Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization

A Proof of the Main Theory

In this section, we will provide a detailed proof for the main theory. We first introduce the resampling version of our
proposed Algorithm 1, which is displayed in Algorithm 3.
Algorithm 3 Gradient Descent with Hard Thresholding (Resampling Version)
1: Input: Number of iterations 7', sparsity s1, S2, step size 1, 72
2: Split the Dataset into T" Subsets of Size n/T
3: fort =0to7T — 1do
4:  Update I' with the ¢-th Data Subset:
T(E+0.5) — p(®) _ MV fo/r (Iﬁ(t)7 Q(t))
T+ — HT(I‘(t+O‘5), 51)
5. Update €2 with the ¢-th Data Subset:
Q05 — 1) _ 12V )7 (I‘(t), Q(t))
Q(t+1) — Hr-r(sz(tJrO.S)7 32)
6: end for R
7: Output: T =T, Q = Q@

Before we begin our proof, we first define By (I'*;7) = {T' € R¥™ : |T — I'*|| < r}. Similarly we define B (Q*;7) =
{2 e R™*™ ;|| — Q*||p < r}. Now we introduce several lemmas, which are essential to the proof.

Lemma A.1. Under Assumptions 4.1 and 4.2, for any IV, T' € By (T'*; r'), the population loss function f(-, Q*)is 2/(v7)-
strongly convex and 2v7-smooth, i.e.,

1 . . .
el L L|% < f(I, Q) = (T, Q) = (V1 f(T,Q), I ~T) < wr|I" - T|7.

Lemma A.2. Under Assumptions 4.1 and 4.2, for any ', Q € Br(Q2*;7), and if » < 1/(2v), then the population loss
function f(T'*,-) is 1/(41?)-strongly convex and 412-smooth, i.e.,

1 . . .
5z - Q|F < fT,Q) - f(T7, Q) — (V2f(T*,Q), Q' - Q) < 22| - Q|

Lemmas A.1 and A.2 indicate that when one of the two variables (i.e., I" or ) is fixed as true variable (i.e., I'* or £2*),
the population function f is both strongly convex and smooth with respect to the other variable. These conclusions ensure
that the standard convex optimization results for strongly convex and smooth objective functions (Nesterov, 2004) can be
applied to function f as long as one of the variables takes its true value.

Lemma A.3. Suppose Assumptions 4.1 and 4.2 hold. For the true parameter 2* and any Q € By (2*;r), the gradient
difference V1 f(T', Q*) — V1 f(T', ) satisfies

(IV1f(T,92) = Vi f(T,Q)|r < 27r-||Q" — Q. (A1)
For true parameter I'* and any I € By (I'*; r), the gradient difference Vo f(I'*, Q) — V5 f(T, Q) satisfies
IVaf (T*, Q) — Vof (T, Q)| < 7r - T =T F. (A2)

Lemma A.3 suggests the gradients satisfy Lipschitz property with respect to €2 and I". Note that this Lipschitz property
only holds between the true parameter (I'* or £2*) and arbitrary parameter in the neighborhood of the true parameter
(T € Bp(T*;r) or Q € Bp(2*;r)). Given Lemma A.3, standard convex optimization results can be adapted to analyze
f(-, Q) for any © € Bp(Q*;r) and f(T',-) forany I' € Bp(T*;r).

The next lemma characterizes the difference between the gradients of the population and sample loss functions, in terms of
{5 oo NOIM.

Lemma A.4. For any fixedT' € Br(T'*;r) and Q € Bp(2*;r) with r < min{M, \/v/7}, then with probability at least
1 — 0 we have

IVLf(T,82) = Vi fu (T, Q)[|c0.00 < €1(n, 0). (A3)
If we choose § = 2/d then we have €1 (n,d) = CM+/Tvy/log(dm)/n. Also with probability at least 1 — § we have
IV2f (T, 92) — Vo fn (T, Q)]oo,00 < €2(n,0). (A4)

If we choose § = C” /m then we have ex(n,d) = C'M+/(logm)/n.
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We further define the gradient descent update for the population loss:

r+0.5) — p@) _ 7]1V1f(1_‘(t), Q(t))7 Qt+0.5) — p(®) _ UQVQf(F(t), Q(t)).

Our subsequent two lemmas bridge the gap between population loss update and sample loss update.

Lemma A.5. Under Assumptions 4.1 and 4.2, suppose that I' € B (T"*;r), then Algorithm 3 with step sizes n; =
vt/ (V31?4 1) satisfies

2ryT?

22—
v27r2 41

||f(t+0.5) _ F*HF < m

I =] + et -,

Similarly, we have the following lemma establishing the result for of [|Q2(¢+0-5) — Q*|| .

Lemma A.6. Under Assumptions 4.1 and 4.2, suppose that 2 € Br(Q*;r), then Algorithm 3 with step size s =
8v2/(16v* + 1) satisfies

8112

160* — 1
le® — o _oTvr
1199 -2+ ey

Ot+0.5) _ o*
Jfacsos g, < 2021

S [E N [P

The next lemma characterizes the effects of hard thresholding.

Lemma A.7 (Li et al. (2016)). Let 3* be a sparse vector such that ||3*||p < s*, and HT be the hard thresholding operator,
which keeps the largest s entries (in magnitude) and sets the other entries equal to zero. Given s > s*, for any vector 3, we

have,
2 *
;< (1+ 5) |18 - 8"

2
= o’ (A.5)

The following two lemmas demonstrate the initialization results for 't and Qit,

Lemma A.8. Under Assumption 4.2, if we select the regularization parameter Ar in Algorithm 3 as A\r =
co(T+/ds} log(dm)/n)'/3, then with probability at least 1 — ¢1 exp(—cadm), it holds that

[T —T%|| . < C(7(ds})* - log(dm) /n) /", (A.6)

Lemma A.9. Under Assumptions 4.1 and 4.2, suppose the sample size n is large enough such that ||I1init - I H <
\/v/7. if we select the regularization parameter \q, in Algorithm 3 as Aq = coMv+/logm/n + ¢; My275/6(dst)/3 .
(log dm /n)5/%, then with probability at least 1 — ¢, /m, it holds that

. ] 1 8
o0 = 2 < €'ar | PR e s s - ()

Now we have gathered everything we need and we are ready to present the proof of the main theorem.
A.1 Proof of Theorem 4.3

Proof of Theorem 4.3. We first prove that the estimation error can be controlled by R in each step, by induction. Since
the initialization estimator already satisfies max{||T'(®) — T'*||, |2 — Q*||z} < R, We only need to prove that the
estimation error in any iterate ¢ also satisfies the above condition given the information about (¢ — 1)-th iteration.

Define Z7 = supp(I'™*), I{t) = supp(T'®), IftH) = supp(T** V) and 7, = Z; U I{t) U IiH'l). It is easy to verify that

DD = T (T 51) = HT (DY — [V foyr (T, Q)]z, . 51).

Since we already have that T'(¥) € Bx(T*; R), 29 € Br(Q*; R) by definition, now we consider expanding this using
mathematical induction. Suppose that T*~Y) € B (T'*; R), Q¢~1 € B (Q*; R). Consider the estimation error of ¢-th
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iteration, by Lemma A.7, we have

T~ = DO = [94fy (O )], — T

F

2./dst \'?
< <1 + ) IO = [V fouyr (T Q)] 7, — T

\/81 —ds}

¥ 1/2
< <1+ 24/ds3 ) Hf\(t-&-oﬁ) T

\/81 —dsj

F

24/ds3

\/81 —ds}

1/2
) H [Vif(T, ) — Vifr(T, Q)]Il ||F’
(A7)

|F+771<1+

where the last inequality holds due to triangle inequality. Notice that by Lemma A.4 we have

|| [vlf(r7ﬂ) - vlfn/T(I‘aﬂ)]IluF < \% |1-1|Hv1f(1—‘7ﬂ) - vlfn/T(I‘7Q)HOO)OO < V dST +2s1 - el(n/Ta 5/T)

Therefore, (A.7) can be further written as:

t+1 2/ds; \'? T (t+0.5 2y/dsi \"?
P 0 < (1 ) R0 o /2 (14 ) atmam
s1 —dsj} 51 — dsj
2/dst \'*[v2r? -1 . 2Ru7? \
< (v L) G I -t e 0 - e
2 /dst /2
+CMm (1 + \/%) ' \/E\/(dsf +2s1) log(dmT) - T/n, (A8)

where the last inequality is due to Lemma A.5 and choosing 6 = 2/d for €;(n/T,§/T) in Lemma A.4. Similarly, we can
also define Z5 = supp(Q2*), Iz(t) = supp(Q®), Iétﬂ) = supp(QUt)), 7, = T3 U Iz(t) u I§t+1), and then establish the
bound for || Q¢+ — Q|| - as:

2 /ms5 \* [160* — 1 872 R
QD _ ¥l < [1+ Y 72 2 ® — oF 2 | Ir®
H HF— +\/m 1604 +1 H |F+16V4+1 H |F
9 T o\ 1/2
+ C'Mns (1 + ms2> : \/(ms§ + 2s9) log(mT) - T/n. (A9)
\/82 — ms3

Now we define

V22— 1 + 2RvT? 16v* —1 + 87v2R
= max
P V272 11 1272 0171604 +1 0 1604+ 1

2 — 2Ru7? 2 —87%R
=max<s 1 — 1-— .

v2r2 417 1604 41

Note that by our assumptions s; > (14 4/(1/p — 1)?)ds} and s > (14 4/(1/p — 1)?)ms}, we have

<1+ 2./dsT )1/2 (1+ 2/ms; >1/2 _ 1
max _— , — < —
V/$1 —dsy \/S2 —ms} NG
Thus by combining (A.8) together with (A.9), we get
max { [T — T, Q) — Q| p} < /o max (T —T*||p, |0 — Q*|lp} +max {a1, a2},  (A.10)

where a1 and a» are defined as

ds3log(dmT)
n/T ’

msj log(mT)

oy =C'M\/vT - /T )

as =C"M - (A.11)
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For simplicity, if we denote P() = max {|T® — T*||p, |Q2®) — Q*||p}, ¢ = max{a1, @z} and take one step back from
iteration ¢ + 1 to ¢, then (A.10) can be rewritten as:

P® < N2 P 4 ¢, (A.12)
Since we have T‘~1 € Bp(T*; R), Q¢~1) € Bx(Q*; R), by (A.12), it inmediately implies that
PO = max (D0 - g, [0 - @°)|p} < R
Given the theorem condition (4.1), we can easily derive that
(< (1=vp)R.
Thus we have
PO < \/p- PV 4 ¢ < /p-R+r(1—p) <R

Therefore we proved that for all t > 1, T®) € Bp(T*; R), Q) € Br(Q*; R).
Next we prove the bound in the theorem. Consider
P < \/ﬁ.p(t—l) +¢<p-PE2 +vpCH+C<
<p? PO 4 ptN2 ey ¢

1
i

where the last inequality holds for series summation rule when ¢ — oo. Since P(®) = 7 < R, we rewrite the above inequality
as

< pt/2 . P(O) +

max { [T — T p, |QY — Q*||p} < p'? R+

1
¢, forallt € [T].

This completes the proof. O

A.2 Proof of Theorem 4.7

In this section, we present the analysis of our initialization algorithm (Algorithm 2). The main idea in this analysis is
inspired from Yang et al. (2014a;b) for elementary Gaussian graphical models. However, in our initialization estimator, we
use ridge type graphical model estimator rather than performing diagonal enhancement operator on the sample covariance
matrix as in Yang et al. (2014b). Therefore, for the self-containedness of our paper, we choose to present the proof here.

Proof of Theorem 4.7. According to Lemma A.8, we have that
IT™¢ — D[ < Cp (r(ds})? - log(dm) fn) /°
Thus according to the theorem condition on the sample size n, we can easily get
ITmit — T < R/2.

The same argument applies to the initial estimator £2"i*, According to Lemma A.9, we have that

5
- ! s log d s
QR — Q|| p < Oy My 22 28T nogm 4 CppMuir? (mss)® (dst)3 - ( Ognm> .

Therefore, according to theorem condition on the sample size n, we can easily have

HQinit _ Q*HF S R/2
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By Lemma A.7, for any s; > 4ds] we have
< <1+ 2v/esi )1/2 JTmit 1|, < (1+ 2v/dsi )UQR <R
B \/s1 —dst L \/s1 —ds} 2 — 7

Similarly, we can prove that for 2, we have ||Q2(®) — Q*|| < R. Thus we prove that by initialization, the initial estimation
error satisfies

e -

max{|T® —T*(|p, |2 - Q|r} < R.

B Proof of Technical Lemmas in Section A

In the following, we will give detailed proof of the technical lemmas used in Section A. First let us denote €; = y; — r*x,
for the rest of this section. Note that from the CGGM model we can obtain that €; ~ N(0,Q2* ).

B.1 Proof of Lemma A.1
Proof. Recall that

n

1
(T, Q) = ~log || + ~ > (yi —TTxi) " Qyi —T7x))
i=1
1 n
= —log|Q|+ — Z ((I‘*Txi —I'x; + ei)TQ(I‘*TXi —T'x; + ez)) (B.1)
n
i=1

Based on the above equality we compute the population version of f function:

f(T,Q) =E[f,(T,Q)]
= ]E|: — log |Q| + %Z ((F*TXZ' — FTXi + Ei)TQ(F*TXi - FTXi + Ez))
i=1

=—log|Q|+E [i ix?(I‘* —-D)QT* - T)"x;| +tr(QQ* 1)
i=1
= —log|Q| +tr (I* - T)QT* - T) " T%) + tr(QQ* ). (B.2)
Thus, we get
Vif(T,Q) = —23% (" -T)Q. (B.3)
Apply vectorization and use the property of Kronecker product that vec(ABC) = (CT ® A)vec(B), we obtain
V2f(T, Q%) = Q* ®25%.
For function f(-, Q*), according to Taylor expansion, we have
fIT, Q) = f(T,Q7) + (V1 f(T,Q"),I" - T)
+ %(vec(I") —vec(T), VIf(T, ) (vec(T”) — vec(T))). (B.4)

Then (B.4) further implies

f@,Q7) — f(T,Q7) = (V1 /(T,Q7),I" - T)

IN

Amax(V1f (T, @)|IT" — |7,

f@,Q7) — f(T,Q7) = (V1 f(T,Q7),I" - T)

Y4
DN = N =
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Recall that V2 (T, %) = 2Q* @ Sx and ||Q* 2 < v,
Amax (V2 £(T, Q%)) < 2v7.

3% |l2 < 7 by Assumptions 4.1 and 4.2, we have

Similarly, we have

2
Amin (V2 (T, Q%)) > =
(V3T 0) = —
Therefore, function f(-, 2*) is 2/(v)-strongly convex and 2v7-smooth function:
1
— | =T} < f(I', Q) = f(T, Q) = Vi f(0, ) (I = T) < wr- I - T||3.
vT

This completes the proof.

B.2 Proof of Lemma A.2
Proof. From (B.2), we have
V2, Q) =0 ol
According to Mean Value Theorem, we have
f(F*ﬂ Q/) = f(r*7ﬂ) + <v2f(r*7ﬂ)7nl - Q>
1
+ 5 {vee(R) — vee(R2), V3F (1", Z) (vee(€) — vee(R))),
where Z = tQ' + (1 — t)Q2 with ¢ € [0,1]. Define A = Q' — Q, we have
)‘min(v§f(r*v Z)) = )‘min(z_1 ® Z_l) = Amin(z_1)2 = HQ + tA”g2
> [[|Q%)l2 4+ (1= 1)1 — Q|2 + ¢]] Q" — Q|2
> (v+r)?
1
42’

where the first inequality holds due to triangle inequality, the second inequality holds for |2 — Q*||2 < |2 — Q*||r < r
and | — Q*|]2 < || — Q*||F < r and the last inequality follows from condition r < 1/(2v) < v/2. Similarly, we have

Amax(V3f (T, Z)) = Mnax(Z 71 @ Z71) = Anax(Z71)” = Amin(Z) ™%
Note that Z = ¢t + (1 — t)Q = Q + tA, and for any ||x|2 = 1 we have
x (Q+tA)x=x" (2" +(1-1)(2— Q%) +tQ — Q))x
>x'Q'x— (1—1)x (Q— Qx| —t|x" (Q — Q*)x|,

>

where the inequality holds since ¢ € [0, 1]. Taking minimization on both sides we have
Amin(Z) 2 Amin (27) = (1 = 1)[Amax (2 — 27)[ = tl)‘maX(Q/ - )|
— Ain(2%) = (1= )12 — 2 — ]2 — @

1
27_7"7
v

where the second inequality follows from || — Q*||2 < ||Q — Q*||r < rand || — Q*||2 < || — Q*||r < r. Since
r < 1/(2v), therefore,

Amax (V2 (T*,Z)) < 402
Combining the above results, we have
1
87H9' —Q[F < f(T*, Q) — f(T*,9Q) - Vo f (T, Q) (2 — Q) < 27| - Q7.

This completes the proof. O
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B.3 Proof of Lemma A.3
Proof. First, we bound ||V, f(T',2*) — V1 f(T,Q)|| , in (A.1). From (B.3) we have
Vif(T,Q) = 285 (T -T)Q, V. f(T,Q)=-28%T"-T)Q".
Thus we get
[V1f(T, Q) = Vi f(T, Q). = [[2Z5 (T - T)(Q" -

Q)| < D =Tl |Q° —Qp.  (BS)

Note that we have A\« (2}) < 7 by Assumption 4.2, and recall the fact that | I' — I'*|| p < r. Therefore, (B.5) can be
further bounded as

Hvlf(ran*)_vlf(r7n HF <2rr- ||Q*_Q||F
Now consider ||V, f(T'*, Q) — V2 f (T, Q)| . in (A.2). From (B.2), we have
Vof(T,Q) = - Q'+ Q1+ (" —D) ' ZH(T* - T), Vof (T, Q)= -Q 4L

Thus, we obtain

IV2f (T, Q) = Vo f (T, Q) =

(-7 )| <=l I - T,
F
where the inequality follows from Cauchy-Schwartz inequality. Following similar proof procedure in (B.5), we can further
bound the above inequality as
[V2f(T*,Q) = V2f (T, Q)| . < 7[IT* = T3 < 77 [T* ~T|lp.
This completes the proof. O

B.4 Proof of Lemma A.4
Proof. Part I: Proof of the bound in (A.3).
Since €; ~ N (0,Q2*~1), we have max;; ||€ij||,l2’[)2 < C1 A max (2°71) < Cyv. From (B.1), we get

2 n
r,Q)=-= —x, ) =-= - - = € Q. )
Vifu(T, ) sz x sz ) n;xleln (B.6)
From (B.2) we have

Vif(T,Q) = —25%(T* - T)Q. (B.7)

Combining (B.6) and (B.7) we obtain

1 n

r,Q W (0, Q) = € Q+2( = x! —3% ) (T =T)-Q. B.8
Vif(T,Q) V. f Zx " (n;xxl X) (- T1) (B3)

Then we have

2 n
r,Q (T, 92|00 € (Q—QF = €] QF
9/ (0,82) = oS0 D < |2 Zx | axere|
Ip)
H ( sz _z*>(r*_r)(9_n*)

I3

o) oo

Iy

(B.9)

00,00




Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization

In the following, let A() = x;e B(l) = (xx] = ¥%) - IT*=T) - (2—-Q*),F =Q — Q" For term Iy, consider the

70

11 norm of each element in AF

IAD F ]|y, = (B.10)

jeFor

E xz_]eszZk

=1

P1

Y1

From Assumption 4.1 and Assumption 4.2 we have max;; ||¢;; |@2 < Cyv, max;; || zi; Hiz < Oy, (B.10) can be further
bounded as:

m

IAY Fljilly, = MZGMFM < 2|wislly, - || Y €ieFen
Y1 =1 P2
< 2y/C1Cour, | Cs > F2 < 2V /C1CoCs||F|| s (B.11)
=1

where the first inequality follows from Lemma D.2 and the second inequality follows from Lemma D.1. Note that
||F||F = || — Q*|| < 7, (B.11) can be further bounded by

||[A(1)F]jk||1/)1 < 2\/vTy/ 0102037“.
By Bernstein-type inequality in Theorem D.4, we have
C477,t2
P t) < ( - —)
< > = xp 16C4 02031/7'7“2
Applying union bound to all possible pairs of j € [d], k € [m], we get

S| PR S IR B o (o

Choose t = 2 VTT‘\/010203/C4 \/(2 logd +logm)/n, C' = 2,/C1CsC5/C, and with probability at least 1 — 1/d we
have

n

2 ,
o Z[A(Z)F]jk >

i=1

C4nt2
<d-m- I ——
} <d-m xp ( 1601C203VT7“2)

‘oo,oo

2logd + logm

H in (Q— Q%) < C\vrr (B.12)
0,00 n
For term I, first notice that
28~ T 24~ T * 25~ T
z €. < ||Z €. . < 2 €
2 x| <2y e |2 xer|
=1 0,00 =1 00,00 =1 00,00
where the last inequality holds due to Assumption 4.1. Now consider the v); norm of each element in A ("):
1A o, = llzieinllo, < 2ziillv, - llewlv, < 2v/CrCavr, (B.13)

where the first inequality follows from Lemma D.2 and the last inequality follows from Assumption 4.1 and Assumption 4.2.
By Bernstein-type inequality in Theorem D.4, we have

2 & () Cynt?
P23 4l >t) <exp (- 25).
(’ n z:zl ik - ) = OXp 4ClC21/T
Applying union bound to all possible pairs of j € [d], k € [m], we get

2 « . 2 <~ i
P{Hn;xiejn Oooo>t}<M—Z]P’{‘nZA§.,3

3.k i=1

C4nt2 )
40102V7’ '

>t}<M~d-m-exp<—
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Choose t = 2\/VT\/0102/O4 \/(2 logd +logm)/n, C = 2,/C1Cs/C, and with probability at least 1 — 1/d we have

2 « 2logd +1
H 3 xie] < C'M - Jory 228 atogm (B.14)
n n
i=1 00,00
For term I3, denote (I'* — T')(2 — %) as G, (x;x;] — %) as A, note that
d
B l)le Jgng Z L5, EX)JZ] ng (B.15)
Y1 =1 1
Since from Assumption 4.2 we have max; ||xij |y, < Cs54/7, (B.15) can be further bounded as:
_ d
1B s < 2{lwi; > wieGunl| < 4], -
=1 P1 P2
d
<4CET\|Co > G <ACETVC6||G| ., (B.16)

(=1

where the first inequality follows from Lemma D.3, the second inequality holds due to Lemma D.2 and the third inequality
follows from Lemma D.1. Note that HGHF HI‘* I‘HF . HQ - QF P r2, (B.16) can be further bounded by

IBS) gy < 4C27+/Cor?.

By Bernstein-type inequality in Theorem D.4, we have
2 " () C77’Lt2
(28] > ) <o (- g

i=1
Applying union bound to all possible pairs of j € [d], k € [m], we get
C’7m‘2 )

(G ) —ma—a] o) oo (- g

Choose t = 8772,/C2Cs/C7+/(2logd + logm)/n, Cs = 8,/C2Cs/C7, with probability at least 1 — 1/d we have

H < le )(r* —T)(Q— Q) gcwww. (B.17)

For term 14, we have
1 n
X -1 <2( = x| — X% | -T ||
(e =)o o] < oot i)
<M- H ( le )(r*—r)H :
Using similar technique as we have for term I3, with probability at least 1 — 1/d we have that

1< ; . . 2logd + logm
HQ(ngxixj—EX>(I‘ - SCSMTTﬁ. (B.18)

Note that from lemma conditions we have r < min{M, y/v/7}, submit (B.12), (B.17), (B.14) and (B.18) into (B.9) and
apply union bound, we have with probability at least 1 — 2/d that

‘oo,oo

00,00

2logd + 1
V1 (T, 2) = V1 £ (T, 9) o0 < C'M /iy | 2282 E208T

n
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Thus we have the conclusion in (A.3).
Part II: Proof of the bound in (A.4).
We have

Vofn(D,Q)=-—Q 71+ = Z M Tx —T'x +6) ', —TTx +¢) . (B.19)

From (B.2) we obtain

Vof(T,Q) = —Q ' 4 (I —T) TS5 (D* - T) + QL. (B.20)
Thus we get
v2f(r7n> V?fn F Q :_*Zeze + Q" ! 72( *_I‘)Txie;r
=1

1 n
- iX; - - - XiX; — - .
n p €iX; ( ) ( ) <7’l g i X>( )

Then we have

n

1
r,Q (T, Q)| o000 < = r*—I) x;e
||V2f( ’ ) sz ( H - H Ze 6 00,00 + n z=1( ) * 61 0,00
Il 12
1 - T *
+=) €x; (I'"-T)
n -
’L:1 O0,00
I3
1 n
+ ||(T* —r)T< x; x| — 3% )(r —F)H } (B.21)
n ; X 00,00
Iy

In the following proof, let C¥) = (T* — T') Tx;¢;, D) = ¢;x (T* —T') and E®) = (I'* —T) T (x;x,] — % )(* - T).
For term I, by Lemma D.6, we have, with probability at least 1 — C""/m

1 n
i
n 4
i=1
For term I, following the proof procedure for term /; in Part I, consider each element in the matrix, i.e., Cj(.?, we can easily
C1Corry |Cs Y (W — War)?
P1 =1
|F S 2\/ vTHy/ 010203 - r

have
< 2V/w7/C1CoCs|T — T

where the last inequality is due to |I' — I'*|| p < r. Similarly by Bernstein-type inequality in Theorem D.4, we have

1 — () Cut’n
P< - E C: te < —_— .
{‘n i=1 ok =P 4010203V7'7‘2
Apply union bound to all possible pairs of j € [m], k € [m], we get

C4t2’/l
P >ty <m? — )
{ 50,00 - } = Texp (40102031/7'7'2)

< Oy 108 (B.22)

n

00,00

(@) z
o

n

1
=3 (T -T)xe]

n <
i=1
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Choose t = r/vTCy/21log m/n and Cy = 2,/C1C2C5/CY4, then with probability at least 1 — 1/m we have that

1< /1
- Z(I‘* — :l")TXi(-:iT < ryr7rCy ogm (B.23)
i=1

00,00

For term I3, since D® = C@OT it holds the same conclusion for term . 3 that with probability at least 1 — 1/m we have

1 & /1
HE eiXZT(I‘ — < rv/v7tCy ogm (B.24)
n

i=1

For term 14, denote I'* — T as H, (x;x; — £%) as A, note that

Hoo,oo

d d d d
1B s, = Z Z HjoA gy Ho, Z Z itin — (E% )iu] Huk (B.25)
(=1 u= Y1 £=1u=1 Y1
Since from Assumption 4.2 we have max;; ||2;;|y, < Cs1/T we have
, d d d
HE](L)le <2\ > Hupwiw Y Hjewa|| <4\ > Hupwiu e
u=1 /=1 P u=1 P2 P2
d d ,
<4C3T\|Cs > H2\|Co > H2, < ACECer|[H|[, (B.26)

u=1 =1

where the first inequality follows from Lemma D.3, the second inequality holds due to Lemma D.2 and the third inequality
follows from Lemma D.1. Note that HHHF < HI‘* — I‘HF < 7, (B.16) can be further bounded by

|| ik ||TP1 < 4CQCGTT

By Bernstein-type inequality in Theorem D.4, we have

Clo’nt2
> 1) s exp ( B 160310627'27"4)'

Applying union bound to all possible pairs of j € [m], k € [m], we get

* 1 - * * ClontQ
P(H(F _F)T<nzxi":_zx)(r _F)H >t> <m® o (= oeicaran)
i=1 00,00 5~6

Choose t = 4772,/C2Cs/C10 \/3 logm/n and Cy; = 4,/C2Cs/C}o, with probability at least 1 — 1/m we have

1 & 1
H(r* -0’ ( Y xix] - 2}) (r* — 1“)” < Oty 220 (B.27)
n n
i=1 00,00

Note that from lemma conditions we have r < \/v/7, submit (B.22), (B.23), (B.24) and (B.27) into (B.21) and apply union
bound, we have with probability at least 1 — (C”' + 3)/m that

|V2f (T, Q) — Vo fu(T, Q)| . < C’yﬁ< o' logm7

n

where the last inequality follows from the fact that v = ||2*||2 < ||Q2*||cc = M. This completes the proof. O
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B.5 Proof of Lemma A.5

In order to prove Lemma A.5, we need the following auxiliary lemma.

Lemma B.1 ((Nesterov, 2004)). Under Assumptions 4.1 and 4.2, let n = 2/(Ly + 1), suppose I'" is obtained by the
following gradient descent update form

't =T —nV,f(T,Q%).

We have
* Li—
Tt—-r < — T -7 .. B.28
| lr < T IP =Tl (B-28)
Proof of Lemma A.5. For notation simplicity, let I'* stands for T(*+0-5) T stands for I'®) and € stands for Q).
[0* =T, =T —=mVif (T, Q) T,

where the inequality holds due to triangle inequality. Submit the conclusion (B.28) in Lemma B.1 into the above equality,
we obtain

27
L1+

R .

+ _
o - < 2

-, (B.30)

where the last term on the right side of the above inequality follows from Lemma A.3, in which we obtain ||V f(T, Q*) —
Vif(T,Q)||lr < 71 - ||2* — Q| p. By submitting the definition of Ly, 1, 71 and ~; back into (B.30) we complete the
proof. O
B.6 Proof of Lemma A.6

We omit the proof since it is similar to the proof of Lemma A.5.

B.7 Proof of Lemma A.8

Proof of Lemma A.8. Consider I'™i* computed in Algorithm 3, in fact, each row of I'"™!* is equal to [T™*];, = ST (X" X+

erD) ' X Ty, )\p), which can be verified as the closed form solution for the following optimization problem:

H’gn ||/6||17 s.t. H,B - (XTX + EFI>_1XTyiHoo < )\F-

This is exactly the form of an elementary estimator for high-dimensional linear regression. By Corollary 1 in Yang et al.
(2014a) we immediately obtain the the conclusion.

O

B.8 Proof of Lemma A.9

In order to prove Lemma A.9, we need the following auxiliary lemma.
Lemma B.2. Under Assumptions 4.1 and 4.2, if |T’ — I'*

| » < \/v/7, with probability at least 1 — o /m, we have

5
_ 1 2 (logdm)®
IS — 2 V|0 < Cw Oim+0'y572d§s;§.(°gnm> .

Proof of Lemma A.9. This proof this inspired by Yang et al. (2014b). Consider 21" computed in Algorithm 3, it can be
verified that that Q"!* is the closed form solution for the following optimization problem.

min [Qf|1,1, st (12— (S+erD) o0 < Ao,
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where S = (Y — XT')T(Y — XI) is the sample covariance matrix. Let € denote that solution for the above optimization
problem. Following the similar proof as in Theorem 1 in Yang et al. (2014b), we can also show that

12 — Q|| p < 4y/ms3Aa, for Ag > |2 = (S + er]) ™ |oo o0 (B.31)
The remaining task is to find the upper bound for || 2* — (S + erI) ™| oo, c0-
1927 = (S + erD) Moo, < [|[(S +erD) T (S +erDQ" = T)| _
< NS+ erD) oo - Hn*(s +erd) — Q7Y H

00,00

< (S + D) oo 2 - [[(S D) — @)

< M|[(S+erD) oo - [[(S +er) — Q"7

00,00’

where the last inequality follows from the assumption that ||2* ||, = ||€2*||1 < M. Following the similar proof and suppose
the same condition in Corollary 1 of Yang et al. (2014b) also holds, further we have

127 (S + erD) loc,co < CM||(S + D) — 21
< CM(”S - 9*71”00,00 + er),

By combining Lemma B.2 with the above result and choose er as the upper bound for ||S — Q* ! || o We have

1 ; log dm \ ¢
19 = (S + erD) oo < C’Mz/\/% +O"vErE(dst)E ( Ogn m) = .

Submit the value for \q, back into (B.31) we have
5
logdm \ ¢
- .

~ kN | 1 1
19— Q||r < C’Mm/Lnogm +C"vErd (msy)? (ds?)

o

Wi

The proof is completed. O
C Proof of Auxiliary Lemmas in Section B
C.1 Proof of Lemma B.2
Proof. Let us denote 3* = Q* . Since we have
1 aT ~
S=—(Y-XI)T(Y - XTI
n
1 ~ ~
= —(Y - XI'™ + XI'* — XT') T (Y — XI'* + XI'* — XT)
n
1 1 - =~ 2 ~
= (Y -XI) (Y - X))+ —(T -T)"X"X(T - T*) + = (Y - XI'") T X(T"* - T).
n n n
Thus,
18 = 2 loc.00
$ * 2 - T /* T T *\ T 1 - T * T *
< — = X — — il x _
<E = T sco0 + Hn Zelxl (r* —T) + H(I‘ ) (n lexl EX) (T —T%)
I i=1 0,00 i=1 0,00
12 13
+ [0 =) TS5 (T~ T7) oo o ((eA)

Iy
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For term I;, by Lemma D.6, we have

_ 1 1
12 = 2 soco < Crdmax(Z)/ 22 = Oy [ 222
n n

For term I, using similar techniques as we do for term I3 in (B.21) we have

5
2 o - -~ 1 . log dm \ ©
Sexl (0 -F)| s Cair - Bl < cptradsgt (R0
n n n
i=1 00,00

B

i

For term I35, using similar technique as we do for term I, in (B.21) and also since | T'* — f‘|| r < \/v/T we have

~ 1< ; S . A logm
[ =B (E 3wl - =) - B)| s Carr - T
=1

00,00

~ 1
< C4or I = T|p -4/ Oim < C3B.

[T =T*) TS5 (L = T)[|os,00 < [|(T =T TS5 (T = T7)|l2

< [[Zxllavw/7 - I =T F
S C4Ba

For term 14, we also have

where the first and second inequalities hold due to the matrix norm inequalities, and the third inequality follows from
Assumption 4.2 and also the conclusion from Lemma A.8. Combine the results for term /1, I5, Is and I, we obtain

5
1 s logdm\ ¢
IS = 2 [laco0 < Cavy/ 0gm+C51/276d35“{§~<0g m) . )
n n

This completes the proof. O

D Additional Auxiliary Lemmas

Lemma D.1 (Rotation invariance (Vershynin, 2010)). For a set of independent centered sub-Gaussian random variables X,
>, a]| X;||%, is also a centered sub-Gaussian random variable, and further, we have

2 2
e <o,

where C' is an absolute constant.
Lemma D.2 (Product Property (Vershynin, 2010)). For any two sub-Gaussian random variables X and Y, we have
XY [y < 20X sy [[Y [l
Lemma D.3 (Centering (Vershynin, 2010)). For any sub-Exponential random variables X, we have
X = EX|ly, <2[[X]ly, -

Theorem D.4 (Proposition 5.16 in (Vershynin, 2010)). Let X3, Xo,..., X,, be independent centered sub-exponential
random variables, and let K’ = max; || X;||,4,. Then for every a = (a1, a2, ..., a,) € R™ and for every ¢t > 0, we have

IP’( > >t>§2exp[0min( e ! )]

n
S0
A K2[|all3" K|lal|s

where C' > 0 is a constant.
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Lemma D.5 ((Vershynin, 2010)). Suppose S C R? is an index set with |S| = s, we have with probability at least 1 — 1/n?
that

~ S
[Xss — Bssll2 < C’/\max(zss)\/;

where C is some universal constant.

Lemma D.6 ((Loh & Wainwright, 2013)). Assume that x1,...,x,, are i.i.d. sub-Gaussian random vectors in R?, and
=" =E[1/n Y, x;x,; ]. We have with probability at least 1 — C'/d that

n
- inX'T -x log d
n =1 '

S C)\max(z*) Ta

00,00

where C is an absolute constant.

Lemma D.7. (Zhou, 2009) For any sub-Gaussian random design X € R™"*? withi.i.d. N(0,X) rows, there are strictly
positive constants (1, k2 ), depending only on the positive definite matrix 3, such that for any v € R%, we have

logd

v

Xv||3
VIR > 3 — s

holds with probability at least 1 — C” exp(—Cn), where C, C’ are positive constants.

E Additional Experimental Materials

Figures 6, 7, 8 show the gene networks recovered by Alt-NCD, MRCE and Capme respectively. Figure 9 shows the cell
cycle Saccharomyces cerevisiae pathway from KEGG database. It shows that our method can discover more meaningful
interactions.
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MRCI sMCl
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Figure 6. Gene network recovered by Alt-NCD for the 92 genes on the cell-cycle yeast pathway.
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Figure 7. Gene network recovered by MRCE for the 92 genes on the cell-cycle yeast pathway.
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Figure 8. Gene network recovered by Capme for the 92 genes on the cell-cycle yeast pathway.
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Figure 9. Cell cycle Saccharomyces cerevisiae pathway from KEGG database




