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7. Appendix

Theorem 1 Let 1 € R' and ¥ € R'™! be the rescaled
mean and the rescaled residual covariance matrix of the
random variable w*) in the equation (7) of the main text,
then we have
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where g(11;) = max, Sty - The function 9(u;) does
not have a closed form but it is a monotonous decreasing
function, which converges to 1 as ji; increases.

Proof. For the ease of expression, we omit the subscripts
related to ¢-th data point in our proof. Without loss of
generality, we can also assume the diagonal matrix V' is
an indentity matrix. Defining Pr(y|w) = H?Zl O (wjy),
Pr(y|lz) = Eyon(ux)[Pr(ylw)]. We prove this conver-
gence bound by analysing the first and second moment of

random variable Pr(y|w).

E,[Pr(y|lw)] :/H (w;)Pry(w)dw

= / Pr,(z < wjw)Pr,(w)dw

= Pr,w(z 2 w)
= Pr,w(z—w =<0) 4
Here z N(0,1) and a < b means Va; < b;
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Since z is subject to multivariate gaussian distribution, z —w
is still a multivariate gaussian random variable, which is
subject to N (—p, X+1). Thus, Pr(y|z) = E,[Pr(y|w)] =
®(0; —p, X+ I). (P(+) denotes the cumulative function of
multivariate gaussian distribution.)

Similarly, we can derive that
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Let B = s onggr we have |B|] =
det ({226’_1 ?})‘ = |2X + I|. Since X is a positive

definite matrix, we can decompose ¥ = UDU T where U is

an orthogonal matrix and D is a diagonal matrix. Similarly,

we can decompose
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Letxi, 20 € R,y = UT(zy + ) and

D = diag(dy, ...,
E[Pr(y}r)?] = @ (Oa [_Z] : F; ! gff])
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Thus,
E[Pr(y|r)2Y? < |25 + I|V4®(0; —p, 25 + 1)

Using the inverse transformation in equation (4), we have
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Let g(1;) = max, ) )| then we have
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Using the Chebyshev’s inequality, we have
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The function g(p;) does not have a closed form but it is a
monotonous decreasing function, which converges to 1 as
1; increases. The figure (1) is the visualization of function

g(u;)
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Figure 1. The visualization of function g(u;).

g(u;). As you see, the function g(u;) is very close to 1

when p; is positive. The following lemma provides a more
analytical upper bound for function g(u;).

Lemma 1 Foranyy, ®(v2y+p) < g(p)®(y+ ), where

g < { V2T <o
B 1182 if u>0

Proof. Tfi:;‘) achieves the maximum when its derivative

is equal to zero, i.e.,
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when p < 0. Similarly, when p > 0, we
know y* = argmazx LIVETLTDRS 0 Thus
Y o(y+p) = ' ’
®(y* + p) > 3. By analysing the maximal value
of ®(v2y + p) — ®(y + u) as well as the fact that
B(V2Y+p) = Dy +p) < (V2 — Dy x e 3007,
we could know that ®(v2y + p) — ®(y + p) < 0.091.
That is,
V2R e <
9(p) < s
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Theorem 2 Let ;1 € R' and ¥ € R'™! be the rescaled
mean and rescaled residual covariance matrix of the random
variable w'*) in equation (7) of the main text, we have
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Here \jaq denotes the largest eigenvalue of ¥ and 1/ =
w— U“—;IZUQI)Z». (b; denotes the i-th row of £ /5.)

Proof. For the ease of symbolism, we omit all the subscript
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i related to the index of ¢-th data point. Forany 1 < i <[,
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Let B = %./2 and let b; denote the j-th row of B.
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(wherewa( C)and z ~ N(0,1).)
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(Where w~ N(p—; — H7B_ib;, B_;CBZ,),
p_;i € R~ denotes the vector derived from 1 by
eliminating the i-th entry. B_; € R'~"*! denotes the

matrix derived from B by eliminating the i-th row.)

Thus, using the transformation above, we can transform

the derivative in terms of y; into the form similar to theo-
rem (1). Because B_,C BT, = B_; BT, — (B=ib)(B=ibi)

v+1
where B_;BT, is a principal submatrix of Y, whose
eigenvalues are interlaced with the eigenvalues of 3, and

w is a rank-1 matrix, we have [2B_;C BT, +

* >\ma'r

In terms of the second moment of the derivative of ;, we
have,
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Here we use the same notation as the proof above.

Using the similar trick as theorem (1), we have
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Here i/ = p— A5 % 2b;.

In this way, we bound the convergence of the derivatives in
terms of u, so that the derivatives in term of the parameters
in feature network can be derived by chain rule. However,
because the derivatives of ¥'/2 could be negative or zero,
we can not apply the Chebyshev’s inequality to have a sim-
ilar multiplicative error bound. Nevertheless, because all
the data points share a global residual covariance matrix,
empirical experiments show that /2 converges well on all
the datasets.

Here we show that the variance of our sampling process is
strictly lower than the rejection sampling.

Theorem 3 Here we follow the notation of equation(7) in
the main paper. Let 01 be the reject sampling estimator

of ®(0; —p, X), where El6] = E,.nox)[I{r < u}.
Let 05 be the estimator of DMVP’s sampling process,
where El03] = Eun(os,)[Pr(z < (w + )] and
N(0,V). We have Var[fs] < Var[6:].
Proof.
Var(ts] = E[(02 — El62])’]
= EBynno.s) [(Pr(z < (w + p)|w) — E[ 2])’]
= Eyan©s)[(EaavowvyI{z S (w4 p)} — E[92]|w]) ]
< Byrnoz)[Eannowy[(I{z < (w+p)} — E[92]) |w]]
= Eroniom[(IH{r < n} — E[01])7]
(Herer = z — w and E[01] = E[02])
= E[(61 — E[01])*] = Var[61]

The inequality follows the fact that E[z%] > El[x]? given
Var|x] # 0.



