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To simplify our notation, we denote

W (Z1:K) ,
1

K

K∑
k=1

pα(x, Zk)

qβ(Zk|x)
. (1)

A Proof for Theorem 2

Proof. We first prove GLBO(x;K) ≤ φ(pα(x)). This is a direct result of Jensen’s inequality

GLBO(x;K) ≤ ψ−1
(
h
(
EZ1:K∼q

1
K

∑ pα(x,Zk)
qβ(Zk|x)

))
= ψ−1(h(pα(x))) = φ(pα(x)).

To prove that GLBO(x;K) is non-decreasing wrt to K, we apply a similar technique used in [2]. We
assume 0 < K1 < K2. Let I ⊂ {1, · · · ,K2} with #(I) = K1 be a uniformly distributed subset of

distinct indices from {1, · · · ,K2}. Note it holds that EI={i1,··· ,iK1
}

[
ai1+···+aiK1

K1

]
= 1

K2

∑
i ai for

any sequence of numbers {a1, · · · , aK2
}. Together with Jensen’s inequality, we have

GLBO(x;K1) = ψ−1
(
EZ1:K1

[h(W (Z1:K1
))]
)

= ψ−1
(
EZ1:K2

[
EI={i1,··· ,iK1

}
[
h(W (Zi1:iK1

))
]])

≤ ψ−1
(
EZ1:K2

[
h(EI={i1,··· ,iK1

}
[
W (Zi1:iK1

)
]
)
])

= ψ−1
(
EZ1:K2

[h(W (Z1:K2))]
)

= GLBO(x;K2).

GLBO(x;K)’s convergence to φ(pα(x)) as K goes to infinity can be proved by applying the law of
large numbers.

B Proof for Theorem 3

Proof. We know that ψ(u) is convex and non-decreasing, this implies ψ−1(u) is concave. Using
Jensen’s inequality, we have

EZ1:K
[φ(W (Z1:K))] = EZ1:K∼q

[
ψ−1 (h (W (Z1:K))

]
≤ ψ−1 (EZ1:K∼q [h (W (Z1:K))]).

This concludes our proof.
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C Proof for Theorem 5

Proposition 9. (Lyapunov inequality) For a random variable X and numbers 0 < r < s < +∞, it
holds that

(E[|X|r])1/r ≤ (E[|X|s])1/s.

Proof for Theorem 5. We have

CLBO(x;K,T ) = log

((
EZ1:K∼q

[
(W (Z1:K))

1/T
])T)

,

and the result follows by applying the Lyapunov inequality from Proposition 9 while noting that
log(u) is monotonically increasing.

D Proof for Theorem 6

Lemma 10. h(u;T ) = exp( 1
T log(u)) is concave when T > 1.

Proof. We only need to prove h′′(u;T ) < 0. It is easy to show

h′(u;T ) =
1

Tu
h(u;T ),

h′′(u;T ) =
1− T
T 2u2

h(u;T ).

Since u > 0, T > 1 and h(u;T ) > 0, therefore we have h′′(u;T ) < 0.

Proof for Theorem 6.
1. By Theorem 2 and Lemma 10, we have

CLBO(x; 1, T ) ≤ CLBO(x;K,T ) ≤ log pα(x).

Since we know limT→1 CLBO(x; 1, T )→ log pα(x) from D. Blei’s χ-VI paper, the result follows.
2. Use Taylor expansion.

E Proof for Theorem 8.

Proof. By the use of Jensen’s inequality, we have

RVB(x;K,T ) = EZ1:K

[
T log

(
1
K

∑K
k=1 (W (Zk))

1/T
)]

≤ T log
(
EZ1:K

[
1
K

∑K
k=1 (W (Zk))

1/T
])

≤ T log
(
EZ1:K

[
(W (Z1:K))

1/T
])

= CLBO(x;K,T ),

where W (Zk) =
pα(x,Zk)
qβ(Zk|x) .

F Upper bounds

To establish the φ-evidence upper bounds, we exchange the concavity and convexity in the theories
discussed in the main text. Now we assume that: (iv) φ(u) is convex, (v) ψ(u) is concave, and (vi)
h(u) , ψ(φ(u)) is convex. Reverting the inequalities in Theorem 2, Theorem 3 and Theorem 5 gives
the respective upper bound counterpart. We omit the the proofs as they are similar to those for the
lower bounds.

As a concrete example, consider the empirical χ2 evidence upper bound estimator used in [3]

χ2(x;K) , EZ1:K∼q

[
1

K

K∑
k=1

(
pα(x, Zk)

qβ(Zk|x)

)2
]
,
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Figure SM 1: Comparison of theoretical upper bounds on the toy distribution. K = 2 in this experiment.

this is our φ-evidence upper bound with K = 1, φ(u) = u2 and ψ(u) = u. Our framework lends
χ2(x;K) more theoretical justifications: unlike RVB(x,K), EZ1:K

[
χ2(x,K)

]
is guaranteed to

be an upper bound on χ2-evidence score. Our theory also provides ways to improve χ2(x;K)’s
performance, as leveraging importance sampling and a concave ψ is guaranteed to sharpen the bound.
We compare our K-sample generalized upper bound with Rényi upper bound on the toy model
distribution in Figure SM 1.

We remark that optimizing the upper bound is numerically more difficult than the lower bound.
The challenge comes from sample estimate of the term 1

qβ(z|x) in importance-weighted estimator
(1). Large values of 1

qβ(z|x) will be sampled with vanishingly small probability. Large values of
1

qβ(z|x) , which will be sampled predominately, usually does not contribute much to the actual integral.
Additionally, since W (Z), Z ∼ qβ(z|x) can be vary across a large numerical range, very unstable
gradient estimates (high variance) can be expected for complex problems. In our experiments, we are
unable to use a reasonable number of posterior samples to successfully optimize the upper bound.
We hypothesize that introducing an auxiliary proposal distribution that is more informative on the
geometry of the IW-estimate W (z) can help. We leave this idea for future exploration.

G Maximal entropy argument for model selection with a saturating φ(u)

Now we provide an alternative justification for using a saturating evidence function φ(u). Let
D̃m = {x̃i}mi=1 be m iid samples from data distribution pd(x), and p̂m = 1

m

∑m
i=1 δx̃i be the

corresponding empirical distribution. Consider a discrete approximation q(x) to pd(x), such that
samples are only allowed to take values from Xm. A natural choice q̂m yielding a good (discrete)
approximation would be q̂m(xi) ∝ qβ∗(xi), where qβ∗(x) is a model that best explains the training
samples1. We also know that as m → ∞, p̂m(x) converges to pd(x). Therefore, we want the
difference between q̂m(x) and p̂m(x), for instance, via KL(q̂m ‖ p̂m), to be small. Algebraic
manipulation reveals that minimization of KL(q̂m ‖ p̂m) is equivalent to the maximization of the
following Shannon entropy term

−
∑
i

qβ(xi) log qβ(xi).

This closely related to the principle of maximum entropy learning [4, 5], which states that under
the constraints of testable information, the best distribution that represents the current state of
knowledge is the one with largest uncertainty, as measured by the Shannon entropy. In general,
an evidence distribution with lower variance yields higher entropy, and in practice, a saturating
φ-evidence function, as discussed above, encourages such low variance evidence distribution. In the
model-selection setting, we can treat the expected log-evidence score as our testable information.
More specifically, we want to use GLBO with saturating φ(u) evidence to reduce the variance of
evidence distribution while maintaining a high log-evidence bound.

1Training samples do not necessarily overlap with D̃m.
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H An asymptotic argument for the moving average estimator

Let f be a monotonically increasing concave function, X = x0 + η, where η is a mean zero random
variable with small absolute value. Using Taylor expansion, the bias of EX [f(X)] wrt f(E[X]) can
be approximated as

EX [f(X)]− f(E[X]) ≈ f ′′(x0)var[η],
which implies the bias diminishes linearly wrt the variance of η, when η is sufficiently small.

We also note that the moving average trick can be also applied to the K-sample estimate term

p̂K(x) =
1

K

K∑
k=1

pα(x, Zk)

qβ(zk|x)
.

Our objective then becomes
J ema,2

GLBO(x, t) = ψ−1(ĥema,2(x, t)),

with ĥema,2(x, t) iteratively defined as

ĥema,2(x, t) = (1− wt)ĥema,2(x, t− 1)

+wth (p̂ema(x, t)) ,

p̂ema(x, t) = (1− vt)p̂ema(x, t− 1)

+ vt

(
1

K

K∑
k=1

pα(x, zt,k)

qβ(zt,k|x)

)
,

where wt, vt ∈ [0, 1] are learning rates.

I Choice of temperature T and empirical performance

To examine how temperature T affects empirical performance, we vary T from 23 to 210 on the
log-scale using the AVB GLBO variant. Figure 2 summarizes the test log-evidence result for the
MNIST dataset. The performance is maximized with a moderate temperature. As T shrinks further,
the optimization becomes unstable in the current setting.

Figure SM 2: MNIST test log-evidence with different temperature.

J Relation to information theoretic model selection methods

In classical machine learning, model selection often relies on information-theoretic measures such
as the Akaike information criterion (AIC) [1], Bayesian information criterion (BIC) [7], and min-
imum description length (MDL) [6]. For example, AIC uses an asymptotic argument to derive an
information score based on the KL-divergence between the true and model distribution:

AIC(p(x; θ),D) , 2(#(α)− log pα(D)),
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where #(·) denotes the counting measure. Models with smaller information score are preferred,
often involving a tradeoff between model complexity (#α) and model evidence (log pα(x)). Other
information criteria share a similar rationale, which is closely related to the principle of Occam’s razor
and empirical learning theory. Modern practice in machine learning often employs over-parametrized
learners, yielding superb performance not explained by conventional learning theory. The very
concept of “model complexity” requires a major overhaul in this modern setting; we refer readers
to the work of [8] for some recent advances. Our work focuses the model evidence part that suffers
from the pathologies we discussed in earlier sections.

K Detailed experimental setups and additional results

K.1 Toy model

In Figure SM 1 we show the joint density of our toy distribution, and the approximate posterior qβ(z)
used to evaluate the theoretical bounds.

Figure SM 1: Toy distribution used in the theoretical bound experiment.

K.2 Adversarial Variational Bayesian (AVB) experiment

We have set temperature parameter T = 100 for the AVB MNIST experiments. A constant smoothing
factor 0.3 is used for all experiments. For the AVB models, we have chosen the model with latent
dimension 32. Other parameters parameters follow default settings. In Figure SM 2 we show the
generated images and feature space interpolation on the MNIST and CelebA dataset.

K.2.1 The adaptive contrast (AC) trick

AC introduces an auxiliary distribution q̃γ(z|x) with known density expression, and further decom-
pose rβ(x, z) as

rβ(x, z) = r̃(x, z) + c(x, z),

where r̃(x, z) , log qβ(z|x) − log q̃γ(z|x) and c(x, z) , log q̃γ(z|x) − log p(z). Here r̃(x, z) is
similarly learned with a density ratio estimator by sampling from qβ(z|x) and q̃γ(z|x), and c(x, z) is
computed directly. In our experiments, we use a mean and variance matched Gaussian for q̃γ(z|x).

K.3 Convergence rate comparison experiment

In this experiment, we set the number of importance samples to K = 5. We used the following neural
networks for encoder and decoder as described in Table SM 1.

K.4 Normalizing flow experiment

In our normalizing flow experiments, we consider the Planar Flows of the form
fm(zm−1, x;β) = zm−1 + (uβ(x)·

h(wβ(x)
T zm−1 + bβ(x))),
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(a) Digit generation. (b) Digit interpolation.

(c) Face generation. (d) Face interpolation.

Figure SM 2: Visual inspection for GLBO.

where uβ(x), wβ(x) ∈ Rd, bβ(x) ∈ R are functions of x parameterized by β, and h(u) is a activation
function, e.g. tanh(u). For PF we have

log(
∣∣det(∇zm−1zm)

∣∣) = ∣∣1 + uTβ h
′(wTβ zm−1 + b)wβ

∣∣ .
We modified a publicly available implementation of NF from github 2 and set the number of flows to
M = 16.

K.5 GLBO model selection experiment

In the model-selection experiment, we set `lower = −90. This choice is made to make sure the
φ-evidence score is well defined for all samples , and there is sufficient difference between the φ
gradient of low-evidence and high-evidence samples.

2https://github.com/abhisheksaurabh1985/vae_nf
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Encoder X to z Decoder z to X

Input Image X Input z random noise

4× 4 conv. 32 lReLU, stride 2, BN concat random noise
4× 4 conv. 64 lReLU, stride 2, BN MLP output 1024, lReLU, BN
4× 4 conv. 128 lReLU, stride 2, BN MLP output 8192, lReLU, BN
4× 4 conv. 256 lReLU, stride 2, BN
4× 4 conv. 512 lReLU, stride 2, BN 5× 5 deconv. 256 lReLU, stride 2, BN

MLP output 512, lReLU 5× 5 deconv. 128 lReLU, stride 2, BN
MLP output dim of z, tanh 5× 5 deconv. 64 lReLU, stride 2, BN

5× 5 deconv. 3 tanh, stride 2, BN

Table SM 1: Architecture of the models for VAE on CelebA. lReLU is the leaky ReLU with slope 0.1.

Test RMSE Test log-likelihood

Dataset IWVI IWVI

Boston 2.85 ± .42 -2.46 ± .15
Concrete 5.17 ± .32 -3.05 ± .07
Energy 0.95. ± .18 -1.66 ± .05
Kin8nm 0.08 ± .00 1.14 ± .03
Naval 0.00 ± .00 4.11 ± .16
CCPP 4.03 ± .14 -2.82 ± .03

Winequality 0.62 ± .03 -0.94 ± .05
Yacht 0.95 ± 0.25 -2.69 ± .01

Protein 4.50 ± .08 -2.90 ± .01
Year 8.81 ± NA -3.62 ± NA

Table SM 2: Test RMSE and log-likelihood results for Bayesian neural net regression.

K.6 Bayesian neural net regression (BNN) experiment

We benchmarked with single-layer neural nets are used in this experiment. 100 hidden units are
used for 2 large datasets (Protein and Year Predict), and 50 hidden units are used for the other 8
small datasets. Standard Gaussian θ ∼ N (0, I) is used as our prior for the network weights, and we
use Gaussian approximation N (θ;µ, σ2) for the posterior. We repeat the experiments for 20 times
on the small datasets, and for 5 times on Protein and 1 time for YearPredict due to computational
considerations. The batch size is set to 1, 000 and 100 respectively for large and small datasets. The
results for BNN trained with importance-weighted ELBO is reported in Table SM 2.
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