
DRACO: Byzantine-resilient Distributed Training via Redundant Gradients

A. Proofs
A.1. Proof of Theorem 3.1

For simplicity of proof, let us define a valid s-attack first.

Definition A.1. N = [n1,n2, · · · ,nP ] is a valid s attack if and only if |{j : ‖nj‖0 6= 0}| ≤ s.

Now we prove theorem 3.1. Suppose (A, E,D) can resist s adversaries. The goal is to prove ‖A‖0 ≥ P (2s+ 1). In fact we
can prove a slightly stronger version: ‖A·,i‖0 ≥ (2s+ 1) , i = 1, 2, · · · , B. Suppose for some i, ‖A·,i‖0 = τ < (2s+ 1).
Without loss of generality, assume that A1,i,A2,i,Aτ,i are non-zero. Let G−i = [g1,g2, · · · ,gi−1,gi+1, · · · ,gP ]. Since
(A, E,D) can protect against s adversaries, we have for any G,

D(ZA,E,G + N) = G1 = G−i1 + gi,

for any valid s-attack N. In particular, let g1
i = 1d, gi2 = −1d, G1 = [g1,g2, · · · ,gi−1,g

1
i ,gi+1, · · · ,gP ], and

G2 = [g1,g2, · · · ,gi−1,g
2
i ,gi+1, · · · ,gP ]. Then for any valid s attack N1,N2,

D(ZA,E,G1

+ N1) = G−i1P−1 + 1d.

and

D(ZA,E,G2

+ N2) = G−i1P−1 − 1d.

Our goal is to find N1,N2 such that D(ZA,E,G1

+ N1) = D(ZA,E,G2

+ N2) which then will lead to a contradiction.
Construct N1 and N2 by

N1
`,j =


[
ZA,E,N2

]
`,j
−
[
ZA,E,N1

]
`,j
, j = 1, 2, · · · , d τ−1

2 e
0, otherwise

and

N2
`,j =


[
ZA,E,N1

]
`,j
−
[
ZA,E,N2

]
`,j
, j = d τ−1

2 e, d τ−1
2 e+ 1, · · · , τ

0, otherwise

One can easily verify that N1,N2 are both valid s attack. Meanwhile, we have[
ZA,E,G1

]
`,j

+ N1
`,j =

[
ZA,E,G2

]
`,j

+ N2
`,j , j = 1, 2, · · · , τ

due to the above construction of N1,N2. Note that Aj,i = 0 for all j > τ , which implies that for all compute nodes with
index j > τ , their encoder functions do not depend on the ith gradient. Since G1 and G2 only differ in the ith gradient, the
encoder function of any compute node with index j > τ should have the same output. Thus, we have[

ZA,E,G1
]
`,j

+ N1
`,j =

[
ZA,E,G1

]
`,j

=
[
ZA,E,G2

]
`,j

=
[
ZA,E,G2

]
`,j

+ N2
`,j , j > τ

Hence, we have [
ZA,E,G1

]
`,j

+ N1
`,j =

[
ZA,E,G2

]
`,j

+ N2
`,j ,∀j

which means

ZA,E,G1

+ N1 = ZA,E,G2

+ N2

Therefore, we have

D(ZA,E,G1

+ N1) = D(ZA,E,G2

+ N2)



DRACO: Byzantine-resilient Distributed Training via Redundant Gradients

and thus

G−11P−1 + 1d = D(ZA,E,G1

+ N1) = D(ZA,E,G2

+ N2) = G−11P−1 − 1d

This gives us a contradiction. Hence, the assumption is not correct and we must have ‖A·,i‖0 ≥ (2s+ 1) , i = 1, 2, · · · , P .
Thus, we must have ‖A‖0 ≥ (2s+ 1)P .

A direct but interesting corollary of this theorem is a bound on the number of adversaries DRACO can resist.

Corollary A.1. (A, E,D) can resist at most P−1
2 adversarial nodes.

Proof. According to Theorem 3.1, the redundancy ratio is at least 2s+ 1, meaning that every data point must be replicated
by at least 2s + 1. Since there are P compute node in total, we must have 2s + 1 ≤ P , which implies s ≤ P−1

2 . Thus,
(A, E,D) can resist at most P−1

2 adversaries.

In other words, at least a majority of the compute nodes must be non-adversarial.

A.2. Proof of Theorem 3.2

Since there are at most s adversaries, there are at least 2s+ 1− s = s+ 1 non-adversarial compute nodes in each group.
Thus, performing majority vote on each group returns the correct gradient, and thus the repetition code guarantees that
the result is correct. The complexity at each compute node is clearly O((2s + 1)d) since each of them only computes
the sum of (2s+ 1) d-dimensional gradients. For the decoder at the PS, within each group of (2s+ 1) machine, it takes
O((2s+1)d) computations to find the majority. Since there are P

(2s+1) groups, it takes in totalO((2s+1)d P
(2s+1) ) = O(Pd)

computations. Thus, this achieves linear-time encoding and decoding.

A.3. Proof of Lemma 3.3

We first prove that Aj,k = 0⇒Wj,k = 0.

Suppose Aj,k = 0 for some j, k. Then by definition k ∈ αj . By 0 =
[
qj 1

]
· [CL]·,αj we have 0 =

[
qj 1

]
[CL]·,k =

Wj,k.

Next we prove that for any index set U such that |U | ≥ P − (2s + 1), the column span of W·,U contains 1. This is
equivalent to that for any index set U such that |U | ≥ P − (2s+ 1), there exists a vector b such that W·,Ub = 1. Now we
show such b exists. Note that CL is a (P − 2s)× P full rank Vandermonde matrix and thus any P − 2s columns of CL are
linearly independent. Let Ū be the first P − 2s elements in U . Then all columns of [CL]·,Ū are linearly independent and

thus [CL]·,Ū is invertible. Let bŪ , b̄ =
(
CL
Ū

)−1 [
0 0 · · · 0 1

]
T . For any j 6∈ Ū , let bj = 0. Then we have

WUb =
[
Q 1

]
× [CL]·,U b

=
[
Q 1

]
× [CL]·,Ū b̄

=
[
Q 1

]
× [CL]·,Ū × [CL]

−1
·,Ū
[
0 0 · · · 0 1

]
T

=
[
Q 1

][
0 0 · · · 0 1

]
T

= 1.

This completes the proof.

A.4. Proof of Lemma 3.4

We need a few lemmas first.

Lemma A.2. Let a P -dimensional vector γ , [γ1, γ2, · · · , γP ]
T

= (fN)
T . Then we have

Pr({j : γj 6= 0} = {j : ‖N·,j‖0 6= 0}) = 1.



DRACO: Byzantine-resilient Distributed Training via Redundant Gradients

Proof. Let us prove that

Pr(N·,j 6= 0}|γj 6= 0) = 1.

and

Pr(γj 6= 0|N·,j 6= 0}) = 1.

for any j. Combining those two equations we prove the lemma.

The first equation is straightforward. Suppose N·,j = 0. Then we immediately have γj = fN·,j = 0. For the second one,
note that f has entries drawn independently from the standard normal distribution. Therefore we have that γj = fN·,j ∼
N (1TN·,j , ‖N·,j‖22). Since γj is a random variable with normal distribution, the probability of it being any particular value
is 0. In particular,

Pr(γj = 0|N·,j 6= 0}) = 0,

and thus

Pr(γj 6= 0|N·,j 6= 0}) = 1

which proves the second equation and finishes the proof.

Lemma A.3. RCycC†R = NC†R.

Proof. By definition, RCycC†R = (GW + N) C†R =
(
G
[
Q 1

]
CL + N

)
C†R = G

[
Q 1

]
CLC†R + NC†R = NC†R.

In the last equation we use the fact that IDFT matrix is unitary and thus CLC†R = 0(P−2s)×(2s).

Lemma A.4. Let a P -dimensional vector ĥ , [ĥ0, ĥ1, · · · , ĥP−1]T be the discrete Fourier transformation (DFT) of a
P -dimensional vector t̂ , [t̂1, t̂2, · · · , t̂P−1]T which has at most s non-zero elements, i.e., ĥ = C†t̂ and ‖t‖0 ≤ s. Then
there exists a s-dimensional vector β̂ , [β̂0, β̂1, · · · , β̂s−1]T , such that

ĥP−s−1 ĥP−s . . . ĥP−2

ĥP−s−2 ĥP−s−1 . . . ĥP−3

. . . . . .
. . .

...
ĥP−2s ĥP−s+1 . . . ĥP−s−1

 β̂ =


ĥP−1

ĥP−2

...
ĥP−s

. (A.1)

Furthermore, for any β̂ satisfying the above equations,

ĥ` =

s−1∑
u=0

β̂uĥ`+u−s, (A.2)

always holds for all `, where ĥ` = ĥP+`.

Proof. Let i1, i2, · · · , is be the index of the non-zero elements in t̂. Let us define the location polynomial p(ω) =∏s
k=1(ω − e− 2πi

P ik) ,
∑s
k=0 θkω

k, where θs = 1. Let a s-dimensional vector β̂∗ , −[θ0, θ1, · · · , θs−1]T .

Now we prove that β̂ = β̂∗ is a solution to the system of linear equations (A.1). To see this, note that by definition, for any
λ, we have 0 = p(e−

2πi
P iλ) =

∑s
k=0 θke

− 2πi
P iλk. Multiply both side by t̂iλe

− 2πi
P iλη , we have

0 = t̂iλe
− 2πi

P iλη
s∑

k=0

θke
− 2πi

P iλk

= t̂iλ

s∑
k=0

θke
− 2πi

P iλ(k+η).



DRACO: Byzantine-resilient Distributed Training via Redundant Gradients

Summing over λ, we have

0 =

s∑
λ=1

t̂iλ

s∑
k=0

θke
− 2πi

P iλ(k+η)

=

s∑
k=0

θk

s∑
λ=1

t̂iλe
− 2πi

P iλ(k+η).

By definition, ĥj = Cj,·t̂ = 1√
P

∑P−1
k=0 e

− 2πi
P jk t̂k = 1√

P

∑s
λ=1 t̂iλe

− 2πi
P iλj . Hence, the above equation becomes

0 =

s∑
k=0

θk
√
Pĥk+η

which is equivalent to

ĥs+η =

s−1∑
k=0

−θkĥk+η

due to the fact that θs = 1. By setting η = −s+ P − 1,−s+ P − 2, · · · ,−s+ P − s, one can easily see that the above
equation becomes identical to the system of linear equations in (A.1) with β̂ = β̂∗ = −[θ0, θ1, · · · , θs−1]T .

Now let us prove for any β̂ that satisfies equation (A.1), we have (A.2). Note that an equivalent form of (A.2) is that the
following system of linear equations


ĥP−s−1+` ĥP−s+` . . . ĥP−2+`

ĥP−s−2+` ĥP−s−1+` . . . ĥP−3+`

. . . . . .
. . .

...
ĥP−2s+` ĥP−s+1+` . . . ĥP−s−1+`

 β̂ =


ĥP−1+`

ĥP−2+`

...
ĥP−s+`

 (A.3)

holds for ` = 0, 1, 2 · · · , P − 1. We prove this by induction. When ` = 1, this is true since β̂ satisfies the system of linear
equations in (A.1). Assume it holds for ` = µ, i.e.,

ĥP−s−1+µ ĥP−s+µ . . . ĥP−2+µ

ĥP−s−2+µ ĥP−s−1+µ . . . ĥP−3+µ

. . . . . .
. . .

...
ĥP−2s+µ ĥP−s+1+µ . . . ĥP−s−1+µ

 β̂ =


ĥP−1+µ

ĥP−2+µ

...
ĥP−s+µ


Now we need to prove it also holds when ` = µ+ 1, i.e.,

ĥP−s−1+µ+1 ĥP−s+µ+1 . . . ĥP−2+µ+1

ĥP−s−2+µ+1 ĥP−s−1+µ+1 . . . ĥP−3+µ+1

. . . . . .
. . .

...
ĥP−2s+µ+1 ĥP−s+1+µ+1 . . . ĥP−s−1+µ+1

 β̂ =


ĥP−1+µ+1

ĥP−2+µ+1

...
ĥP−s+µ+1

.

First, since both β̂, β̂∗ satisfy the induction assumption, we must have
ĥP−s−1+µ ĥP−s+µ . . . ĥP−2+µ

ĥP−s−2+µ ĥP−s−1+µ . . . ĥP−3+µ

. . . . . .
. . .

...
ĥP−2s+µ ĥP−s+1+µ . . . ĥP−s−1+µ

(β̂ − β̂∗) = 0s.



DRACO: Byzantine-resilient Distributed Training via Redundant Gradients

Due to the induction assumption, one can verify that

[θs−1, θs−2, · · · , θ0]


ĥP−s−1+µ ĥP−s+µ . . . ĥP−2+µ

ĥP−s−2+µ ĥP−s−1+µ . . . ĥP−3+µ

. . . . . .
. . .

...
ĥP−2s+µ ĥP−s+1+µ . . . ĥP−s−1+µ

 =
[
ĥP−s+µ ĥP−s+µ+1 · · · ĥP−2+µ+1

]
,

and thus we have [
ĥP−s+µ ĥP−s+µ+1 · · · ĥP−2+µ+1

]
(β̂ − β̂∗)

=[θs−1, θs−2, · · · , θ0]


ĥP−s−1+µ ĥP−s+µ . . . ĥP−2+µ

ĥP−s−2+µ ĥP−s−1+µ . . . ĥP−3+µ

. . . . . .
. . .

...
ĥP−2s+µ ĥP−s+1+µ . . . ĥP−s−1+µ

(β̂ − β̂∗) = 0.

Hence,[
ĥP−s+µ ĥP−s−1+µ . . . ĥP−1+µ

]
β̂

=
[
ĥP−s+µ ĥP−s−1+µ . . . ĥP−1+µ

]
β̂∗ +

[
ĥP−s+µ ĥP−s−1+µ . . . ĥP−1+µ

]
(β̂ − β̂∗) = ĥP+µ = ĥP−1+µ+1.

Furthermore, by induction assumption, we have
ĥP−s−2+µ+1 ĥP−s−1+µ+1 . . . ĥP−3+µ+1

ĥP−s−3+µ+1 ĥP−s−2+µ+1 . . . ĥP−4+µ+1

. . . . . .
. . .

...
ĥP−2s+µ+1 ĥP−s+1+µ+1 . . . ĥP−s+1+µ+1

 β̂ =


ĥP−s−1+µ ĥP−s−2+µ . . . ĥP−2+µ

ĥP−s−2+µ ĥP−s−1+µ . . . ĥP−3+µ

. . . . . .
. . .

...
ĥP−(2s−1)+µ ĥP−s+µ . . . ĥP−s+µ

 β̂

=


ĥP−1+µ

ĥP−2+µ

...
ĥP−(s−1)+µ

 =


ĥP−2+(µ+1)

ĥP−3+(µ+1)

...
ĥP−s+(µ+1)

.
Combing those two result we have proved

ĥP−s−1+µ+1 ĥP−s+µ+1 . . . ĥP−2+µ+1

ĥP−s−2+µ+1 ĥP−s−1+µ+1 . . . ĥP−3+µ+1

. . . . . .
. . .

...
ĥP−2s+µ+1 ĥP−s+1+µ+1 . . . ĥP−s−1+µ+1

 β̂ =


ĥP−1+µ+1

ĥP−2+µ+1

...
ĥP−s+µ+1

.
By induction, the equation A.3 holds for all ` = 0, 1, · · · , P − 1. Equation A.3 immediately finishes the proof.

Now we are ready to prove Lemma 3.4. By Lemma A.2, for the P -dimensional vector γ = (fN)
T , we have

Pr({j : γj 6= 0} = {j : ‖N·,j‖0 6= 0}) = 1,

Since there are at most s adversaries, the number of non-zero columns in N is at most s and hence there are at most
s non-zero elements in γ, i.e., ‖γ‖0 ≤ s, with probability 1. Now consider the case when ‖γ‖0 ≤ s. First note that
[hP−2s, hP−2s+1, · · · , hP−1] = fRCycC†R = fNC†R = γTC†R, where the second equation is due to Lemma A.3. Now
let us construct ĥ = [ĥ0, ĥ1, · · · , ĥP−1]T by ĥ = C†γ. Note that C is symmetric and thus C† =

[
C†
]T

. One can easily
verify that ĥ` = h`, ` = P − 2s, P − 2s+ 1, · · · , P − 1. Therefore, the equation

hP−s−1 hP−s . . . hP−2

hP−s−2 hP−s−1 . . . hP−3

. . . . . .
. . .

...
hP−2s hP−s+1 . . . hP−s+1



β0

β1

...
βs−1

 =


hP−1

hP−2

...
hP−s





DRACO: Byzantine-resilient Distributed Training via Redundant Gradients

becomes 
ĥP−s−1 hP−s . . . ĥP−2

ĥP−s−2 ĥP−s−1 . . . ĥP−3

. . . . . .
. . .

...
ĥP−2s ĥP−s+1 . . . ĥP−s+1



β0

β1

...
βs−1

 =


ĥP−1

ĥP−2

...
ĥP−s


which always has a solution. Assume we find one solution β̄ = [β̄0, β̄1, · · · , β̄P−1]T . By the second part of Lemma A.4, we
have

ĥ` =

s−1∑
u=0

β̄uĥ`+u−s,∀`.

Now we prove by induction that h` = ĥ`, ` = 0, 1, · · · , P − 1.

When ` = 0, we have

ĥ0 =

s−1∑
u=0

β̄uĥu−s =

s−1∑
u=0

β̄uhu−s = h0

where the second equation is due to the fact that [hP−2s, hP−2s−1, · · · , hP−1] = [ĥP−2s, ĥP−2s−1, · · · , ĥP−1] and
ĥP+` = ĥ`, hP+` = h` (by definition).

Assume that for ` ≤ µ, ĥ` = h`.

When ` = µ+ 1, we have

ĥµ+1 =

s−1∑
u=0

β̄uĥµ+1+u−s =

s−1∑
u=0

β̄uhµ+1+u−s = hµ+1

where the second equation is because of the induction assumption for ` ≤ µ, ĥ` = h`.

Thus, we have h` = ĥ` for all `, which means h = ĥ = C†γ. Thus t, the IDFT of h, becomes t = Ch = CC†γ = γ.
Then the returned Index Set V = {j : ej+1 6= 0} = {j : γj 6= 0}. By Lemma A.2, with probability 1, {j : γj 6= 0} = {j :
‖nj‖0 6= 0}. Therefore, we have with probability 1, V = {j : ‖nj‖0 6= 0}, which finishes the proof.

A.5. Proof of Theorem 3.5

We first prove the correctness of the cyclic code. By Lemma 3.4, the set U contains the index of all non-adversarial
compute nodes with probability 1. By Lemma 3.3, there exists b such that W·,Ub = 1. Therefore, uCyc = RCyc

·,U b =

(GW + N)·,Ub = GW·,Ub = G1P . Thus, The cyclic code (ACyc , ECyc , DCyc) can recover the desired gradient and
hence resist any ≤ s adversaries with probability 1.

Next we show the efficiency of the cyclic code. By the construction of ACyc and W, the redundancy ratio is 2s+ 1 which
reaches the lower bound. Each compute node needs to compute a linear combination of the gradients of the data it holds,
which needs O((2s+ 1)d) computations. For the PS, the detection function φ(·) takes O(d) (generating the random vector
f ) + O(dP + 2Ps) (computing fRC†R) + O(s2) (solving the Toeplitz system of linear equations in (A.1) ) + O((P − 2s)s)
(computing h`, ` = 0, 1, 2, · · · , P − 2s− 1 ) + O(P logP ) (computing the DFT of h ) + O(P ) (examining the non-zero
elements of t ) = O(d+ dP + 2Ps+ s2 + (P − 2s)s+ P logP + P ) = O(dP + Ps+ P logP ). Finding the vector b
takes O(P 3) (by simply constructing b via [CL]·,Ū , though better algorithms may exist). The recovering equation R·,Ub

takes O(dP ). Thus, in total, the decoder at the PS takes O(dP + P 3 + P logP ). When d � P , i.e., d = Ω(P 2), this
becomes O(dP ). Therefore, (ACyc , ECyc , DCyc) also achieves linear-time encoding and decoding.

B. Streaming Majority Vote Algorithm
In this section we present the Boyer-Moore majority vote algorithm (Boyer & Moore, 1991), which is an algorithm that only
needs computation linear in the size of the sequence.



DRACO: Byzantine-resilient Distributed Training via Redundant Gradients

Algorithm 2 Streaming Majority Vote.
Input :n items I1, I2, · · · , In
Output :The majority of the n items
Initialize an element Ma = I1 and a counter Counter = 0.

for i = 1 to n do
if Counter == 0 then

Ma = Ii.
Counter = 1.

else if Ma == Ii then
Counter = Counter + 1.

else
Counter = Counter− 1.

end
end
Return Ma.

Clearly this algorithm runs in linear time and it is known that if there is a majority item then the algorithm finally will return
it (Boyer & Moore, 1991).

C. Additional Experimental Results
C.1. End-to-end Convergence Performance

Table 4. Speedups (i.e., X times faster) of DRACO (Repetition/Cyclic Codes) over GM when using a fully-connected neural network on
the MNIST dataset. We run both methods until they reach the same specified testing accuracy. In the table ‘const’ and ‘rev grad’ refer to
the two types of adversarial updates.

Test Accuracy 80% 85% 88% 90%

2.2% const 3.4/2.7 3.5/2.8 4.8/3.9 4.1/3.1

6.7% const 2.7/2.0 4.1/3.1 6.0/4.6 5.6/4.1

11.1% const 2.9/2.2 4.8/3.7 6.1/4.7 5.3/3.8

2.2% rev grad 2.2/1.9 2.4/2.2 4.1/3.7 3.2/2.9

6.7% rev grad 3.1/2.5 3.3/3.1 5.5/4.8 4.5/3.7

11.1% rev grad 2.7/2.3 3.0/2.6 3.1/2.7 3.1/2.6

C.2. Runtime Analysis for Large Model

We provide the large model runtime analysis for ResNet-152 here. As shown in Figure 5, we observe a trend similar to that
from VGG and AlexNet. The decoding time of the GM approach is significantly higher than that of DRACO. DRACO, as
expected, is several times faster than the GM approach in terms of the total runtime.

C.3. Effects of number of adversaries

We also analyze how the number of adversaries affects the performance of DRACO. We ran Cifar10 on ResNet-18 with 15
compute nodes, varying the number of adversaries s from 1 to 7. For these experiments, we used the constant adversary
model. For the repetition code, we adapted the group size based on s while in the cyclic code we always took 2s+ 1. Figure
6 shows the total runtime cost of DRACO does not increase significantly as the number of adversaries increase. This is
likely due to the fact that even at s = 7, the communication cost (which is not affected by the number of stragglers) is the
dominant cost of the algorithm.



DRACO: Byzantine-resilient Distributed Training via Redundant Gradients

Comp Comm EncodeDecode10−1

100

101

102

Ti
m

e 
Pe

r 
It

er
at

io
n 

(s
ec

)

(a) Rev Grad

Comp Comm EncodeDecode10−1

100

101

102

Ti
m

e 
Pe

r 
It

er
at

io
n 

(s
ec

)

(b) Const

Figure 5. Empirical Per Iteration Time Cost on ResNet-152 with 11.1% adversarial nodes (a): reverse gradient adversary, (b): constant
adversary

Table 5. Averaged Per Iteration Time Costs on ResNet-152 with 11.1% adversary

Time Cost (sec) Comp Comm Encode Decode

GM const 1.72 39.74 0 212.31

Rep const 20.81 39.36 0.24 7.74

SGD const 1.64 27.99 0 0.09

Cyclic const 23.08 39.36 5.94 6.64

GM rev grad 1.73 43.98 0 161.29

Rep rev grad 20.71 42.86 0.29 7.54

SGD rev grad 1.69 36.27 0 0.09

Cyclic rev grad 23.08 42.86 5.95 6.65

Table 6. Averaged Per Iteration Time Costs on VGG-19 with 11.1% adversary

Time Cost (sec) Comp Comm Encode Decode

GM const 0.26 12.47 0 74.63

Rep const 2.59 12.91 0.20 3.03

SGD const 0.25 6.9 0 0.03

Cyclic const 3.08 12.91 4.01 4.30

GM rev grad 0.26 14.57 0 39.02

Rep rev grad 2.55 14.66 0.20 3.04

SGD rev grad 0.25 7.15 0 0.03

Cyclic rev grad 3.07 14.66 4.02 3.65



DRACO: Byzantine-resilient Distributed Training via Redundant Gradients

Table 7. Averaged Per Iteration Time Costs on AlexNet with 11.1% adversarial nodes.

Time Cost (sec) Comp Comm Encode Decode

GM const 0.37 27.40 0 275.08

Rep const 4.16 30.71 0.67 10.65

SGD const 0.35 25.72 0 0.14

Cyclic const 3.67 30.71 13.55 12.54

GM rev grad 0.36 28.10 0 163.48

Rep rev grad 4.15 31.76 0.67 9.98

SGD rev grad 0.35 26.76 0 0.11

Cyclic rev grad 3.66 31.755 13.55 12.54

6.7 13.3 20 26.6 33.3 40 46.7
Percentage of Aversarial Nodes (%)

50

100

150

200

250

300

Ti
m

e 
Co

st
 (

se
c)

(a) Repetition Code

6.7 13.3 20 26.6 33.3 40 46.7
Percentage of Aversarial Nodes (%)

100

110

120

130

140

150

160

Ti
m

e 
Co

st
 (

se
c)

(b) Cyclic Code

Figure 6. Time Cost to Reach 70% Test set Accuracy with Cifar10 dataset run with ResNet-18 on cluster 15 computation nodes varying
Percentage of Adversarial Nodes from 6.7% to 46.7% with Constant Adversary (a) Repetition Code and (b) Cyclic Code


