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Abstract

We propose a nonconvex estimator for the covari-
ate adjusted precision matrix estimation problem
in the high dimensional regime, under sparsity
constraints. To solve this estimator, we propose an
alternating gradient descent algorithm with hard
thresholding. Compared with existing methods
along this line of research, which lack theoretical
guarantees in optimization error and/or statistical
error, the proposed algorithm not only is compu-
tationally much more efficient with a linear rate
of convergence, but also attains the optimal sta-
tistical rate up to a logarithmic factor. Thorough
experiments on both synthetic and real data sup-
port our theory.

1 Introduction

Gaussian graphical models (Lauritzen, 1996) (GGM) have
been widely used in the field of statistical machine learning.
The goal is to estimate the precision matrix, which captures
the conditional dependency relationship among marginal
variables of high dimensional random vectors. One typical
application of Gaussian graphical models is to study the
conditional independence among the genes at the expres-
sion level in genomics, and to estimate the gene regulatory
network. In recent years, it has been noticed that one can
elaborate a GGM model with additional side information for
better estimation accuracy. For example, genetic variants
have been shown to have great potential influence on gene
expression (Brem & Kruglyak, 2005; Cheung & Spielman,
2002), yet directly applying Gaussian graphical model to
gene expression data would neglect such a fact, hence may
hinder us from revealing the intrinsic gene regulation rela-
tionships. On the other hand, utilizing such genetic variant
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as side information to adjust the estimation of precision
matrix could lead to better accuracy.

In fact, this adjusted precision matrix estimation problem
can be reformulated as a problem of jointly estimating mul-
tivariate regression matrix and the precision matrix. Cai
et al. (2012a) proposed a two-stage covariate-adjusted pre-
cision matrix estimation method which first estimates the
regression coefficient matrix and then estimates the preci-
sion matrix based on the estimated regression coefficient
matrix. Some other work targets at simultaneously estimat-
ing both the regression coefficient matrix and the precision
matrix (Yin & Li, 2011; Lee & Liu, 2012; Rothman et al.,
2010). Following the literature of this line of research, we
briefly introduce the model as follows: given data vectors
{yi}

n
i=1 2 Rm and side information vectors {xi}

n
i=1 2 Rd,

assume that

yi = �
⇤
xi + ✏i, (1.1)

where �
⇤
2 Rd⇥m is the unknown regression coefficient

matrix, and ✏i 2 Rm is the error vector. We assume {xi}
n
i=1

and {✏i}ni=1 are independent from each other and the error
vector {✏i}ni=1 follows a multivariate normal distribution
with zero mean and covariance ⌃

⇤. Therefore, given xi,
we have yi|xi ⇠ N(�⇤

xi,⌃⇤). Let ⌦⇤ = ⌃
⇤�1 be the

corresponding precision matrix that characterizes the condi-
tional dependency structure among the data vectors {yi}

n
i=1.

More specifically, ⌦⇤
ij = 0 implies that i-th and j-th vari-

ables are conditionally independent given the covariates and
other response variables.

To estimate ⌦
⇤, we construct the following conditional

likelihood function corresponding to our model (1.1):
`(�,⌦) =

nY

i=1

(2⇡)�
m
2

��⌦
�� 12 exp


�

(yi � �xi)>⌦(yi � �xi)

2

�
,

where |⌦| denotes the determinant of ⌦. The corresponding
negative log-likelihood function can be written as (neglect
the constants):

fn(�,⌦) = � log |⌦|+
1

n
tr
⇥
(Y �X�)⌦(Y �X�)>

⇤
,

(1.2)

where X = [x1, . . . ,xn]> 2 Rn⇥d and Y =
[y1, . . . ,yn]> 2 Rn⇥m. In many applications such as eco-
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nomics and genomics, the number of parameters dm+
�m
2

�

is often much larger than the number of observations n,
which imposes great challenges on the model estimation.
Thus one common assumption is that both �

⇤ and ⌦
⇤ have

certain structures. In this paper, without loss of generality,
we assume both �

⇤ and ⌦
⇤ are row sparse. Specifically, we

assume �
⇤ and ⌦

⇤ belong to the following classes respec-
tively:

V(s⇤1) :=

⇢
� 2 Rd⇥m : max

1id

mX

j=1

1{�ij 6= 0}  s⇤1

�
,

U(s⇤2) :=

⇢
⌦ 2 Rm⇥m : k⌦k1  M,

max
1im

mX

j=1

1{⌦ij 6= 0}  s⇤2

�
.

Therefore, k�⇤
k0,0 = ds⇤1 and k⌦

⇤
k0,0 = ms⇤2, where k ·

k0,0 denotes the number of nonzero entries in a matrix. Note
that the constraint that k⌦k1  M is a common condition
in the literature on precision matrix estimation (Cai et al.,
2012a;b). Under this assumption, we propose a cardinality
constrained maximum likelihood estimator as follows:

min
�,⌦

� log |⌦|+
1

n
tr
�
(Y �X�)⌦(Y �X�)>

�

subject to k�k0,0  s1, k⌦k0,0  s2, (1.3)

where s1 and s2 are tuning parameters which control the
sparsity of � and ⌦ respectively. Note that even though our
ultimate goal is to estimate ⌦⇤, since the likelihood function
is also related to �

⇤, it is thus also important to ensure that
� is close enough to �

⇤, so that it would not downgrade the
accuracy in estimating ⌦

⇤.

The proposed estimator in (1.3) poses great challenges for
both optimization and statistical analysis. The sample loss
function in (1.2) is not jointly convex in � and ⌦. This
together with the nonconvex cardinality constraints make
our estimator a highly non-convex optimization problem.
Moreover, statistical analysis becomes quite challenging for
such a non-convex estimator in such a finite sample scenario.
Many previous studies along this line of research (Yin &
Li, 2011; Rothman et al., 2010; Lee & Liu, 2012) are only
able to characterize the asymptotic performance of their es-
timators. To the best of our knowledge, Cai et al. (2012a) is
the only work with non-asymptotic performance guarantee
for such a nonconvex model, yet it only analyzes the statis-
tical error and does not include any optimization analysis
or guarantees on the statistical estimators, which makes it
less practical. To overcome these challenges, we propose
an alternating gradient descent algorithm for solving the
nonconvex optimization problem in (1.3). We summarize
our contributions as follows:

• We propose a practical algorithm which is easy to
implement and fast to compute under strict run-time
analysis. Therefore, our algorithm is much faster and
closer to the real world situations than existing estima-
tor based algorithms.

• We show that the proposed algorithm is guaranteed to
converge to the true precision matrix ⌦

⇤ at a linear rate.
In particular, the statistical rate of the estimator from
our algorithm actually matches the minimax optimal
up to a logarithmic factor.

• To the best of our knowledge, this is the first work to
analyze the non-asymptotic optimization performance
guarantee of the covariate-adjusted precision matrix
estimation model. This sheds some light on how this
model works in real world scenarios.

The remainder of this paper is organized as follows: in
Section 2, we briefly review existing work that is relevant
to our study. We present the algorithm in Section 3, and
the main theory in Section 4. In Section 5, we compare
the proposed algorithm with existing algorithms on both
synthetic data and real datasets. Finally, we conclude this
paper in Section 6.

Notation. Let [n] denote the set of {1, . . . , n}. For ran-
dom variable X , we define the sub-Gaussian norm as
kXk 2 = supp�1 p

�1/2(E|X|
p)1/p. For a vector x 2 Rd,

define kxk2 =
qPd

i=1 x
2
i . For a matrix A 2 Rm1⇥m2 ,

we denote by �max(A) and �min(A) the largest and small-
est eigenvalue of A respectively. We define supp(A) as
the index set of nonzero entries of A, and supp(A, s) as
the index set of the top s entries of A in terms of magni-
tude. We use A⇤k to denote the k-th column of matrix A

and Ajk the (j, k)-th element of A. For a pair of matri-
ces A,B with commensurate dimensions, hA,Bi denotes
the trace inner product on matrix space that hA,Bi :=
trace(A>

B). We also use various norms for matrices,
including spectral norm kAk2 = maxkuk2=1 kAuk2,

Frobenius norm kAkF =
qPm1

j=1

Pm2

k=1 A
2
jk, infinity

norm kAk1,1 = max1jm1,1km2 |Ajk|, kAk1,1 =Pm1

j=1

Pm2

k=1 |Ajk|, kAk1 = max1jm1

Pm2

k=1 |Ajk|

and |Ak1 = max1km2

Pm1

j=1 |Ajk|. kAk0,0 =Pm1

j=1

Pm2

k=1 1{Ajk 6= 0} denotes the number of nonzero
entries in A. For S 2 [m1] and T 2 [m2], we define AST

to be the submatrix of A, which is obtained by extracting
the appropriate rows and columns in S and T respectively.
Also C,C 0, . . . represent absolute constants which could be
of different values in different places.

2 Related Work

A large body of literature has been devoted to the precision
matrix estimation in Gaussian graphical models (GGM)



Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization

such as `1,1 norm constrained sparse GGM (GLasso) (Fried-
man et al., 2008; Ravikumar et al., 2011; Rothman et al.,
2008), distributed GGM (Xu et al., 2016), robust GGM
(Wang & Gu, 2017), sparse tensor-variate GGM (Xu et al.,
2017b) and latent variable GGM (Chandrasekaran et al.,
2010; Ma et al., 2013; Xu et al., 2017a). In addition, Wang
et al. (2016a); Xu & Gu (2016) studied the faster rate of
GGM and its variants with noncovex penalties.

The approach of utilizing additional side information for
GGM is first proposed by Yin & Li (2011), in which
the model is called conditional Gaussian graphical model
(CGGM). Along this line of research, there exist two fam-
ilies of methods in general. The first family of methods
(Rothman et al., 2010; Lee & Liu, 2012; Yin & Li, 2011)
simultaneously estimates the regression coefficient matrix
and precision matrix using alternating optimization algo-
rithms. However, all the theoretical results (Rothman et al.,
2010; Lee & Liu, 2012) for alternating minimization algo-
rithms are based on the assumption that there exists a local
minimizer that possesses certain good properties, while nei-
ther of them is guaranteed to find such a satisfying local
minimizer. The second family of methods is identified by
their two-step optimization procedure (Cai et al., 2012a),
in which the regression coefficient matrix is estimated first
and the precision matrix estimation is built based on the esti-
mated regression coefficient matrix. However, the two-step
approaches cannot fully utilize the interdependency between
the regression coefficient matrix and the precision matrix in
the estimation process, which often leads to a sub-optimal
solution.

Another line of research which is closely related to ours is
call conditional Gaussian random fields (Wytock & Kolter,
2013), sometimes also been called conditional Gaussian
graphical model (CGGM) (Sohn & Kim, 2012; McCarter &
Kim, 2016; Zhang & Kim, 2014) or partial Gaussian graph-
ical models (pGGM) (Yuan & Zhang, 2014). This model
may seem similar to ours, yet we want to emphasize that it
is fundamentally different from ours. The key difference is
that their model does not make the sparsity assumption on
�

1. Due to this different sparsity assumption, their model
is convex while ours is not. Yet the sparsity assumption on
� is beneficial in modeling real world data.

In terms of nonconvex optimization technique, Yuan et al.
(2013); Jain et al. (2014); Chen & Gu (2016) proposed and
analyzed the gradient descent algorithm with hard thresh-
olding for cardinality constrained optimization problems.
However, these algorithms are limited to single optimization
variable case. Jain & Tewari (2015) proposed an alternat-
ing minimization algorithm for two regression models (i.e.,
pooled model and seemingly unrelated regression model)

1In their model, the sparsity assumptions are made on some
other related matrices, please refer to their papers for more details

in classical regime. Chen & Banerjee (2017) follows the
same model and analyze the statistical guarantee in terms
of Gaussian width. Yet their proof technique is specific to
the particular regression models they studied, and cannot be
extended to our model. In addition, alternating minimiza-
tion has also been analyzed for other models such as matrix
factorization (Jain et al., 2013; Arora et al., 2015; Zhao et al.,
2015; Zheng & Lafferty, 2015; Chen & Wainwright, 2015;
Tu et al., 2015; Wang et al., 2016b; 2017), robust PCA (Gu
et al., 2016; Zhang et al., 2018), phase retrieval (Candès
et al., 2015; Chen et al., 2017) and latent variable mod-
els (Balakrishnan et al., 2014; Wang et al., 2015; Zhu et al.,
2017). Yet none of these algorithms and theories can be
directly extended to our problem.

3 The Proposed Algorithm

In this section, we present a gradient descent based optimiza-
tion algorithm for solving the proposed estimator in (1.3).
The key motivation of the algorithm is that the objective
function in (1.3) is bi-convex, i.e., it is convex with respect
to � (resp. ⌦) when the other variable is fixed. There-
fore, we propose to optimize the target objective function
by performing gradient descent with respect to � and ⌦

alternatingly. The details about the proposed algorithm is
shown in Algorithm 1.

Algorithm 1 Alternating Gradient Descent with Hard
Thresholding

1: Input: Number of iterations T , sparsity s1, s2, step size
⌘1, ⌘2.

2: for t = 0 to T � 1 do

3: Update �:

�
(t+0.5) = �

(t)
� ⌘1r1fn

�
�
(t),⌦(t)

�
,

�
(t+1) = HT (�(t+0.5), s1)

4: Update ⌦:

⌦
(t+0.5) = ⌦

(t)
� ⌘2r2fn

�
�
(t),⌦(t)

�
,

⌦
(t+1) = HT (⌦(t+0.5), s2)

5: end for

6: Output: b� = �
(T ), b⌦ = ⌦

(T )

In Algorithm 1, �(t+0.5) and ⌦
(t+0.5) are the outputs of

gradient descent update. Note that in Algorithm 1, r1fn
denotes the gradient of fn with respect to �, and r2fn
denotes its gradient with respect to ⌦. The hard thresholding
procedure (Yuan et al., 2013; Jain et al., 2014) right after
gradient descent update is for ensuring the sparsity of the
parameters after the gradient descent update. Specifically,

[HT (A, s)]ij =

⇢
Aij , if (i, j) 2 supp(A, s)
0, otherwise .

(3.1)

In other words, the hard thresholding step preserves the
largest s1 and s2 entries in �

(t+0.5) and ⌦
(t+0.5) respec-

tively in terms of magnitudes and sets the rest to zero. This
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gives rise to �
(t+1) and ⌦

(t+1). Recall that s1 and s2 are
tuning parameters that control the sparsity level.

Algorithm 1 provides an efficient way to solve the non-
convex problem using gradient descent with hard threshold-
ing. Yet it requires that the initial estimators �(0) and ⌦

(0)

to fall into the contraction region in order to work. In order
to obtain a good pair of initial estimators �(0) and ⌦

(0), we
introduce the initialization algorithm in Algorithm 2.

Algorithm 2 Initialization
1: Input: Regularization parameters ��, �⌦ and �u

2: �
init = ST

�
(X>

X+ ✏�I)�1
X

>
Y,��

�

3: S = (Y �X�)>(Y �X�)/n
4: ⌦

init = ST
�
S+ ✏⌦I)�1,�⌦

�

5: �
(0) = HT (�init, s1), ⌦(0) = HT (⌦init, s2)

In Algorithm 2, we apply the closed form solution for the el-
ementary estimator for linear regression (Yang et al., 2014a)
and a revised version of elementary estimator for graphical
models to obtain initial estimators �

init and ⌦
init. Here

is ST stands for the soft thresholding operator which is
defined as follows:

[ST (A,�)]ij = sign(Aij) ·max(|Aij |� �, 0). (3.2)

Algorithm 2 ensures that the initial estimators �(0) and ⌦
(0)

are sufficiently close to �
⇤ and ⌦

⇤ respectively and thus
falls into the contraction region. While Algorithm 1 guaran-
tees the model parameters’ convergence inside the contrac-
tion region. By combining Algorithm 1 and Algorithm 2,
we ensure that our nonconvex optimization algorithm will
converge to the true parameters.

4 Main Theory

Before we present the main results, we first lay out a series
of assumptions, which are essential for establishing our
theory.
Assumption 4.1. There exist some ⌫ � 1 such that the
maximum and minimum eigenvalues of ⌦⇤ satisfy

1/⌫  �min(⌦
⇤)  �max(⌦

⇤)  ⌫,

where ⌫ is an absolute constants which do not depend on m.

Note that the same assumption has also been made in (Lee
& Liu, 2012; Wang, 2013; Cai et al., 2012b).
Assumption 4.2. Let {xi}

n
i=1 be the rows in X. Each xi

is a sub-Gaussian random vector. In addition, let ⌃⇤
X =

n�1E[X>
X]. There exists ⌧ � 1 such that

1/⌧  �min(⌃
⇤
X)  �max(⌃

⇤
X)  ⌧,

and

k⌃
⇤� 1

2
X xik 2  K, for all i = 1, . . . , n

where ⌧,K are absolute constants independent of n, d.

Assumption 4.2 states that the minimum eigenvalue of the
population covariance matrix of the predictors is bounded
away from zero. This assumption is mild and has been
widely made in the literature of multivariate regression
(Obozinski et al., 2011; Lounici et al., 2009; Negahban
& Wainwright, 2011). Also since k⌃

⇤� 1
2

X xik 2 is bounded
for all i = 1, . . . , n, it immediately implies that kxik 2 
p
⌧k⌃

⇤� 1
2

X xik 2 is also bounded.

Now we are going to present our main theorem. To simplify
the technical analysis, we focus on the resampling version
of Algorithm 1, which is illustrated in Algorithm 3 in the
supplementary material. The key idea of resampling (or
sample splitting) (Hansen, 2000; Balakrishnan et al., 2017)
is to split the whole dataset into T pieces and use a fresh
piece of data in each iteration. The main propose for re-
sampling is to remove the statistical dependencies between
iterates.
Theorem 4.3. Under Assumptions 4.1 and 4.2, let R :=
min

�
1/(⌫⌧2), 1/(4⌫2⌧),

p
⌫/⌧ ,M

 
. Suppose the initial

value �
(0) and ⌦

(0) satisfy max{k�(0)
� �

⇤
kF , k⌦(0)

�

⌦
⇤
kF }  R. Let the sparsity parameters satisfy s1 ��

1 + 4/(1/⇢ � 1)2
�
ds⇤1, s2 �

�
1 + 4/(1/⇢ � 1)2

�
ms⇤2,

where

⇢ = max

⇢
1�

2� 2R⌫⌧2

⌫2⌧2 + 1
, 1�

2� 8⌧⌫2R

16⌫4 + 1

�
.

And suppose the sample size n satisfies that

n �
CM2T max{⌫⌧ds⇤1,ms⇤2} log(dmT )

(1�
p
⇢)2R2

. (4.1)

Let ⌘1 = ⌫⌧/(⌫2⌧2 + 1), ⌘2 = 8⌫2/(16⌫4 + 1), for all
t 2 [T ], we have with probability at least 1� 2/d� C 0/m
that

max
�
k�

(t)
� �

⇤
kF , k⌦

(t)
�⌦

⇤
kF

 


C 00M max

�p
⌫⌧ds⇤1,

p
ms⇤2

 

1�
p
⇢

s
log(dmT )

n/T
| {z }

Statistical Error
+ R · ⇢t/2| {z }

Optimization Error

, (4.2)

where C,C 0, C 00 are absolute constants.
Remark 4.4. Conditions in Theorem 4.3 imply that the
sparsity parameters s1 and s2 should be chosen to be suf-
ficiently large but meanwhile in the same order as the true
sparsity level ds⇤1 and ms⇤2 respectively. This ensures that
the extra error caused by hard thresholding step can be upper
bounded. Moreover, we can observe that the definition of
R indeed guarantees that ⇢ < 1. Therefore our proposed
algorithm indeed converges.
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Remark 4.5. In Theorem 4.3, the result suggests that the
estimation error is bounded by two terms: the optimization
error term (i.e., the second term on the right hand side of
(4.2)), which decays to zero at a linear rate, and the statistical
error term (i.e., the first term on the right hand side of (4.2)),
which characterizes the the unavoidable estimation error in
Algorithm 3 when the optimization error term goes to zero
as T goes to infinity.

In the next corollary, we show the statistical error achieved
by our proposed method matches the minimax lower bound.
Corollary 4.6. Under the same assumptions and conditions
as in Theorem 4.3, suppose s⇤1 satisfies s⇤1  ms⇤2/(d⌫⌧),
and if we choose the number of iterations T = C log n for
sufficiently large C such that the optimization error term is
dominated by the statistical error term, then we have

kb⌦�⌦
⇤
kF 

C 0M
p
log n

1�
p
⇢

r
ms⇤2 logm

n
,

where C,C 0 are some absolute constants.

Comparing with the minimax lower bound, which is in
the order of O

�
M
p

ms⇤2 logm/n
�

(Cai et al., 2012b), our
bounds on ⌦

⇤ matches the minimax lower bounds aside
from an additional logarithmic term

p
log n. Such a loga-

rithmic factor is introduced by the resampling step in Al-
gorithm 3, since we only utilize n/T samples within each
iteration. We expect that it is an artifact of our proof tech-
nique, and such a logarithmic factor can be eliminated by
directly analyzing Algorithm 1, which however requires
extra technical effort for the analysis.
Theorem 4.7. Under Assumptions 4.1 and 4.2, let R :=
min

�
1/(⌫⌧2), 1/(4⌫2⌧),

p
⌫/⌧ ,M

 
. Suppose the sample

size n satisfies

n � Cmax

⇢
⌧(ds⇤1)

2

R3
,
M2⌫2ms⇤2

R2
,

5

r
M6⌫3⌧5(ds⇤1)

3(ms⇤2)
4

R6

�
log(dm),

then the output from Algorithm 2 satisfies

max{k�(0)
� �

⇤
kF , k⌦

(0)
�⌦

⇤
kF }  R.

Remark 4.8. Notice that for initialization we can also
choose to adopt multivariate Lasso for estimating �

init and
graphical Lasso for initializing ⌦

init, which is also provable
and could lead to a bit better sample complexity. The price
to pay is higher computational complexity, since elementary
estimators have closed-form solutions. Yet in experiments
part, we observe that the current initialization mechanism
can also provide accurate enough initial estimators which
satisfy the requirements from Algorithm 1 under the same
sample complexity constraint.

Table 1. Comparison of run time complexity for our proposed al-
gorithm and other baselines. To denotes the number of outer
iterations.

Methods Run-time Complexity Linear Rate

MRCE O
�
(m2

d
2 +m

3) · (1/
p
✏) · To

�
No

Capme O
�
(d3 +m

3) · (1/✏)
�

No
Alt-NCD O

�
(m · (1/

p
✏) +m

3 + nm
2) · To

�
No

Ours O
�
m(d+m)(n+m) · log(1/✏)

�
Yes

4.1 Runtime Complexity Analysis

We compare the run-time complexity in terms of the opti-
mization error for all baseline algorithms in Table 1. Note
that none of baseline algorithms actually proved the linear
rate of convergence. As a consequence, their run-time com-
plexity can only be written as per-iteration complexity times
the outer iteration To. For MRCE, in each iteration, it re-
quires to solve a coordinate descent sub-problem which will
take at least 1/

p
✏ inner loops to converge. For Capme, it

only performs one outer iteration, yet since it adopts Dantzig
selector and CLIME estimator in their framework, it will
take at least 1/✏ inner loops to converge, which is quite
slow. Alt-NCD adopts a convex problem formulation and is
claimed to be much scalable especially when their memory
is limited. Yet in terms of run-time complexity, in each
iteration it also requires to alternatingly solve a coordinate
descent problem which takes at least 1/

p
✏ inner loops to

converge. By securing a linear rate of convergence and only
required to solve one step gradient update inside each itera-
tion, our proposed algorithm clearly enjoys better run-time
complexity comparing with all these baselines.

5 Experiments

In this section, we will present numerical results on both
synthetic and real datasets to verify the performance of
the proposed algorithm in Algorithm 1. We compare our
algorithm with several state-of-the-art baseline algorithms:

• Multivariate regression with covariance estimation
(MRCE) by Rothman et al. (2010);

• Covariate-adjusted precision matrix estimation
(Capme) by Cai et al. (2012a)

• Alternating Newton coordinate descent algorithm (Alt-
NCD) by McCarter & Kim (2016).

Note that McCarter & Kim (2016) adopted different problem
formulations (convex rather than bi-convex) with the rest
of the algorithms including ours. Also, in McCarter & Kim
(2016) it presented a block coordinate descent version for
solving limited memory case, which we do not compare
with.



Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization

Table 2. Comparison of estimation error (in terms of kb�� �⇤kF and kb⌦�⌦⇤kF ) and running time (seconds) on synthetic dataset over
10 replications. N/A means the algorithm cannot output the solution in an hour. ⌦⇤ is generated from Hub graph.

n = 500,m = 500, d = 500 n = 1000,m = 1000, d = 1000 n = 1000,m = 1500, d = 1500
Methods kb�� �⇤kF kb⌦�⌦⇤kF Time kb�� �⇤kF kb⌦�⌦⇤kF Time kb�� �⇤kF kb⌦�⌦⇤kF Time

MRCE 48.32±0.15 11.05±0.03 22.87 67.35±0.09 15.63±0.02 185.56 81.12±0.08 18.95±0.03 395.00
Alt-NCD 66.05±0.09 8.38±0.01 8.37 92.81±0.04 11.74±0.02 77.94 111.99±0.06 14.15±0.01 324.67
Capme 37.78±0.05 16.90±0.05 345.44 54.36±0.02 9.49±0.02 2679.38 N/A N/A N/A
Ours 14.79±0.18 6.69±0.46 2.99 16.01±0.17 5.42±0.03 16.72 21.63±0.16 6.84±0.02 49.48

Table 3. Comparison of estimation error (in terms of kb�� �⇤kF and kb⌦�⌦⇤kF ) and running time (seconds) on synthetic dataset over
10 replications. N/A means the algorithm cannot output the solution in an hour. ⌦⇤ is generated from Band graph.

n = 500,m = 500, d = 500 n = 1000,m = 1000, d = 1000 n = 1000,m = 1500, d = 1500
Methods kb�� �⇤kF kb⌦�⌦⇤kF Time kb�� �⇤kF kb⌦�⌦⇤kF Time kb�� �⇤kF kb⌦�⌦⇤kF Time

MRCE 47.46±0.10 15.16±0.03 12.44 67.01±0.05 21.55±0.02 65.09 81.17±0.07 26.16±0.03 246.53
Alt-NCD 58.49±0.05 13.76±0.01 9.74 84.85±0.04 19.50±0.01 64.74 102.08±0.06 23.86±0.01 187.21
Capme 37.85±0.04 10.91±0.06 390.90 54.23±0.04 15.82±0.04 3415.07 N/A N/A N/A
Ours 15.64±0.19 8.24±0.13 2.48 13.89±0.12 5.51±0.14 14.07 18.51±0.17 6.64±0.09 35.71
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Figure 1. (a): Scaled error plot for kb� � �⇤kF under different
sparsity settings (b): Scaled error plot for kb⌦ � ⌦⇤kF under
different sparsity settings. ⌦⇤ is generated from Cluster graph.
5.1 Synthetic Data

In each replication of each model, we generate an n ⇥ d
predictor matrix X with rows drawn independently from
a multivariate normal distribution N(0, I) as in Cai et al.
(2012a). On the other hand, the data matrix Y is generated
from model (1.1), i.e., yi|xi ⇠ N(�⇤

xi,⌦⇤�1) where the
precision matrix ⌦

⇤ is generated using the following sparse
models: (1) Hub graph; (2) Band graph; (3) Cluster graph.

We compare the performance on synthetic data with three
different settings: (1) n = 500,m = 500, d = 500 (2)
n = 1000,m = 1000, d = 1000 (3) n = 1000,m =
1500, d = 1500. Each setting is repeated for 10 times.
The averaged estimation error for both � and ⌦, and also
the running time for all settings precision matrix types are
reported in Tables 2, 3, 4. We can observe that in terms of the
estimation error of both � and ⌦, our proposed algorithm
achieves the best accuracy and also the fastest running time
comparing with the state-of-the-art algorithms. To be more
specific, MRCE achieves the least accurate ⌦ estimation
with mediocre running time. Capme achieves relatively
high accuracy on ⌦ estimation, yet it is not quite scalable

with a large amount of time needed. Even comparing with
Alt-NCD, which adopts a much easier (convex) problem
formulation, our algorithm still outperforms it with clear
advantage. Also due to different assumptions on �

⇤, the �

estimation error for Alt-NCD is the least accurate.

Figure 1 illustrates the scaling of the estimation error
for �

⇤ and ⌦
⇤ respectively. The x axis of these graphs

is the rescaled sample size. This result support our
conclusion that our estimator by Algorithm 1 achieves
O
�p

ds⇤1 log(dm)/n
�

statistical estimation error for �
⇤,

and O
�p

ms⇤2 logm/n
�

statistical estimation error for ⌦⇤.

Figure 2 demonstrates the support recovery results of ⌦⇤

under three different graph structure of the precision matrix.
We use receiver operating characteristic (ROC) curves to
compare the support recovery performance of our proposed
algorithm with other baselines algorithm. From figure 2 we
can see that our proposed algorithm outperforms all other
baselines.

5.2 eQTL analysis on Yeast Data

We demonstrate the effectiveness of our proposed method
by applying it on an eQTL dataset (yeast) from Brem &
Kruglyak (2005), which contains the expression measure-
ments of 5,740 transcripts measured on 112 yeast segregants
grown from two yeast parent strains: BY4716 (BY) and
RM11-1a (RM), with dense genotype data on 2,956 mark-
ers. Our goal is to decode the gene regulatory relationships.
Here we choose to analyze the gene set selected from yeast
cell cycle Saccharomyces Cerevisiae pathway provided by
the KEGG database (Ogata et al., 1999). We implemented
our method to analyze the 92 genes involved in the cell cycle
pathway, along with 787 markers. We utilize five-fold cross
validation to select the optimal parameters. As a result, our
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Table 4. Comparison of estimation error (in terms of kb�� �⇤kF and kb⌦�⌦⇤kF ) and running time (seconds) on synthetic dataset over
10 replications. N/A means the algorithm cannot output the solution in an hour. ⌦⇤ is generated from Cluster graph.

n = 500,m = 500, d = 500 n = 1000,m = 1000, d = 1000 n = 1000,m = 1500, d = 1500
Methods kb�� �⇤kF kb⌦�⌦⇤kF Time kb�� �⇤kF kb⌦�⌦⇤kF Time kb�� �⇤kF kb⌦�⌦⇤kF Time

MRCE 48.63±0.10 21.27±0.02 16.92 65.60±0.09 30.07±0.02 86.80 81.78±0.11 36.98±0.03 546.45
Alt-NCD 60.00±0.06 20.19±0.01 8.47 82.95±0.06 28.56±0.01 44.44 103.29±0.03 34.99±0.01 146.29
Capme 38.52±0.03 16.83±0.04 508.98 53.25±0.04 24.16±0.02 3585.11 N/A N/A N/A
Ours 15.07±0.24 6.01±0.38 3.23 13.28±0.11 4.31±0.04 17.36 18.86±0.16 5.31±0.04 48.30
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Figure 2. ROC plot for the support recovery of ⌦⇤ from three different graph structure of the precision matrix, where n = 500, d = 100,
m = 100.
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Figure 3. Gene network recovered by our proposed covariate ad-
justed method for the 92 genes on the cell-cycle yeast pathway.
proposed covariate adjusted precision estimation method
identifies 102 links among 92 genes, and find around 1000
nonzero entries for coefficient matrix, suggesting that a lot
of gene expression levels are affected by genetic variants.

Figure 3 displays the gene network recovered by our pro-
posed method. Although the estimated gene network may
not fully recover the cell-cycle pathway due to some inherent
limitations, such as the lack of observations and the missing
data for gene expression in our datasets, we find that our
method reveals meaningful observations. For instance, gene

CDC28 (the catalytic subunit of the cyclin-dependent ki-
nase) is connected with genes MIH1, MCM1, ORC2, TPD3,
CDC5, BUB2, implying a strong interaction mechanism
between CDC28 and those genes.

We also implement other baseline methods: MRCE, Alt-
NCD, Campe on the same dataset for direct comparisons.
In detail, we choose the optimal parameters for these meth-
ods by five-fold cross validation, and the gene networks
obtained by the baseline methods can be found in Supple-
mental Materials. We found that other methods cannot re-
cover meaningful results as compared to the known KEGG
pathway.

Table 5. Comparison of F1 score for gene regulation network sup-
port recovery for different algorithms.

Methods F1 Score #Non-zero Elements in ⌦

MRCE 0.38 505
Alt-NCD 0.40 505
Campe 0.37 495
Ours 0.46 507

5.3 eQTL analysis on GTEx Data

The Genotype-Tissue Expression (GTEx) project generated
RNA-seq expression data for a large number of human tis-
sues (as of February 2018, there are 11688 samples in more
than 53 tissues) (Lonsdale et al., 2013). By analyzing global
RNA expression within individual tissues and treating the
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Figure 4. Support recovery result on GTEx data for different algorithms comparing with the ground truth.
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Figure 5. The gene-SNPs regulation support recovery result by
different algorithms and comparison with ground truth.
expression levels of genes as quantitative traits, variations
in gene expression that are highly correlated with genetic
variation can be identified as expression quantitative trait
loci (eQTLs). Here we choose to focus on the whole blood
dataset due to its relatively large number of samples. We
specifically look at 19 genes that are related to GATA1,
which is a key TF regulator in blood cells, from the Ery-
throid (K562) network (Neph et al., 2012). In the dataset,
we also randomly add 33 other genes from the Erythroid
(K562) network. The total number of genes selected is 53.
We also select 333 SNPs from the dataset, 15 of which are
known to be significantly related to one of genes selected
above.

Figure 4 describes the gene regulation network (GRN) that
supports the results for different algorithms including ours,
on GTEx dataset. Comparing with the ground truth, we can
see that our proposed algorithm is the only one that nearly
recovers the upper block structure. Note that GATA1 is
numbered 20 in the plot, it is clear that our proposed algo-
rithm achieves better performance in identifying the gene
regulation relationship for the GATA1 regulatory network.
In Table 5 we report the F1 score for recovering the GRN,
and also the number of non-zero elements for a fair com-

parison. It also shows the clear advantage of our proposed
algorithm over other baselines.

Figure 5 demonstrates the gene-SNP regulation relation-
ship recovery results. We found that even though all the
algorithms cannot fully recover all the significant gene-SNP
pairs, our proposed algorithm still outperforms all other
baselines. Note that Alt-NCD method does not successfully
recover any significant gene-SNP pairs, possibly due to the
fact that it adopts a different problem formulation (did not
assume sparsity on �), which is less intuitive towards this
regression task. Taken together, these results demonstrate
the potential of our proposed algorithm in identifying im-
portant gene regulatory relationships by jointly considering
gene-gene interaction and variant-gene relationships.

6 Conclusions

In this paper, we presented a gradient descent algorithm
with hard thresholding for joint multivariate regression and
precision matrix estimation in the high dimensional regime,
under cardinality constraints. It attains a linear convergence
to the true regression coefficients and precision matrix si-
multaneously, up to a near optimal statistical error. Com-
pared with existing methods along this line of research, the
proposed algorithm out-performs the baseline algorithm in
both accuracy and running time. Thorough experiments
on synthetic datasets support our theory and the real world
eQTL experiments on yeast and GTEx dataset shows the
promising potential of applying our proposed algorithm in
biological studies.
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