
PixelSNAIL: An Improved Autoregressive Generative Model

Xi Chen 1 2 Nikhil Mishra 1 2 Mostafa Rohaninejad 1 2 Pieter Abbeel 1 2

Abstract
Autoregressive generative models achieve the best
results in density estimation tasks involving high
dimensional data, such as images or audio. They
pose density estimation as a sequence modeling
task, where a recurrent neural network (RNN)
models the conditional distribution over the next
element conditioned on all previous elements.
In this paradigm, the bottleneck is the extent to
which the RNN can model long-range dependen-
cies, and the most successful approaches rely on
causal convolutions. Taking inspiration from re-
cent work in meta reinforcement learning, where
dealing with long-range dependencies is also es-
sential, we introduce a new generative model
architecture that combines causal convolutions
with self attention. In this paper, we describe
the resulting model and present state-of-the-art
log-likelihood results on heavily benchmarked
datasets: CIFAR-10 (2.85 bits per dim), 32× 32
ImageNet (3.80 bits per dim) and 64 × 64 Ima-
geNet (3.52 bits per dim). Our implementation
will be made available at anonymized.

1. Introduction
Autoregressive generative models over high-dimensional
data x = (x1, . . . , xn) factor the joint distribution as a
product of conditionals:

p(x) = p(x1, . . . , xn) =

n∏
i=1

p(xi|x1, . . . , xi−1)

A recurrent neural network (RNN) is then trained to model
p(xi|x1:i−1). Optionally, the model can be conditioned
on additional global information h (such as a class la-
bel, when applied to images), in which case it in models
p(xi|x1:i−1,h). Such methods are highly expressive and

1covariant.ai 2UC Berkeley, EECS Dept.. Correspondence to:
Xi Chen <peter@covariant.ai>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

allow modeling complex dependencies. Compared to GANs
(Goodfellow et al., 2014), neural autoregressive models of-
fer tractable likelihood computation and ease of training,
and have been shown to outperform latent variable models
(van den Oord et al., 2016c;b; Salimans et al., 2017).

The main design consideration is the neural network archi-
tecture used to implement the RNN, as it must be able to
easily refer to earlier parts of the sequence. A number of
possibilities exist:

• Traditional RNNs, such as GRUs or LSTMs: these
propagate information by keeping it in their hidden
state from one timestep to the next. This temporally-
linear dependency significantly inhibits the extent to
which they can model long-range relationships in the
data.

• Causal convolutions (van den Oord et al., 2016b; Sali-
mans et al., 2017): these apply convolutions over the
sequence (masked or shifted so that the current pre-
diction is only influenced by previous element). They
offer high-bandwidth access to the earlier parts of the
sequence. However, their receptive field has a finite
size, and still experience noticeable attenuation with
regards to elements far away in the sequence.

• Self-attention (Vaswani et al., 2017): these models
turn the sequence into an unordered key-value store
that can be queried based on content. They feature
an unbounded receptive field and allow undeteriorated
access to information far away in the sequence. How-
ever, they only offer pinpoint access to small amounts
of information, and require additional mechanism to
incorporate positional information.

Causal convolutions and self-attention demonstrate comple-
mentary strengths and weaknesses: the former allow high
bandwidth access over a finite context size, and the latter
allow access over an infinitely large context. Interleaving
the two thus offers the best of both worlds, where the model
can have high-bandwidth access without constraints on the
amount of information it can effectively use. The convolu-
tions can be seen as aggregating information to build the
context over which to perform an attentive lookup. Us-
ing this approach (dubbed SNAIL), Mishra et al. (2017)
demonstrated significant performance improvements on a

anonymized

PixelSNAIL: An Improved Autoregressive Generative Model

number of tasks in meta-learning setup, where the challenge
of long-term temporal dependencies is also prevalent, as
an agent should be able to adapt its behavior based on past
experience.

In this paper, we consider the task of autoregressive gener-
ative modeling by taking inspirations from SNAIL, as the
fundamental bottleneck of access to past information is the
same. Building off the current state-of-the-art in generative
models, a class of convolution-based architectures known as
PixelCNNs (van den Oord et al. (2016b) and Salimans et al.
(2017)), we present a new architecture, PixelSNAIL, that
incorporates ideas from (Mishra et al., 2017) to obtain state-
of-the-art results on the heavily benchmarked CIFAR-10,
Imagenet 32× 32 and Imagenet 64× 64 datasets.

2. Methodology
For self-containedness, we first review the formulation of
modeling high-dimensional natural images by neural au-
toregressive models and describe prior works’ strengths and
weaknesses. Next, we elaborate on the design principles
behind PixelSNAIL and introduce a family of architectures
that achieves good performance.

2.1. Neural Autoregressive Image Modeling

Natural images are usually represented as 3-dimensional
random variables Height × Width × 3, where 3 color
channels (RGB) are recorded at each location. To model
such a random variable autoregressively, one can first im-
pose an ordering and then factor the joint distribution as a
product of conditionals over that ordering:

p(x) = p(x1, . . . , xn) =

n∏
i=1

p(xi|x1, . . . , xi−1)

For natural images, most prior works have chosen to use
the “raster scan” ordering (Oord et al., 2016b; van den Oord
et al., 2016b; Salimans et al., 2017), where along each row
left pixels come before right pixels and top rows come
before bottom rows.

Figure 1. Raster Scan Ordering

State-of-the-art neural autoregressive models employ causal
convolution models to represent the conditional distribu-
tions (van den Oord et al., 2016b; Salimans et al., 2017).
In this type of architecture, the initial image x is processed
through a series of causal convolutions and the outcome is
a 3D tensor that has shape Height×Width× Channels,
where at each spatial location (x, y) a vector of length
Channels describes the sufficient statistics for the con-
ditional p(xi|x≤i−1)|i=x∗Width+y .

In order for the probability model to be valid (and causal),
the conditional distribution for xi should only depend on
pixel values before i. Such constraints are enforced via
either masked convolution (Oord et al., 2016b) or shift-
based convolution (van den Oord et al., 2016b). In masked
convolution (illustrated in Figure 2), a normal convolution is
applied but the filter is masked in such a way that it cannot
depends on values at current or later pixel locations:

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Figure 2. An example masked 5× 5 filter

van den Oord et al. (2016b) pointed out that masked convo-
lutions, though causal, are limited in terms of expressiveness
since they create blind spots in the receptive field. To ad-
dress this problem, they introduced shift-based convolutions:
at each layer, ordinary convolutions are applied, and then
the whole feature map is shifted to maintain causality.

One of the benefits of using causal convolution architectures
is that, given a single image x, all the conditional distri-
butions can be calculated in just one forward pass. Since
all conditionals are calculated in parallel through highly
optimized convolution operations, causal convolution ar-
chitectures are efficient and scalable to high-dimensional
density modeling problems.

However, convolution operations, by nature, only aggregate
information locally. In order to model long-range dependen-
cies,the receptive field must grow by repeatedly applying
convolutions. Noticing this problem, van den Oord et al.
(2016a) and Salimans et al. (2017) respectively proposed
to use dilated convolutions and strided convolutions (fol-
lowed by corresponding upsampling) to achieve faster re-
ceptive field growth. The resulting improvements in density-
estimation performance suggest that improving the model’s
ability to capture long-range dependencies is essential.

PixelSNAIL: An Improved Autoregressive Generative Model

One should note that, even with dilated convolutions or
strided convolutions, information access to remote pixel
locations is still limited: the information needs to be relayed
through a series of intermediate locations since each convo-
lution operation only operates in a limited context. We will
explore architectural decisions that offer better information
access to pixels far away from any conditional distribution
and show that the improved ability to model long-range
statistics leads to better density modelling performance.

Even though, all prior works use raster scan ordering (to the
best of our knowledge), it’s worth noting that any ordering
is equivalent in expressiveness: for any arbitrary ordering,
the joint distribution over x can be expressed as a product
of conditionals. However, for particular ordering choices,
the conditional p(xi|x1, . . . , xi−1) might be a complex dis-
tribution that our current modeling tools, like convolutional
networks, are incapable of expressing. As such, it could be
beneficial to explore other orderings that can give rise to
conditional distributions that are easier to learn.

We know that the conditional distribution of a pixel location
is mostly influenced by the values of its neighboring pixels
(Salimans et al., 2017) but the widely used raster scan order-
ing only has a small number neighboring pixels available
in the conditioning context x1, . . . , xi−1: only to the left
and above and most of the context is wasted on regions that
might have little correlation with the current pixel like the
far top-right corner. One possible alternative is zigzag order-
ing, which allows each conditional distribution to depend
on pixels to the left and above:

Figure 3. Zigzag Ordering

However, one will notice that when such an ordering will in-
troduce blind spots when combined with combined masked
or shift-based convolutional architectures.

Motivated by these issues, we introduce the PixelSNAIL
model family, which generalizes the causal convolution
architectures discussed thus far by allowing a much larger
and more flexible receptive field. As a result, PixelSNAIL
models achieve superior modeling performance.

2.2. PixelSNAIL

The key idea behind PixelSNAIL is to introduce attention
blocks, in a style similar to Self Attention in (Vaswani et al.,
2017; Mishra et al., 2017), into neural autoregressive mod-
elling. As explained previously, the ability to model long-
range dependencies is crucial to performance, so it’s natural
to use attention blocks to equip all conditionals with the
ability to refer to all of their available context.

An attention block applies one key-value lookup for the
feature vector at every spatial location and the lookups are
done for all spatial locations in parallel to exploit GPU
parallelism.

Concretely, an attention block that has type H×W ×C1 →
H ×W × C2 defines 3 functions that operate on feature
vectors:

• fkey(x) :: C1 → Dimkey

• fquery(x) :: C1 → Dimkey

• fvalue(x) :: C1 → C2

According to some autoregressive ordering, we can name the
feature vectors of a 2D feature map, y, as y1, y2, · · · , yN .
Then for z = attention(y), the mapping is defined as:

zi =
∑
j<i

pijfvalue(yj)

where

pi = softmax([fkey(y1)
T
fquery(yi), · · · , fkey(yi−1)

T
fquery(yi)])

Each conditional can access any pixels in its context through
the attention operator (notice the summation over all avail-
able context:

∑
j<i), easy information access of remote

pixels improves modeling of long-range statistics.

Note also that the autoregressive ordering is enforced only
in the summation step and hence, in implementation, one
can simply mask out entries that shouldn’t be summed over
to make the operator causal. This kind of masking scheme
is also very flexible and can permit, for instance, the Zigzag
ordering discussed above.

PixelSNAIL: An Improved Autoregressive Generative Model

inputs, shape [B, H, W, D]

2x2 causal conv

D lters

sigmoid activation

ELU activation

2x2 causal conv

D lters

ELU activation

2x2 causal conv

D lters

elementwise muladd

repeat R times

outputs, shape [B, H, W, D]

(a) Residual Block (D lters, R repeats)

inputs, shape [B, H, W, D]

1x1 conv, K lters

(query)
1x1 conv, K lters

(keys)

1x1 conv, V lters

(values)

matmul, masked softmax

matmul

outputs, shape [B, H, W, V]

(b) Attention Block (key size K, value size V)

Figure 4. The modular components that make up PixelSNAIL: (a) a residual block, and (b) an attention block. For both datasets, we used
residual blocks with 256 filters and 4 repeats, and attention blocks with key size 16 and value size 128.

The PixelSNAIL model family is primarily composed of
two building blocks, which are illustrated in Figure 4 and
described below:

• A residual block applies several 2D-convolutions to
its input, each with residual connections. To make
them causal, the convolutions are masked or shifted so
that the current pixel can only access pixels to the left
and above from it. We use a gated activation function
similar to (van den Oord et al., 2016b; Oord et al.,
2016a). Throughout the model, we used 4 convolutions
per block and 256 filters in each convolution.

• An attention block performs a single key-value lookup.
It projects the input to a lower dimensionality to
produce the keys and values and then uses softmax-
attention like in (Vaswani et al., 2017; Mishra et al.,
2017) (masked so that the current pixel can only attend
over previously generated pixels). We used keys of
size 16 and values of size 128.

Figure 5 illustrates the full PixelSNAIL architecture, which
interleaves the residual blocks and attention blocks depicted
in Figure 4. In the CIFAR-10 model only, we applied
dropout of 0.5 after the first convolution in every residual
block, to prevent overfitting. We did not use any dropout for

ImageNet, as the dataset is much larger. On both datasets,
we use Polyak averaging (Polyak & Juditsky, 1992) (fol-
lowing (Salimans et al., 2017)) over the training parame-
ters. We used an exponential moving average weight of
0.9995 for CIFAR-10 and 0.9997 for ImageNet. As the out-
put distribution, we use the discretized mixture of logistics
introduced by Salimans et al. (2017), with 10 mixture com-
ponents for CIFAR-10 and 32 for ImageNet. To predict the
subpixel (red,green,blue) values, we used the same linear-
autoregressive parametrization as Salimans et al. (2017).

To mitigate the problems of bad initialization, we employ
weight Normalization with data-dependent initialization
(Salimans & Kingma, 2016) in all experiments.

Our code will be made available, and can be
found at: https://github.com/neocxi/
pixelsnail-public.

3. Experiments
3.1. Long-range Dependency

In the previous section, we hypothesize that attention blocks
make it easier to access information from a large context
than causal convolutions. Here we conduct a simple diag-
nostic experiment to investigate this hypothesis. We choose

https://github.com/neocxi/pixelsnail-public
https://github.com/neocxi/pixelsnail-public

PixelSNAIL: An Improved Autoregressive Generative Model

outputs, shape [B, H, W, 10*K]

ELU

1x1 conv, 256 lters

ELU

Residual Block

256 lters

4 repeats

ELU

1x1 conv, 256 lters

ELU

Attention Block

key size 16

value size 128

ELU

1x1 conv, 256 lters

ELU

concat

(channelwise)

add

repeat M times

1x1 conv, 10*K lters

ELU

inputs, shape [B, H, W, 3]

2x2 causal conv

256 lters

PixelSNAIL: M blocks, K mixture components

Figure 5. The entire PixelSNAIL model architecture, using the building blocks from Figure 4. We used 12 blocks for both datasets, with
10 mixture components for CIFAR-10 and 32 for ImageNet.

a conditional distribution p(x15,15| · · ·) at the center of the
image, and we calculate the log probability’s sensitivity to
input image for a randomly initialized model:

∇x log p(x(15,15)| · · ·)

This test captures the first-order dependency between the
inspected conditional distribution and all pixels in its con-
ditioning context. We expect the gradient to be nonzero
for pixel values that have an influence on the conditional
distribution.

In Figure 6, we inspect a shift-based causal convolution
model (Gated PixelCNN (van den Oord et al., 2016b)). We
used a medium size model with 7 gated resnet blocks and
6M parameters:

Figure 6. Gated PixelCNN. The yellow dot indicates the pixel un-
der inspection, and dark purple dots indicate locations with deriva-
tive magnitude larger than 0.001.

We can observe that the receptive field is limited. On top of
that, the “holes” within the theoretical receptive field limit
attest to the the difficulty with which information propagates
through long distances in this type of architecture.

Then we run the same experiment on PixelCNN++ (Sali-
mans et al., 2017) with identical number of resnet blocks.

Figure 7. PixelCNN++

Here one can see that the strided convolutions introduced in
PixelCNN++ effectively expand the receptive field. How-
ever, there are still “holes” within the theoretical limit, sug-
gesting similar difficulty of information propogation.

Next we run the same test on a PixelSNAIL with 7 blocks
(4 shift-based convolutions and 3 attention blocks).

PixelSNAIL: An Improved Autoregressive Generative Model

Figure 8. PixelSNAIL

PixelSNAIL achieves a much larger effective receptive field
size for the same number of layers and fewer holes within
theoretical receptive field limit. While this doesn’t mean
that a PixelSNAIL model relies on all of the available con-
text at convergence, the existence of gradient signal means
gradient descent can in principle guide a PixelSNAIL model
to capture learn long-range dependencies.

We would like to stress that these tests are not conclusive.
It’s possible that other models have higher order depen-
dency that’s not visualized by gradient magnitude and it’s
also conceivable that during training, the effective receptive
fields would change. We nevertheless believe that they pro-
vide valuable insights into the inductive biases encoded by
different model architectures.

Lastly, we provide a visualization of the receptive field of a
PixelSNAIL model that uses the Zigzag ordering instead of
the raster scan ordering. This modification only required us
to change 2 lines of code, but yet we see that PixelSNAIL is
able to approach theoretical receptive field limit, despite the
drastically different context shape.

Figure 9. PixelSNAIL with Zigzag Ordering

3.2. Density Modelling Performance

In Table 1, we provide negative log-likelihood results (in
bits per dim) for PixelSNAIL on both CIFAR-10, Imagenet
32× 32 and Imagenet 64× 64. We compare PixelSNAIL’s
performance to a number of autoregressive models. These
include: (i) PixelRNN (Oord et al., 2016b), which uses

LSTMs, (ii) PixelCNN (van den Oord et al., 2016b) and Pix-
elCNN++ (Salimans et al., 2017), which only use causal con-
volutions, and (iii) Image Transformer (Anonymous, 2018),
an attention-only architecture inspired by Vaswani et al.
(2017). PixelSNAIL outperforms all of these approaches,
which suggests that both causal convolutions and attention
are essential components of the architecture. To maintain
consistency with prior work, all of the PixelSNAIL results
reported below use the raster scan ordering.

We would like to point out that, as of submission, the per-
formance of ImageNet 32 × 32 and ImageNet 64 × 64 is
still improving. Due to computational limits, we can only
train these models on 4 GPUs but are able to outperform the
previous state-of-the-art model that was trained on 32 GPUs
(van den Oord et al., 2016b).

Figure 10. Samples from our CIFAR-10 model.

Figure 11. Samples from our 32× 32 ImageNet model.

PixelSNAIL: An Improved Autoregressive Generative Model

Table 1. Average negative log-likelihoods on CIFAR-10 and ImageNet 32 × 32, in bits per dim. PixelSNAIL outperforms other
autoregressive models which only rely on causal convolutions xor self-attention.

Method CIFAR-10 ImageNet 32× 32 ImageNet 64× 64

Conv DRAW (Gregor et al., 2016) 3.5 4.40 4.10
Real NVP (Dinh et al., 2016) 3.49 4.28 3.98

VAE with IAF (Kingma et al., 2016) 3.11 – –
PixelRNN (Oord et al., 2016b) 3.00 3.86 3.63

Gated PixelCNN (van den Oord et al., 2016b) 3.03 3.83 3.57
Image Transformer (Anonymous, 2018) 2.98 3.81 –

PixelCNN++ (Salimans et al., 2017) 2.92 – –
Block Sparse PixelCNN++ (OpenAI, 2017) 2.90 – –

PixelSNAIL (ours) 2.85 3.80 3.52

4. Related Work
There is a large body of work on neural autoregressive mod-
els (Larochelle & Murray, 2011; Uria et al., 2013; Germain
et al., 2015; Theis & Bethge, 2015; Oord et al., 2016b;
van den Oord et al., 2016d). This type of autoregressive
model was further explored for audio data (Oord et al.,
2016a), video data (Kalchbrenner et al., 2016b) and lan-
guage (Kalchbrenner et al., 2016a).

Within the domain of modelling natural images, different ex-
tensions to neural autoregressive models were also explored:
(Reed et al., 2017) explored mixing parallel generation into
autoregressive ordering to speed up generation time, but still
mostly rely on raster scan ordering; (Kolesnikov & Lampert,
2017) proposed to decompose modeling of colorful images
into two stages of first modeling grayscale images and then
colorful images.

Other than autoregressive models, there are other natural
generative models that provide tractable and exact likelihood
computation. These models (Dinh et al., 2014; Rezende
& Mohamed, 2015; Dinh et al., 2016) typically apply an
invertible transformation that admits tractable determinant
calculation to some continuous entropy source. It’s worth
noting that the architectural improvements proposed in this
paper apply equally well to these invertible transformation
and we believe it’s an exciting area of future research.

Other than exact likelihood models, there are also a lot of
works that model natural images with a Helmholtz Machine
(Dayan et al., 1995) or variants thereof (Kingma & Welling,
2013; Rezende et al., 2014; de Freitas et al., 2001; Gre-
gor et al., 2015b;a; Tran et al., 2015; Kingma et al., 2016)
trained with approximate inference. And there is also a line
of work that combined Helmholtz Machines with autore-
gressive models for images (Chen et al., 2016; Gulrajani
et al., 2016) and for text data (Chung et al., 2015; Bowman
et al., 2015; Fraccaro et al., 2016; Xu & Sun, 2016).

Among the implicit generative models that are trained with-

out likelihood, GANs (Goodfellow et al., 2014) are the most
popular models and generate the most realistic images. We
refer readers to (Goodfellow, 2016) for a recent survey on
this topic. GANs, based predominantly on CNNs, typically
generate images that have realistic local texture but lack
global coherence. It’s possible that a PixelSNAIL style
architecture will be able to improve global coherence.

Our work directly builds on top of (Mishra et al., 2017),
which employs causal convolutions styled after Oord et al.
(2016a) with self-attention (like in (Vaswani et al., 2017))
in the context of meta reinforcement learning (where the
challenging of capturing long-range dependencies is also
prevalent). Although Vaswani et al. (2017) utilized attention
in the context of machine translation, a number of concur-
rent works have used the same technique in other domains.
Wang et al. (2017) apply attention to video classification
and activity recognition, and (Anonymous, 2018) use it for
generative modeling of images. PixelSNAIL significantly
outperforms the latter, which corroborates the findings in
Mishra et al. (2017) that convolutions and attention comple-
ment each other well for modelling long-term dependencies.

5. Conclusion
We introduced PixelSNAIL, a class of autoregressive gen-
erative models that combine causal convolutions with
self-attention. We demonstrate state-of-the-art density
estimation performance on CIFAR-10, ImageNet 32 ×
32 and ImageNet 64 × 64, with a publicly-available
implementation at https://github.com/neocxi/
pixelsnail-public.

Despite their tractable likelihood and strong empirical per-
formance, one notable drawback of autoregressive genera-
tive models is that sampling is slow.PixelSNAIL’s sampling
speed is comparable to that of existing autoregressive mod-
els; the design of models that allow faster sampling without
losing performance remains an open problem.

https://github.com/neocxi/pixelsnail-public
https://github.com/neocxi/pixelsnail-public

PixelSNAIL: An Improved Autoregressive Generative Model

References
Anonymous. Image transformer. Under review at the Inter-

national Conference on Learning Representations (ICLR),
2018. URL https://openreview.net/forum?
id=r16Vyf-0-.

Bowman, Samuel R, Vilnis, Luke, Vinyals, Oriol, Dai, An-
drew M, Jozefowicz, Rafal, and Bengio, Samy. Gener-
ating sentences from a continuous space. arXiv preprint
arXiv:1511.06349, 2015.

Chen, Xi, Kingma, Diederik P, Salimans, Tim, Duan, Yan,
Dhariwal, Prafulla, Schulman, John, Sutskever, Ilya, and
Abbeel, Pieter. Variational lossy autoencoder. arXiv
preprint arXiv:1611.02731, 2016.

Chung, Junyoung, Kastner, Kyle, Dinh, Laurent, Goel,
Kratarth, Courville, Aaron C, and Bengio, Yoshua. A
recurrent latent variable model for sequential data. In
Advances in neural information processing systems, pp.
2980–2988, 2015.

Dayan, Peter, Hinton, Geoffrey E, Neal, Radford M, and
Zemel, Richard S. The helmholtz machine. Neural com-
putation, 7(5):889–904, 1995.

de Freitas, Nando, Højen-Sørensen, Pedro, Jordan,
Michael I, and Russell, Stuart. Variational mcmc. In Pro-
ceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence, UAI’01, pp. 120–127, San Fran-
cisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.
ISBN 1-55860-800-1.

Dinh, Laurent, Krueger, David, and Bengio, Yoshua. Nice:
Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

Dinh, Laurent, Sohl-Dickstein, Jascha, and Bengio, Samy.
Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

Fraccaro, Marco, Sønderby, Søren Kaae, Paquet, Ulrich, and
Winther, Ole. Sequential neural models with stochastic
layers. arXiv preprint arXiv:1605.07571, 2016.

Germain, Mathieu, Gregor, Karol, Murray, Iain, and
Larochelle, Hugo. Made: Masked autoencoder for dis-
tribution estimation. arXiv preprint arXiv:1502.03509,
2015.

Goodfellow, Ian. Nips 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160, 2016.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative adversarial nets.
In Advances in neural information processing systems,
pp. 2672–2680, 2014.

Gregor, Karol, Danihelka, Ivo, Graves, Alex, and Wier-
stra, Daan. Draw: A recurrent neural network for image
generation. arXiv preprint arXiv:1502.04623, 2015a.

Gregor, Karol, Danihelka, Ivo, Graves, Alex, and Wier-
stra, Daan. Draw: A recurrent neural network for image
generation. In Proceedings of the 32nd International
Conference on Machine Learning, 2015b.

Gregor, Karol, Besse, Frederic, Rezende, Danilo Jimenez,
Danihelka, Ivo, and Wierstra, Daan. Towards conceptual
compression. arXiv preprint arXiv:1604.08772, 2016.

Gulrajani, Ishaan, Kumar, Kundan, Ahmed, Faruk, Taiga,
Adrien Ali, Visin, Francesco, Vazquez, David, and
Courville, Aaron. Pixelvae: A latent variable model for
natural images. arXiv preprint arXiv:1611.05013, 2016.

Kalchbrenner, Nal, Espheholt, Lasse, Simonyan, Karen,
Oord, Aaron van den, Graves, Alex, and Kavukcuoglu,
Koray. eural machine translation in linear time. arXiv
preprint arXiv:1610.00527, 2016a.

Kalchbrenner, Nal, Oord, Aaron van den, Simonyan,
Karen, Danihelka, Ivo, Vinyals, Oriol, Graves, Alex,
and Kavukcuoglu, Koray. Video pixel networks. arXiv
preprint arXiv:1610.00527, 2016b.

Kingma, Diederik P and Welling, Max. Auto-Encoding
Variational Bayes. Proceedings of the 2nd International
Conference on Learning Representations, 2013.

Kingma, Diederik P., Salimans, Tim, Jozefowicz, Rafal,
Chen, Xi, Sutskever, Ilya, and Welling, Max. Improv-
ing variational inference with inverse autoregressive flow.
In Advances in Neural Information Processing Systems,
2016.

Kolesnikov, Alexander and Lampert, Christoph H. Pixelcnn
models with auxiliary variables for natural image model-
ing. In International Conference on Machine Learning,
pp. 1905–1914, 2017.

Larochelle, Hugo and Murray, Iain. The Neural Autoregres-
sive Distribution Estimator. AISTATS, 2011.

Mishra, Nikhil, Rohaninejad, Mostafa, Chen, Xi, and
Abbeel, Pieter. A simple neural attentive meta-learner. In
NIPS 2017 Workshop on Meta-Learning, 2017.

Oord, Aaron van den, Dieleman, Sander, Zen, Heiga, Si-
monyan, Karen, Vinyals, Oriol, Graves, Alex, Kalch-
brenner, Nal, Senior, Andrew, and Kavukcuoglu, Ko-
ray. Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016a.

Oord, Aaron van den, Kalchbrenner, Nal, and Kavukcuoglu,
Koray. Pixel recurrent neural networks. International
Conference on Machine Learning (ICML), 2016b.

https://openreview.net/forum?id=r16Vyf-0-
https://openreview.net/forum?id=r16Vyf-0-

PixelSNAIL: An Improved Autoregressive Generative Model

OpenAI. Block-sparse gpu kernels, Dec
2017. URL https://blog.openai.com/
block-sparse-gpu-kernels/.

Polyak, Boris T and Juditsky, Anatoli B. Acceleration of
stochastic approximation by averaging. SIAM Journal on
Control and Optimization, 30(4):838–855, 1992.

Reed, Scott E., van den Oord, Aäron, Kalchbrenner, Nal,
Gómez, Sergio, Wang, Ziyu, Belov, Dan, and de Fre-
itas, Nando. Parallel multiscale autoregressive density
estimation. In Proceedings of The 34th International
Conference on Machine Learning, 2017.

Rezende, Danilo and Mohamed, Shakir. Variational in-
ference with normalizing flows. In Proceedings of The
32nd International Conference on Machine Learning, pp.
1530–1538, 2015.

Rezende, Danilo J, Mohamed, Shakir, and Wierstra, Daan.
Stochastic backpropagation and approximate inference in
deep generative models. In ICML, pp. 1278–1286, 2014.

Salimans, Tim and Kingma, Diederik P. Weight normaliza-
tion: A simple reparameterization to accelerate training of
deep neural networks. arXiv preprint arXiv:1602.07868,
2016.

Salimans, Tim, Karpathy, Andrej, Chen, Xi, and Kingma,
Diederik P. Pixelcnn++: Improving the pixelcnn with
discretized logistic mixture likelihood and other modifi-
cations. arXiv preprint arXiv:1701.05517, 2017.

Theis, Lucas and Bethge, Matthias. Generative image mod-
eling using spatial lstms. In Advances in Neural Informa-
tion Processing Systems, pp. 1927–1935, 2015.

Tran, Dustin, Ranganath, Rajesh, and Blei, David M. Varia-
tional gaussian process. arXiv preprint arXiv:1511.06499,
2015.

Uria, Benigno, Murray, Iain, and Larochelle, Hugo. Rnade:
The real-valued neural autoregressive density-estimator.
In Advances in Neural Information Processing Systems,
pp. 2175–2183, 2013.

van den Oord, Aaron, Dieleman, Sander, Zen, Heiga, Si-
monyan, Karen, Vinyals, Oriol, Graves, Alex, Kalch-
brenner, Nal, Senior, Andrew, and Kavukcuoglu, Ko-
ray. Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016a.

van den Oord, Aaron, Kalchbrenner, Nal, Espeholt, Lasse,
Vinyals, Oriol, Graves, Alex, et al. Conditional image
generation with pixelcnn decoders. In Advances in Neural
Information Processing Systems (NIPS), 2016b.

van den Oord, Aaron, Kalchbrenner, Nal, and Kavukcuoglu,
Koray. Pixel recurrent neural networks. In International
Conference on Machine Learning (ICML), 2016c.

van den Oord, Aaron, Kalchbrenner, Nal, Vinyals, Oriol,
Espeholt, Lasse, Graves, Alex, and Kavukcuoglu, Koray.
Conditional image generation with pixelcnn decoders.
arXiv preprint arXiv:1606.05328, 2016d.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit,
Jakob, Jones, Llion, Gomez, Aidan N, Kaiser, Lukasz,
and Polosukhin, Illia. Attention is all you need. arXiv
preprint arXiv:1706.03762, 2017.

Wang, Xiaolong, Girshick, Ross, Gupta, Abhinav, and He,
Kaiming. Non-local neural networks. arXiv preprint
arXiv:1711.07971, 2017.

Xu, Weidi and Sun, Haoze. Semi-supervised variational
autoencoders for sequence classification. arXiv preprint
arXiv:1603.02514, 2016.

https://blog.openai.com/block-sparse-gpu-kernels/
https://blog.openai.com/block-sparse-gpu-kernels/

