End-to-End Learning for the Deep Multivariate Probit Model

Di Chen 1 Yexiang Xue 1 Carla Gomes 1

7. Appendix

Theorem 1 Let $\mu \in R^l$ and $\Sigma \in R^{l \times l}$ be the rescaled mean and the rescaled residual covariance matrix of the random variable $w^{(k)}$ in the equation (7) of the main text, then we have

$$\Pr\left[\left|\frac{1}{M}\sum_{k=1}^{M}\prod_{j=1}^{l}\Phi(w_{i,j}^{(k)}) - \Pr(y_{i}|x_{i})\right| \ge \epsilon \Pr(y_{i}|x_{i})\right] \le \frac{\Phi\left(0: \begin{bmatrix} -\mu \end{bmatrix}, \begin{bmatrix} \Sigma+I & \Sigma \\ -\mu \end{bmatrix}, \begin{bmatrix} \Sigma+I & \Sigma \\ \Sigma & \Sigma+I \end{bmatrix}\right) - \Phi^{2}(0; -\mu, \Sigma+I)}{M\Phi^{2}(0; -\mu, \Sigma+I)\epsilon^{2}} \tag{1}$$

$$\leq \frac{\left(\frac{\Phi(0;-\mu,2\Sigma+I)}{\Phi(0;-\mu,\Sigma+I)}\right)^2 |2\Sigma+I|^{1/2} - 1}{M\epsilon^2} \tag{2}$$

$$\leq \frac{\prod_{i=1}^{l} g(\mu_i)^2 |2\Sigma + I|^{1/2} - 1}{M\epsilon^2} \tag{3}$$

where $g(\mu_i) = \max_x \frac{\Phi(\sqrt{2}x + \mu_i)}{\Phi(x + \mu_i)}$. The function $g(\mu_i)$ does not have a closed form but it is a monotonous decreasing function, which converges to 1 as μ_i increases.

Proof. For the ease of expression, we omit the subscripts related to i-th data point in our proof. Without loss of generality, we can also assume the diagonal matrix V is an indentity matrix. Defining $Pr(y|w) = \prod_{i=1}^n \Phi(w_i)$, $\Pr(y|x) = E_{w \sim N(\mu, \Sigma)}[\Pr(y|w)]$. We prove this convergence bound by analysing the first and second moment of random variable Pr(y|w).

$$\begin{split} E_w[\Pr(y|w)] &= \int_w \prod_{j=1}^n \Phi(w_j) Pr_w(w) \mathrm{d}w \\ &= \int_w Pr_z(z \leq w|w) Pr_w(w) \mathrm{d}w \\ &= Pr_{z,w}(z \leq w) \\ &= Pr_{z,w}(z - w \leq 0) \end{split} \tag{4}$$

Here z N(0, I) and $a \prec b$ means $\forall a_i < b_i$

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

Since z is subject to multivariate gaussian distribution, z-wis still a multivariate gaussian random variable, which is subject to $N(-\mu, \Sigma + I)$. Thus, $\Pr(y|x) = E_w[\Pr(y|w)] =$ $\Phi(0; -\mu, \Sigma + I)$. $(\Phi(\cdot))$ denotes the cumulative function of multivariate gaussian distribution.)

Similarly, we can derive that

$$E[\Pr(y|w)^{2}] = \Pr(z_{1} \leq w \land z_{2} \leq w)$$

$$= \Pr\left(\begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} \leq \begin{bmatrix} r \\ r \end{bmatrix}\right)$$

$$= \Phi\left(0; \begin{bmatrix} -\mu \\ -\mu \end{bmatrix}, \begin{bmatrix} \Sigma + I & \Sigma \\ \Sigma & \Sigma + I \end{bmatrix}\right)$$

Let
$$B = \begin{bmatrix} \Sigma + I & \Sigma \\ \Sigma & \Sigma + I \end{bmatrix}$$
, we have $|B| = \left| \det \left(\begin{bmatrix} 2\Sigma + I & \Sigma \\ 0 & I \end{bmatrix} \right) \right| = |2\Sigma + I|$. Since Σ is a positive

$$\left| \det \left(\begin{bmatrix} 2\Sigma + I & \Sigma \\ 0 & I \end{bmatrix} \right) \right| = |2\Sigma + I|. \text{ Since } \Sigma \text{ is a positive}$$

definite matrix, we can decompose $\Sigma = UDU^T$, where U is an orthogonal matrix and D is a diagonal matrix. Similarly, we can decompose

$$B^{-1} = \begin{bmatrix} U & 0 \\ 0 & U \end{bmatrix} \begin{bmatrix} (2D+I)^{-1}(D+I) & -(2D+I)^{-1}D \\ -(2D+I)^{-1}D & (2D+I)^{-1}(D+I) \end{bmatrix} \begin{bmatrix} U^T & 0 \\ 0 & U^T \end{bmatrix}$$

Let $x_1, x_2 \in R^l, y_1 = U^T(x_1 + \mu), y_2 = U^T(x_1 + \mu)$ and $D = diag(d_1, ..., d_l)$, then we have,

$$\begin{split} E[\Pr(y|r)^2] &= \Phi\left(0; \begin{bmatrix} -\mu \\ -\mu \end{bmatrix}, \begin{bmatrix} \Sigma + I & \Sigma \\ \Sigma & \Sigma + I \end{bmatrix} \right) \\ &= \frac{1}{(2\pi)^l |B|^{1/2}} \int_{(-\infty,0)^l} e^{-\frac{1}{2}(\sum_{i=1}^l (y_{1,i}^2 + y_{2,i}^2) \frac{d_i+1}{2d_i+1} - 2\sum_{i=1}^l y_{1,i} y_{2,i} \frac{d_i}{2d_i+1})} \mathrm{d}x_1 \mathrm{d}x_2 \\ &\leq \frac{1}{(2\pi)^l |B|^{1/2}} \int_{(-\infty,0)^l} e^{-\frac{1}{2}(\sum_{i=1}^l (y_{1,i}^2 + y_{2,i}^2) \frac{1}{2d_i+1})} \mathrm{d}x_1 \mathrm{d}x_2 \\ &= |2\Sigma + I|^{1/2} \Phi\left(0; \begin{bmatrix} -\mu \\ -\mu \end{bmatrix}, \begin{bmatrix} 2\Sigma + I & 0 \\ 0 & 2\Sigma + I \end{bmatrix} \right) \end{split}$$

Thus,

$$E[\Pr(y|r)^2]^{1/2} \le |2\Sigma + I|^{1/4}\Phi(0; -\mu, 2\Sigma + I)$$

Using the inverse transformation in equation (4), we have

$$\begin{split} &\Phi(0; -\mu, 2\Sigma + I) \\ &= \frac{1}{(2\pi)^{l/2} |2\Sigma|^{1/2}} \int \prod \Phi(x) e^{\frac{1}{4}(x-\mu)^T \Sigma^{-1}(x-\mu)} \mathrm{d}x \\ &= \frac{1}{(2\pi)^{l/2} |\Sigma|^{1/2}} \int \prod \Phi(\sqrt{2}y + \mu_i) e^{\frac{1}{2}y^T \Sigma^{-1}y} \mathrm{d}y \end{split}$$

¹Computer Science Department, Cornell University, Ithaca, NY, US 14850. Correspondence to: Di Chen < di@cs.cornell.edu>.

Let
$$g(\mu_i) = \max_x \frac{\Phi(\sqrt{2}x + \mu_i)}{\Phi(x + \mu_i)}$$
, then we have
$$\Phi(0; -\mu, 2\Sigma + I)$$

$$= \frac{1}{(2\pi)^{l/2} |\Sigma|^{1/2}} \int \prod \Phi(\sqrt{2}y + \mu) e^{\frac{1}{2}y^T \Sigma^{-1}y} \mathrm{d}y$$

$$\leq \frac{\prod_{i=1}^l g(\mu_i)}{(2\pi)^{l/2} |\Sigma|^{1/2}} \int \prod \Phi(y + \mu) e^{\frac{1}{2}y^T \Sigma^{-1}y} \mathrm{d}y$$

$$= \prod_{i=1}^l g(\mu_i) \Phi(\mu |\Sigma + I)$$

$$= \prod_i^l g(\mu_i) \Pr(y|x)$$

Therefore,

$$\begin{split} E[\Pr(y|w)^2]^{1/2} &\leq |2\Sigma + I|^{1/4} \Phi(0; -\mu, 2\Sigma + I) \\ &\leq |2\Sigma + I|^{1/4} \prod_{i=1}^l g(\mu_i) \Phi(0; -\mu, \Sigma + I) \end{split}$$

Using the Chebyshev's inequality, we have

$$\Pr[\left|\frac{1}{M}\sum_{k=1}^{M}\prod_{j=1}^{l}\Phi(w_{i,j}^{(k)}) - \Pr(y_{i}|x_{i})\right| \ge \epsilon \Pr(y_{i}|x_{i})]$$

$$= \Pr[\left|\frac{1}{M}\sum_{k=1}^{M}\Pr(y_{i}|w_{i}^{(k)}) - \Pr(y_{i}|x_{i})\right| \ge \epsilon \Pr(y_{i}|x_{i})]$$

$$= \Pr[\left|\frac{1}{M}\sum_{k=1}^{M}\Pr(y_{i}|w_{i}^{(k)}) - \Pr(y_{i}|x_{i})\right|^{2} \ge \epsilon^{2} \Pr(y_{i}|x_{i})^{2}]$$

$$\le \frac{E[\left(\frac{1}{M}\sum_{k=1}^{M}\Pr(y_{i}|w_{i}^{(k)}) - \Pr(y_{i}|x_{i})\right)^{2}]}{\epsilon^{2} \Pr(y_{i}|x_{i})^{2}}$$

$$= \frac{\prod_{i=1}^{l} g^{2}(\mu_{i})|2\Sigma + I|^{1/2} - 1}{M\epsilon^{2}}$$

The function $g(\mu_i)$ does not have a closed form but it is a monotonous decreasing function, which converges to 1 as μ_i increases. The figure (1) is the visualization of function

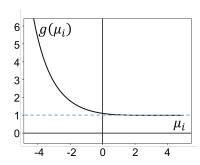


Figure 1. The visualization of function $q(\mu_i)$.

 $g(\mu_i)$. As you see, the function $g(\mu_i)$ is very close to 1

when μ_i is positive. The following lemma provides a more analytical upper bound for function $g(\mu_i)$.

Lemma 1 For any y, $\Phi(\sqrt{2}y + \mu) \leq g(\mu)\Phi(y + \mu)$, where

$$g(\mu) \le \begin{cases} \sqrt{2}e^{\frac{3-2\sqrt{2}}{2}\mu^2} & \text{if } \mu < 0\\ 1.182 & \text{if } \mu \ge 0 \end{cases}$$

Proof. $\frac{\Phi(\sqrt{2}y+\mu)}{\Phi(y+\mu)}$ achieves the maximum when its derivative is equal to zero, i.e.,

$$\left(\frac{\Phi(\sqrt{2}y + \mu)}{\Phi(y + \mu)}\right)' = 0 \Longrightarrow \frac{\frac{1}{\sqrt{2\pi}}(\sqrt{2}e^{-\frac{1}{2}(\sqrt{2}y + \mu)^2}\Phi(y + \mu) - e^{-\frac{1}{2}(y + \mu)^2}\Phi(\sqrt{2}y + \mu)}{\Phi^2(y + \mu)} = 0$$

$$\Longrightarrow \frac{\Phi(\sqrt{2}y + \mu)}{\Phi(y + \mu)} = \sqrt{2}e^{-\frac{1}{2}(y^2 + 2(\sqrt{2} - 1)\mu y)}$$

Since $\Phi(x)$ is a monotonic increasing function, $\max_y \sqrt{2}e^{-\frac{1}{2}(y^2+2(\sqrt{2}-1)\mu y)} = \sqrt{2}e^{\frac{3-2\sqrt{2}}{2}\mu^2}$ when $\mu < 0$. Similarly, when $\mu \geq 0$, we know $y^* = argmax_y \frac{\Phi(\sqrt{2}y+\mu)}{\Phi(y+\mu)} \geq 0$. Thus, $\Phi(y^* + \mu) \geq \frac{1}{2}$. By analysing the maximal value of $\Phi(\sqrt{2}y + \mu) - \Phi(y + \mu)$ as well as the fact that $\Phi(\sqrt{2}y + \mu) - \Phi(y + \mu) \leq (\sqrt{2}-1)y * \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(y+\mu)^2}$, we could know that $\Phi(\sqrt{2}y + \mu) - \Phi(y + \mu) \leq 0.091$. That is,

$$g(\mu) \le \begin{cases} \sqrt{2}e^{\frac{3-2\sqrt{2}}{2}\mu^2} & \text{if } \mu < 0\\ 1.182 & \text{if } \mu \ge 0 \end{cases}$$

Theorem 2 Let $\mu \in R^l$ and $\Sigma \in R^{l \times l}$ be the rescaled mean and rescaled residual covariance matrix of the random variable $w^{(k)}$ in equation (7) of the main text, we have

$$\Pr\left[\left|\frac{\partial \frac{1}{M} \sum_{k=1}^{M} \prod_{j=1}^{l} \Phi(w_{i,j}^{k})}{\partial \mu_{i}} - \frac{\partial \Pr(y_{i}|x_{i})}{\partial \mu_{i}}\right| \geq \epsilon \frac{\partial \Pr(y_{i}|x_{i})}{\partial \mu_{i}}\right] \leq \frac{e^{\frac{\mu_{i}^{2}}{2(\sum_{i,i}+1)}} (\sum_{i,i}+1) \lambda_{max} \prod_{j\neq i}^{l} g(\mu_{j}')^{2} |2\sum_{i}+I|^{1/2} - 1}{M\epsilon^{2}}\right]$$
(6)

Here λ_{max} denotes the largest eigenvalue of Σ and $\mu' = \mu - \frac{\mu_i}{v+1} \Sigma^{1/2} b_i$. (b_i denotes the i-th row of $\Sigma_{1/2}$.)

Proof. For the ease of symbolism, we omit all the subscript

i related to the index of i-th data point. For any $1 \le i \le l$,

$$\begin{split} &\frac{\partial \Pr(y|x)}{\partial \mu_i} = E_{w \sim N(\mu, \Sigma)} \left[\frac{\partial \prod_{j=1}^l \Phi(w_j)}{\partial \mu_i} \right] \\ &= \int \prod_{j \neq i}^l \Phi(w_j) * \phi(w_i) \phi(w|\mu, \Sigma) \mathrm{d}w \\ &= \int \prod_{j \neq i}^l \Phi(\Sigma_j^{1/2} x + \mu_j) * \phi(\Sigma_i^{1/2} x + \mu_i) \phi(x|0, I) \mathrm{d}x \end{split}$$

Let $B = \Sigma^{1/2}$ and let b_i denote the j-th row of B.

$$\begin{split} &=\int \prod_{j\neq i}^l \Phi(b_j^Tx + \mu_j) * \phi(b_i^Tx + \mu_i) \phi(x|0,I) \mathrm{d}x \\ \text{let } v = b_i^Tb_i = \Sigma_{i,i} \text{ and } C = I - \frac{b_ib_i^T}{v+1} (C^{-1} = I + b_ib_i^T). \\ &= \phi(\frac{\mu_i}{v+1}) * |C|^{1/2} \int \prod_{j\neq i}^l \Phi(b_j^Tx + \mu_j) * \phi(x| - \frac{\mu_i}{v+1}b_i,C) \mathrm{d}x \\ &= \phi(\frac{\mu_i}{v+1}) * |C|^{1/2} * \Pr(\forall j \neq i, z_j \leq b_j^Tx + \mu_j) \\ \text{(where } x \sim N(-\frac{\mu_i}{v+1}b_i,C) \text{ and } z \sim N(0,I).) \\ &= \phi(\frac{\mu_i}{v+1}) * |C|^{1/2} * \Pr(z \preceq w) \\ \text{(where } w \sim N(\mu_{-i} - \frac{\mu_i}{v+1}B_{-i}b_i,B_{-i}CB_{-i}^T), \\ \mu_{-i} \in R^{l-1} \text{ denotes the vector derived from } \mu \text{ by eliminating the } i\text{-th entry. } B_{-i} \in R^{l-1 \times l} \text{ denotes the matrix derived from } B \text{ by eliminating the } i\text{-th row.}) \end{split}$$

Thus, using the transformation above, we can transform the derivative in terms of μ_i into the form similar to theorem (1). Because $B_{-i}CB_{-i}^T=B_{-i}B_{-i}^T-\frac{(B_{-i}b_i)(B_{-i}b_i)^T}{v+1},$ where $B_{-i}B_{-i}^T$ is a principal submatrix of $\Sigma,$ whose eigenvalues are interlaced with the eigenvalues of $\Sigma,$ and $\frac{(B_{-i}b_i)(B_{-i}b_i)^T}{v+1}$ is a rank-1 matrix, we have $|2B_{-i}CB_{-i}^T+I|\leq |2\Sigma+I|*\lambda_{max}.$

In terms of the second moment of the derivative of μ_i , we have

$$\begin{split} E_{w \sim N(\mu, \Sigma)} & \left[\left(\frac{\partial \prod_{j=1}^{l} \Phi(w_{j})}{\partial \mu_{i}} \right)^{2} \right] \\ & = \int \prod_{j \neq i}^{l} \Phi^{2}(\Sigma_{j}^{1/2}x + \mu_{j}) * \phi^{2}(\Sigma_{i}^{1/2}x + \mu_{i}) \phi(x|0, I) \mathrm{d}x \\ & \leq \int \prod_{j \neq i}^{l} \Phi^{2}(\Sigma_{j}^{1/2}x + \mu_{j}) * \phi(\Sigma_{i}^{1/2}x + \mu_{i}) \phi(x|0, I) \mathrm{d}x \\ & = \phi(\frac{\mu_{i}}{v+1}) * |C|^{1/2} \int \prod_{j \neq i}^{l} \Phi^{2}(b_{j}^{T}x + \mu_{j}) * \phi(x| - \frac{\mu_{i}}{v+1}b_{i}, C) \mathrm{d}x \\ & = \phi(\frac{\mu_{i}}{v+1}) * |C|^{1/2} * \Pr(z^{1} \leq w \land z^{2} \leq w) \end{split}$$

Here we use the same notation as the proof above.

Using the similar trick as theorem (1), we have

$$\begin{split} & \Pr\left[\left|\frac{\partial \frac{1}{M}\sum_{k=1}^{M}\prod_{j=1}^{l}\Phi(w_{i,j}^{k})}{\partial \mu_{i}} - \frac{\partial \Pr(y_{i}|x_{i})}{\partial \mu_{i}}\right| \geq \epsilon \frac{\partial \Pr(y_{i}|x_{i})}{\partial \mu_{i}}\right] \\ & \leq \frac{e^{\frac{\mu_{i}^{2}}{2(v+1)}}|C^{-1}|\lambda_{max}\prod_{j\neq i}^{l}g(\mu_{j}^{\prime})^{2}|2\Sigma + I|^{1/2} - 1}{M\epsilon^{2}} \\ & \leq \frac{e^{\frac{\mu_{i}^{2}}{2(\Sigma_{i,i}+1)}}(\Sigma_{i,i}+1)\lambda_{max}\prod_{j\neq i}^{l}g(\mu_{j}^{\prime})^{2}|2\Sigma + I|^{1/2} - 1}{M\epsilon^{2}} \\ & \text{Here } \mu^{\prime} = \mu - \frac{\mu_{i}}{2(\Sigma_{i,l}+1)}\Sigma^{1/2}b_{i}. \end{split}$$

In this way, we bound the convergence of the derivatives in terms of μ , so that the derivatives in term of the parameters in feature network can be derived by chain rule. However, because the derivatives of $\Sigma^{1/2}$ could be negative or zero, we can not apply the Chebyshev's inequality to have a similar multiplicative error bound. Nevertheless, because all the data points share a global residual covariance matrix, empirical experiments show that $\Sigma^{1/2}$ converges well on all the datasets.

Here we show that the variance of our sampling process is strictly lower than the rejection sampling.

Theorem 3 Here we follow the notation of equation(7) in the main paper. Let θ_1 be the reject sampling estimator of $\Phi(0; -\mu, \Sigma)$, where $E[\theta_1] = E_{r \sim N(0, \Sigma)}[I\{r \leq \mu\}]$. Let θ_2 be the estimator of DMVP's sampling process, where $E[\theta_2] = E_{w \sim N(0, \Sigma_r)}[\Pr(z \leq (w + \mu)|w)]$ and $z \sim N(0, V)$. We have $Var[\theta_2] < Var[\theta_1]$. Proof.

$$\begin{split} Var[\theta_2] &= E[(\theta_2 - E[\theta_2])^2] \\ &= E_{w \sim N(0, \Sigma_r)}[(\Pr(z \preccurlyeq (w + \mu)|w) - E[\theta_2])^2] \\ &= E_{w \sim N(0, \Sigma_r)}[(E_{z \sim N(0, V)}[I\{z \preccurlyeq (w + \mu)\} - E[\theta_2]|w])^2] \\ &< E_{w \sim N(0, \Sigma_r)}[E_{z \sim N(0, V)}[(I\{z \preccurlyeq (w + \mu)\} - E[\theta_2])^2|w]] \\ &= E_{r \sim N(0, \Sigma)}[(I\{r \preccurlyeq \mu\} - E[\theta_1])^2] \\ &\qquad (\textit{Here } r = z - w \textit{ and } E[\theta_1] = E[\theta_2]) \\ &= E[(\theta_1 - E[\theta_1])^2] = Var[\theta_1] \end{split}$$

The inequality follows the fact that $E[x^2] > E[x]^2$ given $Var[x] \neq 0$.