
Stochastic Training of Graph Convolutional

Networks with Variance Reduction:

Supplementary Material

A Derivation of the variance

The following proposition is widely used in this section.

Proposition A. Let X1, . . . , XN are random variables, then

Var

[
N∑
i=1

Xi

]
=

N∑
i=1

N∑
j=1

Cov [Xi, Xj] .

Proof.

Var

[
N∑
i=1

Xi

]
= E

 N∑
i=1

N∑
j=1

XiXj

−(E N∑
i=1

Xi

)2

= E

 N∑
i=1

N∑
j=1

(
XiXj −

1

N
E

N∑
i=1

Xi

)
=

N∑
i=1

N∑
j=1

Cov [Xi, Xj] .

We begin with the proof for the three propositions in the main text.

Proposition 1. If n̂(l)(u) contains D(l) samples from n(u) without replace-

ment, then Varn̂(l)(u)

[
n(u)
D(l)

∑
v∈n̂(l)(u) xv

]
=

C(l)
u

2D(l)

∑
v1∈n(u)

∑
v2∈n(u) (xv1 −

xv2)2, where C
(l)
u = 1− (D(l) − 1)/(n(u)− 1).

Proof. We denote theD(l) samples in the set as v1, . . . , vD(l) .Let x̄ = 1
n(u)

∑
v∈n(u) xv,

1

then

Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

xv


=Varv1,...,vD(l)

n(u)

D(l)

D(l)∑
i=1

xvi


=

(
n(u)

D(l)

)2 D(l)∑
i=1

D(l)∑
j=1

Covv1,...,vD(l)

[
xvi , xvj

]

=

(
n(u)

D(l)

)2

D(l)∑
i=1

Varvi
[
x2vi
]

+
∑
i 6=j

Covvi,vj
[
xvi , xvj

]
=

(
n(u)

D(l)

)2
D(l)

n(u)

∑
v∈n(u)

(xv − x̄)2 +
D(l)(D(l) − 1)

n(u)(n(u)− 1)

 ∑
i,j∈n(u)

(xi − x̄)(xj − x̄)−
∑
i∈n(u)

(xi − x̄)2


=
n(u)

D(l)

(
1− D(l) − 1

n(u)− 1

) ∑
v∈n(u)

x2v − n(u)x̄2


=

1

2D(l)

(
1− D(l) − 1

n(u)− 1

)2n(u)
∑

v∈n(u)

x2v −
∑

v1,v2∈n(u)

2xv1xv2


=
C

(l)
u

2D(l)

∑
v1,v2∈n(u)

(xv1 − xv2)2.

Proposition 2. If n̂(l)(u) contains D(l) samples from the set n(u) without re-
placement, x1, . . . , xV are random variables, ∀v,E [xv] = 0 and ∀v1 6= v2,Cov [xv1 , xv2] =

0, then VarX,n̂(l)(u)

[
n(u)
D(l)

∑
v∈n̂(l)(u) xv

]
= n(u)

D(l)

∑
v∈n(u) Var [xv] .

2

Proof.

VarX,n̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

xv


=

(
n(u)

D(l)

)2

EX


D(l)∑
i=1

En̂(l)(u)x
2
vi +

∑
i 6=j

En̂(l)(u)xvixvj


=

(
n(u)

D(l)

)2

EX

D(l)

n(u)

∑
i∈n(u)

x2i +
D(l)(D(l) − 1)

n(u)(n(u)− 1)

∑
i,j∈n(u),i6=j

xixj


=
n(u)

D(l)

∑
i∈n(u)

Var [xi] .

Proposition 3. X and Y are two random variables, and f(X,Y) and g(Y) are
two functions. If EXf(X,Y) = 0, then VarX,Y [f(X,Y) + g(Y)] = VarX,Y f(X,Y)+
VarY g(Y).

Proof.

VarX,Y [f(X,Y) + g(Y)] = VarX,Y f(X,Y) + VarY g(Y) + 2CovX,Y [f(X,Y), g(Y)],

where

CovX,Y [f(X,Y), g(Y)] = EY EX [(f(X,Y)− EX,Y f(X,Y))(g(Y)− EY g(Y))]

= EY [(EXf(X,Y)− 0)(g(Y)− EY g(Y))]

= EY [0(g(Y)− EY g(Y))] = 0.

Then, we derive the variance of the estimators with dropout is present.

A.1 Variance of the exact estimator

VarM

 ∑
v∈n(u)

Puvh
(l)
v

 = VarM

 ∑
v∈n(u)

Puvh̊
(l)
v

 =
∑

v∈n(u)

P 2
uvVarM

[̊
h(l)v

]
= S(l)

u .

3

A.2 Variance of the NS estimator

Varn̂(l)(u),M

[
NS(l)

u

]
=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh
(l)
v


=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv (̊h
(l)
v + µ(l)

v)


=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v

+ Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvµ
(l)
v

 ,
where the last equality is by Proposition 3. By Proposition 2, VD is

Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v


=VarMVarn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v


=
n(u)

D(l)
S(l)
u ,

where S
(l)
u =

∑
v∈n(u) VarM

[
Puvh

(l)
v

]
is defined in Sec. 5.2. By Proposition 1,

VNS is

Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvµ
(l)
v

 =
C

(l)
u

2D(l)

∑
v1,v2∈n(u)

(Puv1µ
(l)
v1 − Puv2µ

(l)
v2)2.

A.3 Variance of the CVD estimator

Varn̂(l)(u),M

[
CVD(l)

u

]
=Varn̂(l)(u),M

√n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v +

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v


=Varn̂(l)(u),M

√n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v

+ Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v

 ,

4

where the last equality is by Proposition 3. By Proposition 2, VD is

Varn̂(l)(u),M

√n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v


=
D(l)

n(u)
VarMVarn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puvh̊
(l)
v


=S(l)

u .

By Proposition 1, VNS is

Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v


=Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v


=
C

(l)
u

2D(l)

∑
v1,v2∈n(u)

(Puv1∆µ(l)
v1 − Puv2∆µ(l)

v2)2.

A.4 Variance of the CV estimator

Varn̂(l)(u),M

[
CV(l)

u

]
=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆h
(l)
v +

∑
v∈n(u)

Puvh̄
(l)
v


=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆h̊
(l)
v +

∑
v∈n(u)

Puv
¯̊
h(l)v +

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v


=Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆h̊
(l)
v +

∑
v∈n(u)

Puv
¯̊
h(l)v


+ Varn̂(l)(u)

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆µ
(l)
v +

∑
v∈n(u)

Puvµ̄
(l)
v

 ,
where ∆h̊

(l)
v = (h

(l)
v −µ(l)

v)−(h̄
(l)
v − µ̄(l)

v), and the last equality is by Proposition 3.
The VNS term is the same with CVD’s VNS term.

To analyze the VD, we further assume
¯̊
h
(l)
v and h̊

(l)
v are i.i.d., so EM∆h̊

(l)
v = 0,

5

EM (∆h̊
(l)
v)2 = 2EM (̊h

(l)
v)2, and EM h̊(l)v ∆h̊

(l)
v = EM (̊h

(l)
v)2.

Varn̂(l)(u),M

n(u)

D(l)

∑
v∈n̂(l)(u)

Puv∆h̊
(l)
v +

∑
v∈n(u)

Puv
¯̊
h(l)v


=En̂(l)(u),M

{(n(u)

D(l)

)2 ∑
i,j∈n̂(l)(u)

PuiPuj∆h̊
(l)
i ∆h̊

(l)
j +

∑
i,j∈n(u)

PuiPuj
¯̊
h
(l)
i

¯̊
h
(l)
j

+ 2
n(u)

D(l)

∑
i∈n̂(l)(u),j∈n(u)

PuiPuj∆h̊
(l)
i

¯̊
h
(l)
j

}

=

(
n(u)

D(l)

)2 ∑
i∈n̂(l)(u)

En̂(l)(u),M (Pui∆h̊
(l)
i)2 +

∑
i∈n(u)

P 2
uiEM

¯̊
h
(l)
i + 2

∑
ij∈n(u)

PuiPuj∆h̊
(l)
i

¯̊
h
(l)
j

=
n(u)

D(l)

∑
i∈n(u)

Pui2EM (̊h
(l)
i)2 +

∑
i∈n(u)

P 2
uiEM

¯̊
h
(l)
i + 2

∑
i∈n(u)

P 2
uiEM

¯̊
h
(l)
i

=

(
3 +

n(u)

D(l)

)
S(l)
u .

B Proof of Theorem 1

Theorem 1. For a constant sequence of Wi = W and any i > LI (i.e., after L

epochs), the activations computed by CV are exact, i.e., Z
(l)
CV,i = Z(l) for each

l ∈ [L] and H
(l)
CV,i = H(l) for each l ∈ [L− 1].

Proof. We prove by induction. After the first epoch the activation h
(0)
i,v is at

least computed once for each node v. So H̄
(0)
CV,i = H

(0)
CV,i = H(0) = X for all

i > I. Assume that we have H̄
(l)
CV,i = H

(l)
CV,i = H(l) for all i > (l + 1)I. Then for

all i > (l + 1)I

Z
(l+1)
CV,i =

(
P̂

(l)
i (H

(l)
CV,i − H̄

(l)
CV,i) + PH̄

(l)
CV,i

)
W (l) = PH̄

(l)
CV,iW

(l) = PH(l)W (l) = Z(l+1).

(1)

H
(l+1)
CV,i = σ(Z

(l+1)
CV,i) = H(l+1)

After one more epoch, all the activations h
(l+1)
CV,i,v are computed at least once for

each v, so H̄
(l+1)
CV,i = H

(l+1)
CV,i = H(l+1) for all i > (l + 2)I. By induction, we know

that after LI steps, we have H̄
(L−1)
CV,i = H

(L−1)
CV,i = H(L−1). By Eq. 1 we also have

Z̄
(L)
CV,i = Z(L).

6

C Proof of Theorem 2

We proof Theorem 2 in 3 steps:

1. Lemma 1: For a sequence of weights W (1), . . . ,W (N) which are close to
each other, CV’s approximate activations are close to the exact activations.

2. Lemma 2: For a sequence of weights W (1), . . . ,W (N) which are close to
each other, CV’s gradients are close to be unbiased.

3. Theorem 2: An SGD algorithm generates the weights that changes slow
enough for the gradient bias goes to zero, so the algorithm converges.

The following proposition is needed in our proof

Proposition B. Let ‖A‖∞ = maxij |Aij |, then

• ‖AB‖∞ ≤ col(A) ‖A‖∞ ‖B‖∞, where col(A) is the number of columns of
the matrix A.

• ‖A ◦B‖∞ ≤ ‖A‖∞ ‖B‖∞, where ◦ is the element wise product.

• ‖A+B‖∞ ≤ ‖A‖∞ + ‖B‖∞.

Proof.

‖AB‖∞ = max
ij

∣∣∣∣∣∑
k

AikBik

∣∣∣∣∣ ≤ max
ij

∣∣∣∣∣∑
k

‖A‖∞ ‖B‖∞

∣∣∣∣∣ = col(A) ‖A‖∞ ‖B‖∞ .

‖A ◦B‖∞ = max
ij
|AijBij | ≤ max

ij
‖A‖∞ ‖B‖∞ = ‖A‖∞ ‖B‖∞ .

‖A+B‖∞ = max
ij
|Aij +Bij | ≤ max

ij
{|Aij |+ |Bij |} ≤ max

ij
|Aij |+ max

ij
|Bij | = ‖A‖∞ + ‖B‖∞ .

We define C := max{col(P), col(H(0)), . . . , col(H(L))} to be the maximum
number of columns we can possibly encounter in the proof.

C.1 Single layer GCN

The following proposition states that if the inputs and the weights of an one-layer
GCN with CV estimator does not change too much, then its output does not
change too much, and is close to the output of an exact one-layer GCN.

Proposition C. If the activation σ(·) is ρ-Lipschitz, for any series of T inputs,
weights, and stochastic propagation matrices (Xi, XCV,i,Wi, P̂i)

T
i=1, s.t.,

1. all the matrices are bound by B, i.e., ‖XCV,i‖∞ ≤ B, ‖Xi‖∞ ≤ B,

‖Wi‖∞ ≤ B and
∥∥∥P̂i∥∥∥

∞
≤ B,

7

2. the differences are bound by ε, i.e., ‖XCV,i −XCV,j‖∞ < ε, ‖XCV,i −Xi‖∞ <
ε and ‖Wi −Wj‖∞ < ε,

let P = EP̂i. If at time i we feed (XCV,i,Wi, P̂i) to an one-layer GCN with CV
estimator to evaluate the prediction for nodes in the minibatch Vi, 1

ZCV,i =
(
P̂i(XCV,i − X̄CV,i) + PX̄CV,i

)
Wi, HCV,i = σ(ZCV,i).

where X̄CV,i is the maintained history at time i, and (Xi,Wi, P) to an one-layer
GCN with exact estimator

Zi = PXiWi, Hi = σ(Zi),

then there exists K that depends on C, B and ρ, s.t. for all I < i, j ≤ T , where
I is the number of iterations per epoch:

1. The outputs does not change too fast: ‖ZCV,i − ZCV,j‖∞ < Kε and
‖HCV,i −HCV,j‖∞ < Kε,

2. The outputs are close to the exact output: ‖ZCV,i − Zi‖∞ < Kε and
‖HCV,i −Hi‖∞ < Kε.

Proof. Because for all i > I (i.e., after one epoch), the elements of X̄CV,i are all
taken from previous iterations, i.e., XCV,1, . . . , XCV,i−1, we know that∥∥X̄CV,i −XCV,i

∥∥
∞ ≤ max

j≤i
‖XCV,j −XCV,i‖∞ ≤ ε (∀i > I). (2)

By triangular inequality, we also know∥∥X̄CV,i − X̄CV,j

∥∥
∞ < 3ε (∀i, j > I). (3)∥∥X̄CV,i −Xi

∥∥
∞ < 2ε (∀i > I). (4)

Since ‖XCV,1‖∞ , . . . , ‖XCV,T ‖∞ are bounded by B,
∥∥X̄CV,i

∥∥
∞ is also bounded

1Conceptually we feed the data for all the nodes in V, but since we only require the
predictions for the nodes in Vi, the algorithm will only fetch the input of a subset of nodes
⊂ V, and update history for those nodes.

8

by B for i > I. Then,

‖ZCV,i − ZCV,j‖∞
=
∥∥∥(P̂i(XCV,i − X̄CV,i) + PX̄CV,i

)
Wi −

(
P̂j(XCV,j − X̄CV,j) + PX̄CV,j

)
Wj

∥∥∥
∞

≤
∥∥∥P̂i(XCV,i − X̄CV,i)Wi − P̂j(XCV,j − X̄CV,j)Wj

∥∥∥
∞

+ ρ
∥∥PX̄CV,iWi − PX̄CV,jWj

∥∥
∞

≤C2[
∥∥∥P̂i − P̂j∥∥∥

∞

∥∥XCV,i − X̄CV,i

∥∥
∞ ‖Wi‖∞

+
∥∥∥P̂j∥∥∥

∞

∥∥XCV,i − X̄CV,i −XCV,j + X̄CV,j

∥∥
∞ ‖Wi‖∞

+
∥∥∥P̂j∥∥∥

∞

∥∥XCV,j − X̄CV,j

∥∥
∞ ‖Wi −Wj‖∞

+ ‖P‖∞
∥∥X̄CV,i − X̄CV,j

∥∥
∞ ‖Wi‖∞

+ ‖P‖∞
∥∥X̄CV,j

∥∥
∞ ‖Wi −Wj‖∞]

≤C2ε[
∥∥∥P̂i − P̂j∥∥∥

∞
‖Wi‖∞ + 2

∥∥∥P̂j∥∥∥
∞
‖Wi‖∞ +

∥∥∥P̂j∥∥∥
∞
‖Wi −Wj‖∞

+3
∥∥∥P̂j∥∥∥

∞
‖Wi‖∞ +

∥∥∥P̂j∥∥∥
∞

∥∥X̄CV,j

∥∥
∞]

≤εC2
[
2B2 + 2B2 + 2B2 + 3B2 +B2

]
=K1ε,

where K1 = 10C2B2, and

‖ZCV,i − Zi‖∞ ≤
∥∥∥(P̂i(XCV,i − X̄CV,i) + P (X̄CV,i −Xi)

)∥∥∥
∞
‖Wi‖∞

≤ C(
∥∥∥P̂i∥∥∥

∞
ε+ 2 ‖P‖∞ ε) ‖Wi‖∞

≤ 3CB2ε

= K2ε,

where K2 = 3CB2. By Lipschitz continuity

‖HCV,i −HCV,j‖∞ ≤ ρK1ε,

‖HCV,i −Hi‖∞ ≤ ρK2ε.

We just let K = max{ρK1, ρK2,K1,K2}.

C.2 Lemma 1: Activation of Multi-layer GCN

The following lemma bounds the approximation error of activations in a multi-
layer GCN with CV. Intuitively, there is a sequence of slow-changing model
parameters (Wi), where Wi is the model at the i-th iteration. At each iteration i
we use GCN with CV and GCN with Exact estimator to compute the activations
for the minibatch Vi, and update the corresponding history. Then after L epochs,
the error of the predictions by the CV estimator is bounded by the rate of change
of (Wi), regardless of the stochastic propagation matrix P̂i.

9

Lemma 1. Assume all the activations are ρ-Lipschitz, given a fixed dataset
X and a sequence of T model weights and stochastic propagation matrices
(Wi, P̂i)

T
i=1, s.t.,

1. ‖Wi‖∞ ≤ B and
∥∥∥P̂i∥∥∥

∞
≤ B,

2. ‖Wi −Wj‖∞ < ε,∀i, j,

let P = EP̂i. If at time i we feed (X,Wi, P̂i) to a GCN with CV estimator to
evaluate the prediction for nodes in the minibatch Vi,

Z
(l+1)
CV,i =

(
P̂

(l)
i (H

(l)
CV,i − H̄

(l)
CV,i) + PH̄

(l)
CV,i

)
W

(l)
i , H

(l+1)
CV,i = σ(Z

(l+1)
CV,i).

where H̄
(l)
CV,i is the maintained history at time i, and (X,Wi, P) to a GCN with

exact estimator

Z
(l+1)
i = PH

(l)
i W

(l)
i , H

(l+1)
i = σ(Z

(l+1)
i),

then there exists K that depends on C, B and ρ s.t.,

•
∥∥∥H(L)

i −H(L)
CV,i

∥∥∥
∞
< Kε, ∀i > LI, l = 1, . . . , L− 1,

•
∥∥∥Z(L)

i − Z(L)
CV,i

∥∥∥
∞
< Kε, ∀i > LI, l = 1, . . . , L.

Proof. By Proposition C.1, we know there exists K(1), s.t.,
∥∥∥H(1)

i −H
(1)
CV,i

∥∥∥ <
K(1)ε and

∥∥∥H(1)
CV,i −H

(1)
CV,j

∥∥∥ < K(1)ε, ∀i > I.

Repeat this for L−1 times, we know there existK(1), . . . ,K(L), s.t.,
∥∥∥H(L)

i −H(L)
CV,i

∥∥∥ <
Kε,

∥∥∥H(L)
CV,i −H

(K)
CV,j

∥∥∥ < Kε,
∥∥∥Z(L)

i − Z(L)
CV,i

∥∥∥ < Kε and
∥∥∥Z(L)

CV,i − Z
(K)
CV,j

∥∥∥ < Kε,

∀i > LI, where K =
∏L
l=1K

(l).

C.3 Lemma 2: Gradient of Multi-layer GCN

We reiterate some notations defined in Sec. 4 of the main text. Vi is the minibatch
of nodes at iteration i that we would like to evaluate the predictions and gradients

on. gCV,v(Wi) := ∇f(yv, z
(L)
CV,i,v) is the stochastic gradient propagated through

the node v by the CV estimator, and gCV,i(Wi) := 1
|Vi|
∑
v∈Vi ∇f(yv, z

(L)
CV,i,v)

is the minibatch gradient by CV. gv(Wi) := ∇f(yv, z
(L)
v) is stochastic gradi-

ent propagated through the node v by the Exact estimator, and gi(Wi) :=
1
|Vi|
∑
v∈Vi ∇f(yv, z

(L)
v) is the minibatch gradient by the Exact estimator. Fi-

nally, ∇L(Wi) = 1
|VL|

∑
v∈VL ∇f(yv, z

(L)
i,v) is the exact full-batch gradient.

The following lemma bounds the bias of the gradients by the CV estimator.
Intuitively, there is a sequence of slow-changing model parameters (Wi), where

10

Wi is the model at the i-th iteration. At each iteration i we use GCN with CV
and GCN with Exact estimator to compute the activations for the minibatch Vi,
and update the corresponding history. After L epochs, we compute the gradient
by backpropagating through CV’s predictions on the minibatch of nodes Vi.
The gradient gCV,i(Wi) is a random variable of both the stochastic propagation

matrix P̂i and the minibatch Vi. But the expectation of the gradient w.r.t. P̂i
and Vi, EP̂i,VigCV,i(Wi), is close to the full-batch gradient by the Exact estimator

∇L(Wi), i.e., the gradient is close to be unbiased.
To study the gradient, we need the backpropagation rules of the networks. Let

fv = f(yv, z
(L)
v) and fCV,i,v = f(yz, z

(L)
CV,i,v), we first derive the backpropagation

rule for the exact algorithm. Differentiating both sides of Eq. (1), we have:

∇H(l)fv = P>∇Z(l+1)fvW
(l)> l = 1, . . . , L− 1

∇Z(l)fv = σ′(Z(l)) ◦ ∇H(l)fv l = 1, . . . , L− 1

∇W (l)fv = (PH(l))>∇Z(l+1)fv l = 0, . . . , L− 1. (5)

Similarly, differentiating both sides of Eq. (5), we have

∇
H

(l)
CV

fCV,v = P̂ (l)∇
Z

(l+1)
CV

fCV,vW
(l)> l = 1, . . . , L− 1

∇
Z

(l)
CV

fCV,v = σ′(Z
(l)
CV) ◦ ∇

H
(l)
CV

fCV,v l = 1, . . . , L− 1

∇W (l)fCV,v = (P̂ (l)H
(l)
CV)>∇

Z
(l+1)
CV

fCV,v l = 0, . . . , L− 1. (6)

Lemma 2. Assume σ(·) and ∇zf(y, z) are ρ-Lipschitz, ‖∇zf(y, z)‖∞ ≤ B.
Given a fixed dataset X and a sequence of T weights and stochastic propagation
matrices (Wi, P̂i)

T
i=1, s.t.,

1. ‖Wi‖∞ ≤ B,
∥∥∥P̂i∥∥∥

∞
≤ B, and ‖σ′(ZCV,i)‖∞ ≤ B,

2. ‖Wi −Wj‖∞ < ε,∀i, j,

let P = EP̂i. If at time i we feed (X,Wi, P̂i) to a GCN with CV estimator to
evaluate the prediction for nodes in the minibatch Vi,

Z
(l+1)
CV,i =

(
P̂

(l)
i (H

(l)
CV,i − H̄

(l)
CV,i) + PH̄

(l)
CV,i

)
W

(l)
i , H

(l+1)
CV,i = σ(Z

(l+1)
CV,i).

where H̄
(l)
CV,i is the maintained history at time i, and (X,Wi, P) to a GCN with

exact estimator

Z
(l+1)
i = PH

(l)
i W

(l)
i , H

(l+1)
i = σ(Z

(l+1)
i),

then there exists K that depends on C, B and ρ s.t.,∥∥∥EP̂i,Vi(Wi)−∇L(Wi)
∥∥∥
∞
≤ Kε,∀i > LI.

11

Proof. By Lipschitz continuity of ∇zf(y, z) and Lemma 1, there exists K̇, for

all P̂i = (P̂
(0)
i , . . . , P̂

(L−1)
i) ∥∥∥∇z(L)

CV,v

fCV,v −∇z(L)
v
fv

∥∥∥
∞

≤ρ
∥∥∥z(L)CV,v − z

(L)
v

∥∥∥
∞

≤ρK̇ε,∥∥∥σ′(Z(l)
CV)− σ′(Z(l))

∥∥∥
∞
≤ρK̇ε (7)

We prove by induction that there exists Kl, s.t., ∀l ∈ [L],,∥∥∥EP̂ (≥l)∇z(l)CV,vfCV,v −∇z
(l)
v fv

∥∥∥
∞
≤ Klε, ∀P̂ (0), . . . , P̂ (l−1), (8)

where P̂ (≥l) = (P̂ (l), . . . , P̂ (L−1)). By Eq. (7) the statement holds for l = L,
where KL = ρK̇. If the statement holds for l + 1, i.e.,∥∥∥EP̂ (≥l+1)∇z(l+1)

CV,v fCV,v −∇z
(l+1)
v fv

∥∥∥
∞
≤ Klε, ∀P̂ (0), . . . , P̂ (l),

then by Eq. (5, 6),∥∥∥EP̂ (≥l)∇z(l)CV,vfCV,v −∇z
(l)
v fv

∥∥∥
∞

=
∥∥∥EP̂ (≥l)σ

′(Z
(l)
CV) ◦ P̂ (l)∇

Z
(l+1)
CV

fCV,v − σ′(Z(l)) ◦ P>∇Z(l+1)fv

∥∥∥
∞

=
∥∥∥EP̂ (≥l)

{[
σ′(Z

(l)
CV) ◦ P̂ (l)∇

Z
(l+1)
CV

fCV,v

]
− σ′(Z(l)) ◦ P>∇Z(l+1)fv

}∥∥∥
∞

≤
∥∥∥EP̂ (≥l)

{[(
σ′(Z

(l)
CV)− σ′(Z(l))

)
◦ P̂ (l)∇

Z
(l+1)
CV

fCV,v

]}∥∥∥
∞

+ EP̂ (l)

∥∥∥EP̂ (≥l+1)

[
σ′(Z(l)) ◦ P̂ (l)

(
∇
Z

(l+1)
CV

fCV,v −∇Z(l+1)fv

)]∥∥∥
∞

+
∥∥∥EP̂ (≥l)

{[
σ′(Z(l)) ◦

(
P̂ (l) − P>

)
∇Z(l+1)fv

]}∥∥∥
∞

≤EP̂ (≥l)

[∥∥∥σ′(Z(l)
CV)− σ′(Z(l))

∥∥∥
∞

∥∥∥P̂ (l)∇
Z

(l+1)
CV

fCV,v

∥∥∥
∞

]
+ EP̂ (l)

∥∥∥σ′(Z(l))
∥∥∥
∞

EP̂ (≥l+1)

∥∥∥P̂ (l)
∥∥∥
∞

EP̂ (≥l+1)

∥∥∥∇Z(l+1)
CV

fCV,v −∇Z(l+1)fv

∥∥∥
∞

+ 0

≤ρK̇εB2C2 +B2C2Kl+1ε

=Klε,

where Kl = B2C2(ρK̇ +Kl+1). By induction, Eq. (8) holds. Similarly, we can
show that there exists K, s.t.,∥∥EP̂∇W (l)fCV,v −∇W (l)fv

∥∥
∞ < Kε, ∀l ∈ [L− 1].

12

Therefore, ∥∥∥EVi,P̂i
gCV,i(Wi)−∇L(Wi)

∥∥∥
∞

=
∥∥∥Ev∈V,P̂i

gCV,v(Wi)− Ev∈Vgv(Wi)
∥∥∥
∞

≤EVi
∥∥∥EP̂i

gCV,v(Wi)− gv(Wi)
∥∥∥
∞

≤EVi max
l

∥∥EP̂∇W (l)fCV,v −∇W (l)fv
∥∥
∞

≤Kε.

C.4 Proof of Theorem 2

Theorem 2. Assume that (1) the activation σ(·) is ρ-Lipschitz, (2) the gradient
of the cost function ∇zf(y, z) is ρ-Lipschitz and bounded, (3) ‖gCV,V(W)‖∞,

‖g(W)‖∞, and ‖∇L(W)‖∞ are all bounded by G > 0 for all P̂ ,V and W . (4)
The loss L(W) is ρ-smooth, i.e., |L(W2) − L(W1) − 〈∇L(W1),W2 − W1〉| ≤
ρ
2 ‖W2 −W1‖2F ∀W1,W2, where 〈A,B〉 = tr(A>B) is the inner product of matrix
A and matrix B. (5) The loss L(W) ≥ L∗ is bounded below. Then, there exists
K > 0, s.t., ∀N > LI, if we run SGD for R ≤ N iterations, where R is chosen
uniformly from [N]+, we have

ER ‖∇L(WR)‖2F ≤ 2
L(W1)− L∗ +K + ρK√

N
,

for the updates Wi+1 = Wi − γgCV,i(Wi) and the step size γ = min{ 1ρ ,
1√
N
}.

Proof. This proof is a modification of [2], but using biased stochastic gradients
instead. We assume the algorithm is already warmed-up for LI steps with
the initial weights W0, so that Lemma 2 holds for step i > 0. Denote δi =
gCV,i(Wi)−∇L(Wi). By smoothness we have

L(Wi+1) ≤ L(Wi) + 〈∇L(Wi),Wi+1 −Wi〉+
ρ

2
γ2 ‖gCV,i(Wi)‖2F

= L(Wi)− γ〈∇L(Wi), gCV,i(Wi)〉+
ρ

2
γ2 ‖gCV,i(Wi)‖2F

= L(Wi)− γ〈∇L(Wi), δi〉 − γ ‖∇L(Wi)‖2 +
ρ

2
γ2
[
‖δi‖2 + ‖∇L(Wi)‖2F + 2〈δi,∇L(Wi)〉

]
= L(Wi)− (γ − ργ2)〈∇L(Wi), δi〉 − (γ − ργ2

2
) ‖∇L(Wi)‖2F +

ρ

2
γ2 ‖δi‖2F .

(9)

13

For each i, consider the sequence of LI + 1 weights Wi−LI , . . . ,Wi.

max
i−LI≤j,k≤i

‖Wj −Wk‖∞ ≤
i−1∑

j=i−LI
‖Wj −Wj+1‖∞

=

i−1∑
j=i−LI

γ ‖gCV (Wj)‖∞ ≤
i−1∑

j=i−LI
γG = LIGγ.

By Lemma 2, there exists K̇ > 0, s.t.∥∥∥EP̂ ,VBδi∥∥∥∞ =
∥∥∥EP̂ ,VBgCV (Wi)−∇L(Wi)

∥∥∥
∞
≤ K̇LIGγ, ∀i > 0.

Assume that W is D-dimensional,

EP̂ ,VB 〈∇L(Wi), δi〉 ≤ D ‖∇L(Wi)‖∞
∥∥∥EP̂ ,VBδi∥∥∥∞ ≤ K̇LIDG2γ ≤ Kγ,

EP̂ ,VB ‖δi‖
2
F ≤ D ‖gCV,i(Wi)‖∞ +D ‖∇L(Wi)‖∞ ≤ 2DG2 ≤ K,

where K = max{K̇LIDG2, 2DG2}. Taking EP̂ ,VB to both sides of Eq. 9 we
have

L(Wi+1) ≤ L(Wi) + (γ − ργ2)Kγ − (γ − ργ2

2
) ‖∇L(Wi)‖2F + ρKγ2/2.

Summing up the above inequalities and re-arranging the terms, we obtain,

(γ − ργ2

2
)
∑
i

‖∇L(Wi)‖2F

≤L(W1)− L∗ +KN(γ − ργ2)γ +
ρK

2
Nγ2.

Dividing both sides by N(γ − ργ2

2), and take γ = min{ 1ρ ,
1√
N
}

ER∼PR
‖∇L(WR)‖2F

≤2
L(W1)− L∗ +KN(γ − ργ2)γ + ρK

2 Nγ
2

Nγ(2− ργ)

≤2
L(W1)− L∗ +KN(γ − ργ2)γ + ρK

2 Nγ
2

Nγ

≤2
L(W1)− L∗

Nγ
+Kγ(1− ργ) + ρKγ

≤2
L(W1)− L∗√

N
+Kγ + ρK/

√
N

≤2
L(W1)− L∗ +K + ρK√

N
.

Particularly, when N → ∞, we have ER∼PR
‖∇L(WR)‖2F = 0, which implies

that the gradient is asymptotically unbiased.

14

C.5 Generalizing to Graph Attention Networks

Our Theorem 2 can generalize to graph attention networks (GAT) [6]. GAT
updates can be written as

Z(l+1) = P (H(l),W (l))H(l)W (l), H(l+1) = σ(Zl+1),

the difference between GAT and GCN (Eq. 1) is that the propagation matrix P
is now a function of activations and network weights instead of a constant. We
define the variance reduced stochastic update as

Z(l+1) =
(
P̂ (l)(H̄(l),W (l))(H(l) − H̄(l)) + P (H̄(l),W (l))H̄(l)

)
W (l),

where we approximate H(l) with H̄(l) when computing the propagation ma-
trix. We can still bound the gradient by extending Lemma 2, and prove the
convergence.

For GraphSAGE-pool and GraphSAGE-LSTM, our algorithm does not di-
rectly apply. Take GraphSAGE-pool as an example, it defines

z
(l+1)
ud = max

v∈n(u)

(
h(l)v W

(l)
:,d

)
,

whose gradient is

∂z
(l+1)
ud

∂h
(l)
vd′

=

{
w

(l)
d′d if v maximizes h

(l)
v W

(l)
:,d ,

0 otherwise.

It is unclear how to obtain an unbiased stochastic approximation of this gradient.
We leave this as an open problem to study.

D Pseudocode

As mentioned in Sec. 3.3, an iteration of our algorithm consists the following
operations:

1. Randomly select a minibatch VB ∈ VL of nodes;

2. Build a computation graph that only contains the activations h
(l)
v and h̄

(l)
v

needed for the current minibatch;

3. Get the predictions by forward propagation as Eq. (6) in the main text;

4. Get the gradients by backward propagation, and update the parameters
by SGD;

5. Update the historical activations.

For step 2, we construct the receptive fields r(l) and stochastic propagation
matrices P̂ (l) as Alg. 1.

15

Algorithm 1 Constructing the receptive fields and random propagation matrices.

r(L) ← VB
for layer l← L− 1 to 0 do

r(l) ← ∅
P̂ (l) ← 0
for each node u ∈ r(l+1) do

r(l) ← r(l) ∪ {u}
P̂

(l)
uu ← P̂

(l)
uu + Puun(u)/D(l)

for D(l) − 1 random neighbors v ∈ n(u) do
r(l) ← r(l) ∪ {v}
P̂

(l)
uv ← P̂

(l)
uv + Puvn(u)/D(l)

end for
end for

end for

D.1 Training with the CV estimator

Alg. 2 depicts the training algorithm using the CV estimator. We perform
forward propagation according to Eq. (6), compute the stochastic gradient,
and then update the historical activations H̄(l) for all the nodes in r(l). Let
W = (W (0), . . . ,W (L−1)) be all the trainable parameters, the gradient ∇WL is
computed automatically by frameworks such as TensorFlow.

D.2 Training with the CVD estimator

Training with the CVD estimator is similar with the CV estimator, except it
runs two versions of the network, with and without dropout, to compute the

samples H and their mean µ of the activation. The matrix P̄
(l)
uv = P̂

(l)
uv /
√
n(v) ,

where n(v) is the degree of node v.

E Experiment setup

In this sections we describe the details of our model architectures. We use the
Adam optimizer [4] with learning rate 0.01.

• Citeseer, Cora, PubMed and NELL: We use the same architecture as [5]:
two graph convolution layers with one linear layer per graph convolution
layer. We use 32 hidden units, 50% dropout rate and 5× 10−4 L2 weight
decay for Citeseer, Cora and PubMed and 64 hidden units, 10% dropout
rate and 10−5 L2 weight decay for NELL.

• PPI and Reddit: We use the mean pooling architecture GraphSAGE-
mean proposed by [3]. We use two linear layers per graph convolution
layer. We set weight decay as zero, dropout rate as 20%, and adopt layer

16

Algorithm 2 Training with the CV algorithm

for each minibatch VB ⊂ V do
Compute the receptive fields r(l) and stochastic propagation matrices P̂ (l)

as Alg. 1.
(Forward propgation)
for each layer l← 0 to L− 1 do

Z(l+1) ←
(
P̂ (l)(H(l) − H̄(l) + PH̄(l)

)
W (l)

H(l+1) ← σ(Z(l+1))
end for
Compute the loss L = 1

|VB |
∑
v∈VB f(yv, Z

(L)
v)

(Backward propagation)
W ←W − γi∇WL
(Update historical activations)
for each layer l← 0 to L− 1 do

for each node v ∈ r(l) do
h̄
(l)
v ← h

(l)
v

end for
end for

end for

normalization [1] after each linear layer. We use 512 hidden units for PPI
and 128 hidden units for Reddit. We find that our architecture can reach
97.8% testing micro-F1 on the PPI dataset, which is significantly higher
than 59.8% reported by [3]. We find the improvement is from wider hidden
layer, dropout and layer normalization.

F Experiment for 3-layer GCNs

We test 3-layer GCNs on the Reddit dataset. The settings are the same with
2-layer GCNs in Sec. 6.2. To ensure M1+PP can run in a reasonable amount of
time, we subsample the graph so that the maximum degree is 10. The convergence
result is shown as Fig. 1, where the conclusion is similar with the two-layer
models: CVD+PP is the best-performing approximate algorithm, followed by
CV+PP, and then NS+PP and NS. The time consumption to reach 0.94 testing
accuracy is shown in Table 1.

G Correlation between node activations

In our analysis of the variance for the CVD estimator in Sec. 5.2, we assume that

the activations for different nodes are uncorrelated, i.e., CovM

[
h
(l)
u , h

(l)
v

]
= 0,

for all u 6= v, where M is the dropout mask. We show the rationale behind
this assumption in this section. For 2-layer GCNs, the activations are indeed

17

Algorithm 3 Training with the CVD algorithm

for each minibatch VB ⊂ V do
Compute the receptive fields r(l) and stochastic propagation matrices P̂ (l)

as Alg. 1.
(Forward propgation)
for each layer l← 0 to L− 1 do

U ←
(
P̄ (l)(H(l) − µ(l)) + P̂ (l)(µ(l) − µ̄(l)) + PH̄(l)

)
H(l+1) ← σ(Dropoutp(U)W (l))

µ(l+1) ← σ(UW (l))
end for
Compute the loss L = 1

|VB |
∑
v∈VB f(yv, H

(L)
v)

(Backward propagation)
W ←W − γi∇WL
(Update historical activations)
for each layer l← 0 to L− 1 do

for each node v ∈ r(l) do
h̄
(l)
v ← h

(l)
v

end for
end for

end for

Table 1: Time to reach 0.95 testing accuracy.

Alg.
Valid.

Epochs
Time Sparse Dense

acc. (s) GFLOP TFLOP
Exact 0.940 3.0 199 306 11.7

NS 0.940 24.0 148 33.6 9.79
NS+PP 0.940 12.0 68 2.53 4.89
CV+PP 0.940 5.0 32 8.06 2.04

CVD+PP 0.940 5.0 36 16.1 4.08

independent, and the correlation is still weak for deeper GCNs due to the sparsity
of our sampled graph.

G.1 Results for 2-layer GCNs

For a 2-layer GCN with the first layer pre-processed, the activations of nodes
are independent. Suppose we want to compute the prediction for a node on
the second layer. Without loss of generality, assume that we want to com-

pute z
(2)
1 , and the neighbors of node 1 are 1, . . . , D. The activation h

(1)
v =

σ
(

(Mv ◦ u(0)v)W (0)
)

, where u
(0)
v = (PH(0))v is a random variable with respect

to Mv, Mv ∼ Bernoulli(p) is the dropout mask. We show that h
(1)
v and h

(1)
v′ are

independent, for v 6= v′ by the following lemma.

18

0 10 20 30 40 500.90

0.92

0.94

0.96
reddit3

M1+PP NS NS+PP IS+PP CV+PP CVD+PP

Figure 1: Comparison of validation accuracy with respect to number of epochs
for 3-layer GCNs.

2 4 6 8
Topics

0.000
0.025
0.050
0.075

citeseer

Feature correlation
Neighbor correlation

2 4 6 8
Topics

0.00

0.02

0.04

0.06
cora

Feature correlation
Neighbor correlation

2 4 6 8
Topics

0.02

0.04

pubmed

Feature correlation
Neighbor correlation

2 4 6 8
Topics

0.05

0.10

ppi
Feature correlation
Neighbor correlation

Figure 2: Average feature and neighbor correlations in a 10-layer GCN.

Lemma 3. If a and b are independent random variables, then their transforma-
tions f1(a) and f2(b) are independent.

Because for any event A and B, P (f1(a) ∈ f1(A), f2(b) ∈ f2(B)) = P (a ∈
A, b ∈ B) = P (a ∈ A)P (b ∈ B) = P (f1(a) ∈ f1(A))P (f2(B) ∈ f2(B)), where
f1(A) = {f1(a)|a ∈ A} and f2(B) = {f2(b)|b ∈ B}.

Let h
(1)
v = f1(Mv) := σ

(
(Mv ◦ u(0)v)W (0)

)
and h

(1)
v′ = f1(Mv′) := σ

(
(Mv′ ◦ u(0)v′)W (0)

)
,

because Mv and Mv′ are independent Bernoulli random variables, h
(1)
v and h

(1)
v′

are independent.
The result can be further generalized to deeper models. If the receptive fields

of two nodes does not overlap, they should be independent.

19

G.2 Empirical results for deeper GCNs

Because we only sample two neighbors per node, the sampled subgraph is very
close to a graph with all its nodes isolated, which reduces to the MLP case
that [7] discuss.

We empirically study the correlation between feature dimensions and neigh-
bors. The definition of the correlation between feature dimensions is the same
with [7]. For each node v on layer l, we compute the correlation between each

feature dimension of h
(l)
v

Cov
(l,v)
ij := C[h

(l)
vi , h

(l)
vj]

Corr
(l,v)
ij :=

Cov
(l,v)
ij√

Cov
(l,v)
ii

√
Cov

(l,v)
jj

,

where i and j are the indices for different hidden dimensions, and C[X,Y] =
E[(X − EX)(Y − EY)] is the covariance between two random variables X and

Y . We approximate Cov
(l,v)
ij with 1,000 samples of the activations h

(l)
vi and h

(l)
vj ,

by running the forward propagation 1,000 times with different dropout masks.

We define the average feature correlation on layer l to be Cov
(l,v)
ij averaged by

the nodes v and dimension pairs i 6= j.
To compute the correlation between neighbors, we treat each feature dimen-

sion separately. For each layer l + 1, node v, and dimension d, we compute the

correlation matrix of all the activations {h(l)id |i ∈ n̄(l)(v)} that are needed by

h
(l+1)
vd , where n̄(l)(v) = {i|P̂ (l)

vi 6= 0} is the set of subsampled neighbors for node
v:

Cov
(l,v,d)
ij := C[h

(l)
id , h

(l)
jd]

Corr
(l,v,d)
ij :=

Cov
(l,v,d)
ij√

Cov
(l,v,d)
ii

√
Cov

(l,v,d)
jj

,

where the indices i, j ∈ n̄(l)(v). Then, we compute the average correlation of all
pairs of neighbors i 6= j.

AvgCorr(l,v,d) :=
1∣∣n̄(l)(v)

∣∣ (∣∣n̄(l)(v)
∣∣− 1)

∑
i 6=j

Corr
(l,v,d)
ij ,

and define the average neighbor correlation on layer l as AvgCorr(l,v,d) averaged
over all the nodes v and dimensions d.

We report the average feature correlation and the average neighbor correlation
per layer, on the Citeseer, Cora, PubMed and PPI datasets. These quantities
are too expensive to compute for NELL and Reddit. On each dataset, we train a
GCN with 10 graph convoluation layers until early stopping criteria is met, and
compute the average feature correlation and the average neighbor correlation for

20

Dataset Citeseer Cora PubMed NELL Reddit PPI
w.o. dropout 70.2± .6 78.3± .4 77.7± .2 64.5± .7 95.6± .07 90.6± .6
w. dropout 69.9± .6 78.7± .3 78.3± .8 65.0± .1 96.5± .05 97.3± .03

Table 2: Validating accuracy / micro-F1 for models with or without dropout.

layer 1 to 9. We are not interested in the correlation on layer 10 because there
are no more graph convolutional layers after it. The result is shown as Fig. 2.
As analyzed in Sec. G.1, the average neighbor correlation is close to zero on the
first layer, but it is not exactly zero due to the finite sample size for computing
the empirical covariance. There is no strong tendency of increased correlation
as the number of layers increases, after the third layer. The average neighbor
correlation and the average feature correlation remain on the same order of
magnitude, so bringing correlated neighbors does not make the activations much
more correlated than the MLP case [7]. Finally, both correlations are much
smaller than one.

H Effect of Dropout

We compare the models with or without dropout as Table 2.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[2] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods
for nonconvex stochastic programming. SIAM Journal on Optimization,
23(4):2341–2368, 2013.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing
Systems, pages 1025–1035, 2017.

[4] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In ICLR, 2014.

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In ICLR, 2017.

[6] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.

[7] Sida Wang and Christopher Manning. Fast dropout training. In Proceedings
of the 30th International Conference on Machine Learning (ICML-13), pages
118–126, 2013.

21

	Derivation of the variance
	Variance of the exact estimator
	Variance of the NS estimator
	Variance of the CVD estimator
	Variance of the CV estimator

	Proof of Theorem 1
	Proof of Theorem 2
	Single layer GCN
	Lemma 1: Activation of Multi-layer GCN
	Lemma 2: Gradient of Multi-layer GCN
	Proof of Theorem 2
	Generalizing to Graph Attention Networks

	Pseudocode
	Training with the CV estimator
	Training with the CVD estimator

	Experiment setup
	Experiment for 3-layer GCNs
	Correlation between node activations
	Results for 2-layer GCNs
	Empirical results for deeper GCNs

	Effect of Dropout

