Extreme Learning to Rank via Low Rank Assumption

A. Proof
A.1. Proof of Lemma 2

It is relatively hard to represent all &; — &, so we define
X to be an d X ¢ matrix, with ¢ = C%, and we use ¢ to
denote each possible (7, k) pairs (the g-th column of X is
x; — x). For each observed comparison o = 1,...,m,
we use (i, ja, ko) to denote the (task, item j, item k) tuple,
Go := (Ja, ko) to denote the encoding of item pairs, and y,
is the observed +1/-1 outcome. The problem can then be
rewritten as
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First we rewrite R(Fyy) as follows:
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Where I' € RT*¢ with each entry I';; = > avin—iiga=q T
Now, using the same trick in (Shamir & Shalev-Shwartz,
2014), we can divide I' based on the "hit-time” on entry
(1, q) of Q, with some threshold p > 0 (we will discuss the
optimal choice of p later). Let h;y = |t iq =4, ¢ = q|,
and let A, B € RT*¢ be defined as:
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Since I' = A + B, we can rewrite R(Fyy ) as:

if hiq >p

otherwise. ohterwise.
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By Lemma 10 in (Shamir & Shalev-Shwartz, 2014), the first
term of (12) can be upper bounded by:
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Also, we can bound the second term in (12) by:
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Note that the last inequality is using Lemma 11 in (Shamir
& Shalev-Shwartz, 2014), where C' is a universal con-
stant used in their paper. Therefore, with p chosen to be
mB/(4.4L,CW (VT + 1/¢)), we can get 93( Fiyr) bounded
by:
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Also, we can bound Eq, [R(Fy )] using another way:
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where we use the assumption that ||x;|| < 1 for all j so
|lz; — x| < 2. Therefore, Rademacher complexity can be
upper bounded by:
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which then implies our theorem statement since ¢ < n2.

A.2. Proof of Theorem 1

Combining Lemma 2 and Lemma 1, we get
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Therefore
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Next we use the following lemma to bound the expected
ranking loss.

Lemma 5 (Consistency of Excess Risk (Bartlett et al.,
2000)). Let £ be a convex surrogate loss function. Then
there exists a strictly increasing function ¥, U(0) = 0, such
that for all measurable f:

R(f) = R* < U(R.(f) — Ry),
where R* = inf; R(f) and Ry = inf; Ry(f).

Using Lemma 5, and assume ¥(-) is Ly is the Lipchitz
constant of ¥ in the domain {f : R¢(f*) — R} (which
is always bounded in this case since we only consider fy
with [V, < W), we get
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A.3. Proof of Lemma 3

Under the conditions listed in the lemma, taking W =w*
will result in zero empirical error, so

Re(fyy) < Re(fw) = 0.

Furthermore, under these conditions R; = 0. Combining
with Theorem 1 proves this lemma.

A.4. Proof of Lemma 4

Since each task ¢ = 1,...,7 is just a standard rankSVM
problem with L2 regularization, we can follow the standard
derivation for Rademacher complexity. From (Kakade et al.,
2009)), the complexity for using L2 regularization is
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Assume there are m /T pairs, and then use Lemma 1 we get
the following error bound:
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Combine with the Rademacker complexity proved in (17),
we get
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Under the condition provided in the theorem, the first term
in the right hand side becomes 0, and then using the big-O
notation we can prove this theorem.



