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Abstract

We consider the setting where we wish to perform
ranking for hundreds of thousands of users which
is common in recommender systems and web
search ranking. Learning a single ranking func-
tion is unlikely to capture the variability across
all users while learning a ranking function for
each person is time-consuming and requires large
amounts of data from each user. To address this
situation, we propose a Factorization RankSVM
algorithm which learns a series of k basic rank-
ing functions and then constructs for each user
a local ranking function that is a combination of
them. We develop a fast algorithm to reduce the
time complexity of gradient descent solver by ex-
ploiting the low-rank structure, and the resulting
algorithm is much faster than existing methods.
Furthermore, we prove that the generalization er-
ror of the proposed method can be significantly
better than training individual RankSVMs. Fi-
nally, we present some interesting patterns in the
principal ranking functions learned by our algo-
rithms.

1. Introduction

Learning a ranking function based on pairwise compar-
isons has been studied extensively in recent years, with
many successful applications in building search engines and
other information retrieval tasks. Given a set of training in-
stances with features 1, ..., x,, and pairwise comparisons,
the goal is to find the optimal decision function f(-) such
that f(x;) > f(x;) if i is preferred over j. This is usu-
ally referred to as a learning-to-rank problem, and several
algorithms have been proposed, including RankSVM (Her-
brich et al., 1999), gradient boosting decision tree (Li et al.,
2007), and many others (Cao et al., 2007; Yue et al., 2007;
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Negahban et al., 2012; Wauthier et al., 2013).

However, in many modern applications, a single global
ranking is not sufficient to represent the variety of individual
users preferences. For example, in movie ranking systems, it
is preferable to learn an individual ranking function for each
user since users’ tastes can vary largely. The issue also arises
in many other applications such as product recommendation,
and personalized web search ranking.

Motivated by these real scenarios, we consider the prob-
lem of learning hundreds of thousands of ranking functions
jointly, one for each user. Our target problem is different
from collaborative ranking and BPR (Rendle et al., 2009;
Wu et al., 2017a) since they only aim to recover ranking
over existing items without using item features, while our
goal is to obtain the ranking functions (taking item features
as input) that can generalize to unseen items. This is also
different from existing work on learning multiple ranking
functions (i.e. (Qian et al., 2014)) because in that setting
they are learning only several ranking functions. Here we
focus on problems where the number of ranking functions T'
is very large (e.g.,100K) but the amount of data to learn each
ranking function is limited. The naive extensions of learning
to rank algorithms fail since the training time grows dramat-
ically, and also due to the over-fitting problem because of
insufficient number of pairs for training.

To resolve this dilemma, we propose the Factorization
RankSVM model for learning multiple ranking functions
jointly. The main idea is to assume the 7" ranking functions
can be represented by a dictionary of k ranking functions
with & < T'. In the linear RankSVM case, this assumption
implies a low-rank structure when we stack all the T linear
hyper-planes together into a matrix. By exploiting this low
rank structure, our algorithm can be efficient for both time
and sample complexity.

Our contributions can be summarized as follows:

e We propose the Factorization RankSVM model for
learning a large number of different ranking functions
on different sets of data simultaneously. By exploiting
the low-rank structure, we show that the gradient can be
calculated very efficiently, and the resulting algorithm
can scale to problems with large number of tasks.

e We derive the generalization error bound of our model,
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showing that by training all the 7" tasks jointly, the sam-
ple complexity is much better than training individual
rankSVMs under the low rank assumption.

e We conduct experiments on real world datasets, show-
ing that the algorithm achieves higher accuracy and
faster training time compared with state-of-the-art
methods. This is a critical result as it shows the low
rank ranking conjecture that underlies our research
does occur.

e We further visualize the basic ranking functions
learned by our algorithm, which has some interesting
and meaningful patterns.

2. Related Work

Learning to rank. Given a set of pairwise comparisons
between instances and the feature vectors associated with
each instance, the goal of learning to rank is to discover
the ranking function. There are three main categories of
learning to rank algorithms: pointwise (Li et al., 2007),
listwise (Cao et al., 2007; Yue et al., 2007), and pairwise
methods (Herbrich et al., 2000; Cao et al., 2006). In this
paper, we mainly focus on pairwise methods, which process
a pair of documents or entries at a time. Among all the
pairwise methods, rankSVM is a very popular one, so we
choose it as our basic model.

We focus on the problem of solving 7' learning-to-rank
problems jointly when the problems share the same feature
space and there is some hidden correlation between tasks.
Obviously, we could apply existing learning-to-rank algo-
rithms to solve each task independently, but this approach
has several major drawbacks, as will be discussed in next
section.

Collaborative filtering and matrix factorization Low-
rank approximation has been widely used in matrix com-
pletion and collaborative filtering (Koren et al., 2009), and
there are several extensions for matrix completion (Weimer
et al., 2007). However, these methods cannot be applied in
our setting, since our predictions are based on item features,
and the corresponding items may not even appear in the
training data. To conduct prediction based on item features,
the inductive matrix factorization model has been recently
proposed in (Jain & Dhillon, 2013; Xu et al., 2013), and fac-
torization machine (Rendle, 2010) also uses a similar model.
However, this model only allows input to be user-item rat-
ings, not the pairwise comparisons used in our problem.
In the experiments, we observe that even if the rating data
is available, our model still outperforms inductive matrix
completion significantly.

Bayesian Personalized Ranking (Rendle et al., 2009)
proposes Bayesian Personalized Ranking(BPR) method to
solve personalized ranking task. However, there are several
major differences with our work. First, our target problem

is different from BPR. We consider problems given both
pairwise comparisons and “explicit” item features, and the
goal is to learn the personalized ranking “functions” that
can generalize to unseen items as long as we know their fea-
tures. In comparison, the BPR does not take item features
into account, and the goal of BPR is to recover the ranking
among existing items. Also, the ranking cannot generalize
to unseen items. Moreover, BPR considers implicit (0/1)
feedback instead of explicit feedback.

Collaborative Ranking is another line of research that in-
corporates ranking loss in collaborative filtering. (Park et al.,
2015; Weimer et al., 2007; Wu et al., 2017a) combines the
ranking loss with matrix completion model, and (Yun et al.,
2014) also uses a low-rank model with ranking loss given
a binary observed matrix. However, similar to matrix com-
pletion and BPR, these collaborative ranking approaches do
not use the item features. So they are not able to predict the
preferences for unseen items. Also in this category, (Bar-
jasteh et al., 2015) uses a trace norm to constraint ranking
function, which is similar with our idea. However, they use
implicit feedback which will lose certain information.

Multi-task Learning: has been extensively studied, espe-
cially in computer vision application. To model the shared
information across tasks, a low-rank structure is widely
assumed (Chen et al., 2012; 2009). (Hwang et al., 2011;
Su et al., 2015) takes the attributes correlation as low-rank
embeddings to learn SVM. However, our approach of learn-
ing basic ranking functions has not been discussed in the
literature.

A summary of the differences between our algorithm with
others are showed in Table 1.

3. Problem Setting

Our goal is to learn multiple ranking functions together, one
for each user. Assume there are in total 7" ranking functions
to be learned (each one can be viewed as a task), and we
are given pairwise comparisons for these ranking functions
among n items with features x1,xs,...,x, € R For
each task ¢, the pairwise comparisons are denoted as 2; =
{(j, k)}, where (j,k) € ; means task ¢ compares item j
with k, and y;;1 € {+1, —1} is the observed outcome. For
convenience, we use () to denote the union of all €2;. Given
these pairwise comparisons, we aim to learn a set of linear
ranking functions w1, ws, . .., wr € R? such that

sign(w;r(mj—a:k)) ik, V(i k)€eQ;, Vi=1,...,T

The only assumption we make for these 1" ranking tasks
is that the items involved in each task share the same fea-
ture space with d features. Note that our algorithm allows
each task has non-overlapping items—in that case we can
still gather all the items together, and define €2; to be the
comparisons within each task’s own item block.
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Table 1. The comparisons between different algorithms. RankSVM (Herbrich et al., 1999) is the algorithm for learning to rank. IMC (Jain
& Dhillon, 2013; Rendle, 2010) stands for inductive matrix completion (a special case of factorization machine); CR (Park et al., 2015;
Weimer et al., 2007; Wu et al., 2017a) stands for collaborative ranking; MF (Koren et al., 2009) stands for matrix factorization; BPR(Rendle
et al., 2009) stands for Bayesian personalized ranking. S2COR (Barjasteh et al., 2015) stands for semi-supervised collaborative ranking.
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This model can be easily deployed into recommendation
systems where each user ¢ has a corresponding ranking
function and the items could be movies, music, goods etc.
Then the objective of the task is to learn a ranking function
for each user 7. Note that after obtaining w; for each ¢, we
can predict the preference for any pairs of items x;, &) even
when they are “unseen items” that are not in the training
set. And most collaborative filtering approaches such as
matrix completion cannot solve this problem. We are able
to predict preferences on unseen items because we try to
learn ranking functions based on features instead of just
completing the rating matrix over “seen” items.

Naive approaches: For a single ranking function, (Her-
brich et al., 1999) proposes the following RankSVM algo-
rithm:

o1
min ~|lw|>+C > &
wGRd2 -
(i,5,k)EQ
stoyigrw” (x5 — k) > 1= &ijr, Eijr > 0. Vi, g, k.

Here we use L2 hinge loss in our model, however it could
be extended to L1 loss as well. We can take RankSVM
into multiple-user case by simply assuming that all ranking
functions share a common w. We denote this method as
RANKSVM JOINTLY. (Evgeniou & Pontil, 2004) provides
a variation by assuming each ranking function to be w; =
w + v;, where w is the centralized model and v; is the
task-dependent variance. However, this algorithm follows
the strong assumption that 7" ranking functions {w; }?*, are
all close to a single base function w. We call this algorithm
RANKSVM VAR. This assumption is not always true in
practice so that it will cause the model to under-fit training
data (see our experimental results).

On the other hand, we can treat every user separately, which
means we train every ranking function w; independently by
solving the following problem for every ¢ = 1,...,7"

1 2 2
ngmg\lwzll +C Z &ijk
(4,k) €
st yipwi () — k) > 1 — &, &k > 0,05, k) €

We call this method as RANKSVM SEPARATELY. It is
obvious that this model has more freedom to fit the training
data. However, due to the limited number of observed pairs
Q; per user, each w; has poor prediction quality due to
over-fitting. We will analyze the sample complexity of
RANKSVM SEPARATELY in Section 4, and experimental
results in Section 5 also support our analysis.

4. Proposed Algorithm

Our low rank personalized ranking conjecture assumes that
all the T ranking functions can be well-approximated by
a linear combination of k basic ranking functions, where
k < T. This makes sense in many real applications; for
example, in personalized recommender systems, there are
group of users who have similar preferences. Let {u; }"7?:1
to be the basic (linear) ranking functions, we can linearly
combine weight then using v; to obtain a ranking function
for user ¢ as follows: w; = 2521 vi;u; for all 4. This can
be written as W = UVT, where columns of W, U are w;
and u; respectively, and V' is the coefficients. Therefore, W
will be a rank-k matrix, which leads to the following nuclear
norm regularized problem to enforce the low-rankness of
w:

min
WeRriXT

Wl +C > &

(4,5,k)€Q
s.t. yijszr(wj —xp) > 1 =&,
&ijk >0, Y(i,j, k) € Q.

where || - ||« is the nuclear norm of matrix, defined by sum-
mation of singular values. We could use some recent devel-
oped nuclear norm solvers to solve (4) (see (Cai et al., 2010;
Hsieh & Olsen, 2014)).

While the nuclear norm regularized formulation is statisti-
cally near optimal for recovering the underlying low-rank
model, it cannot be efficiently solved since there are d1" pa-
rameters in the problem. Therefore, we solve the following
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equivalent non-convex formulation:

. 1
min €Y &yt U1+ IVIE)

)

(i,5,k)EQ
sty Ul (zj — o) > 1 — &,
&k > 0,Y(i, 4, k) € Q. (1)

where we replace the nuclear norm regularization in Equa-
tion (4) using the property ||W || = miny_gyr 2(|U||%+
V%), U € Rk V € RT** and o7 is the i-th row of
V. With this non-convex relaxation, there are only (d+T)k
parameters involved. So it is preferred over the convex form.

However, developing a fast solver for (1) is still nontriv-
ial. Although RankSVM is often solved in the dual space
using stochastic dual coordinate ascent (SDCA) (Shalev-
Shwartz & Zhang, 2013), in our case, it is not suitable
because there are ||k dual variables, where each corre-
sponds to one constraint. So applying a dual coordinate
ascent will take O(|Q2k|) time complexity (to go through all
dual variables) and the same order of memory complexity
to store all of them. Therefore, we solve the problem in
the primal space using alternating minimization. Instead
of solving the constrained form, we solve the following
equivalent unconstrained problem:

. —T 7T
min {C’ Z max(0, 1 — y;;3x0; UL (z; — x1))?
(4,4,k)€Q

1
+ 5+ VIR } = 1O
2)

Following the alternating minimization scheme, our algo-
rithm iteratively updates one of U, V' while keeping the other
one fixed. When updating U with V fixed, the subproblem
becomes:

U = argminC Z max(0, 1 — yi,0r UL (x5 — x))?
UeRME ;5 heq

5.
3)
To solve the problem in the primal space, the main bottle-
neck is the gradient computation when we apply gradient
descent. The gradient can be written as

Vuf(U,V)=U+

T
Z Z —2Cy;j, max (0,1 — ;0] UL (x; — ap)) (x5 — @x) 0]
i=1 (j k)€

4)

Computing (4) naively takes O(|2|kd) time, since we need
to go through the summation, and each term requires O(kd)
computing time for computing (x; — ;)0 . However,
by re-organizing the computation using a book-keeping
technique, we are able to do this in O(T7k + dkn + |Q|)

Algorithm 1 Factorization RankSVM: Computing

va(Ua V)
Input: X,V, QY
Compute p; = UTa; andset z; = Oforall j = 1,...,n
for:=1,2,...,Tdo

Compute g; = v} p; forall j € Q;
Sets; =0forall j € Q;
for (j,k) € Q; do
sj < sj — 2Cy;, max(0,1 — yijn(q; — )
sk < Sk + 2Cyi5, max (0,1 — v (g5 — qx))
end for
Zj < z; + 8;v; forall j € Q;
end for
for j =1,2,...,ndo
va(U, V) — VUf(U, V) + iL’jZ;TF
end for
Output Vi f(U, V) + U

time, where 7 is the average number of ratings per user. The
details are presented in Algorithm 1.

For updating V, the objective function (1) can be decom-
posed into 7" subproblems:

©; = argmin C Z max(0, 1 — yi10; UL (x; — xx))?
TERT (ke

+ 5ol
&)
where each of them is just an RankSVM problem that
can be easily solved by gradient descent or Newton
method (Chapelle & Keerthi, 2010). The details are omitted
here, but the time complexity for this part is O (T'nk+dkn+
|2]), which is exactly the same with the U part.

To sum up, our algorithm has an overall time complexity
O(Tnk + dkn + |92|) per iteration, which is quite small be-
cause the dominated term |€2| (number of pairs) is separated
from rest of the terms. Also, k (rank) and 7 (averaged items
involves in a ranking task) are usually small. Furthermore,
we could adapt Newton method proposed by (Wu et al.,
2017b) to further speed up the optimization. As a result, we
are able to scaleto very large datasets.

5. Sample Complexity Analysis

Now we analyze the sample complexity of the proposed
model. If we keep growing 7" (number of ranking functions),
under the low-rank assumption W = O(T"/?), the samples
needed for Factorization RankSVM to achieve the same
e-error is approximately O(T'/?), which is much better
than training 7" individual RankSVMs which requires O(T")
samples. Detailed proofs can be found in the appendix.

Sample complexity of our model
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Assume we observe a set of (4, j, k) pairs and comparison
results y;;, € {+1,—1} from a fixed but unknown distri-
bution. To recover the underlying model, we proposed to
solve (4), and it is equivalent to the constraint form:

W =arg min

o(IFwr (z; —
WEREXT Z (( i W (wJ wk))vy]k)a

(,4,k) €Q
st W]l < W,

(6)
where I € RT*T is the indicator matrix, each column I; is
[0,0,...,1,0,0] where the i-th element equals to one. With-
out loss of generality, we assume ||x;|| < 1 for all j. The
prediction function we want to learn is

fW(iaj7 k) = IiTWT(mj - wk) = <VV7 (wj - wk)IzT>7

and in our formulation (6), we search within the function
class Fyy :== {fw : [|[W]l« < W}.

The quality of any ranking function fy can be measured
by the following expected ranking error (where 1(-) is the
indicator function):

R(f) := Eijx[1(sign(f(i, 4, k) # sign(yi;x))]. (7

We denote R* = miny R(f) to be the optimal risk we can
get. Since optimizing 0/1 loss is hard, our algorithm uses a
convex surrogate loss ¢, and the following concepts of ¢/-risk
will be used in our analysis:

e Expected (-risk: Ro(f) = E; ; x[€(f (4,4, k), vijr)]
e Empirical /-risk:

Re(f) = £ X0 jwyea L (0 5, k), yig)
We begin with the following lemma to bound the expected
{-risk:

Lemma 1 (Bound on Expected /¢-risk (Bartlett & Mendel-
son, 2002)). Assume £(-,-) is a loss function upper bounded
by B and with Lipschitz constant Ly with respect to its first
argument. Let R(Fyy) be the model complexity of the func-
tion class Fyy (w.r.t Q and associated with £) defined as:

1
R(F :Ea —_ aé ‘a .7ka ij )
(Fiv) = Eo[sup D Tallf(i. k) yin)
(i,7,k)EQ
(3)

where each o, takes values {+1} with equal probability.
Then with probability at least 1 — 6, for all f € Fy, we
have

Ry(f) < Ru(f) + 2Ea[R(Fw)] + B lzg%.

m

To achieve an upper bound for Ry(f), we derive a bound of
the Radamacker complexity Eq[R(Fw )]:

Lemma 2. The model complexity of (6) can be upper
bounded by:

Ea[R(Fw)] < min {QLU/V\/ 10i3d~, \/QLKBCV\:)E\E ) }7

)
where Ly is the Lipchitz constant of loss function and C'is
a universal constant.

With the above lemma, we now derive the following theorem
to bound the expected ranking error:

Theorem 1. With probability 1 — 9, the expected error of
the optimal solution of our model (6) is:

log(1/6) )

+O(min( WB(\/\/T%— n), Wlogd) 5
(10)

where R* = inf; R(f) and R} = infy Re(f).

R(fy) — R* <O(Ri(fy,) — R;) +O(B

Note that all the hidden constants can be found in the ap-
pendix. In general, the first term on the right hand side will
be small since f};, minimizes the empirical error. This is a
standard generalization error bound (as shown in (Kakade
et al., 2009)) that works for any distribution of y; .

If we further assume the y;;, is generated from an unseen
groudtruth W* with |[W*||.. < W, then the following theo-
rem shows that the error is small when m goes to infinity:

Lemma 3. If the observed y;;r, = w?w;“ — zFw}

for all i,j,k, and loss function satisfies ((a,b) =
0 if sign(a) = sign(b), then we have R(fy) <

O(min(\/VW\/’ZJTjnLWlogd))_i_O(B /log(l/é))‘

m

Note that the loss £(a,y) = max(—ay,0)? satisfies the
assumption of Lemma 3, but in practice adding a margin will
improve the performance (using /(a, y) = max(1—ay, 0)?).
From Theorem 1 and Lemma 3, we can conclude that the
error of our model decreases roughly with 1/y/m (m is
number of samples), and increases with VW (nuclear norm
of the underlying model).

Comparison with RANKSVM SEPARATELY.

Training 7' independent RankSVMs separately can also
achieve arbitrary small e error under similar condition, so
the main question is whether our model can reduce the
number of samples m needed. In RANKSVM SEPARATELY,
it is equivalent to solving problem (6) with the constraint
replaced by ||w;|| < w for all i. Assume there are m /T
pairs per ranking function, then we can prove the following
sample complexity based on standard analysis from (Kakade
et al., 2009):
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Lemma 4. Under the same condition of Lemma 3, the
RANKSVM SEPARATELY solution f satisfies

- w log(1/4)
R(f)=0 +O(By| ——==).
Note that we assume W := ||[W*|. and w := max; [[W,]|

where W* is the underlying matrix. Clearly, if the nu-
clear norm WV is small constant, our sample complexity
(Lemma 3) is much better than the bound for RANKSVM
SEPARATELY (Lemma 4), since our dependency to T is
O(T'/*) while it is O(v/T) for rankSVM. Moreover, in an-
other setting (see, for example, (Shamir & Shalev-Shwartz,
2014)), if each element of W* is bounded and rank of W *
is a constant, WW = O(\/ﬂ) and w = O(\/ﬁ), our bound
in Lemma 3 is still better than Lemma 4. Although a better
sample complexity upper bound doesnt directly imply our
method is always better, however, by obtaining a smaller
Rademacher complexity, it is clear that our formulation has
benefits to achieve a tighter upper bounds, which leads to
better performance in practice.

6. Experimental Results

In this section, we show our method outperforms other
algorithms on both synthetic and real datasets. All the ex-
periments are conducted on a server with an Intel E7-4820
CPU and 256G memory.

Experimental Setting. For each ranking task, we ran-
domly split the items into training items and testing items.
In the training phase, we use all the pairs between train-
ing items to train the model, and in the testing phase we
evaluate the prediction accuracy for all the testing-testing
item pairs and testing-training item pairs, which is similar
with BPR (Rendle et al., 2009). The accuracy is defined to
be the correctly predicted pairs divided by total number of
predicted pairs.

We mainly compare our algorithm with RANKSVM
JOINTLY (training a single rankSVM model), RANKSVM
SEPARATELY (training an individual rankSVM model for
each task), and RANKSVM VAR (the multi-task rankSVM
model proposed in (Evgeniou & Pontil, 2004)). All the
algorithm above are using square hinge loss in the experi-
ments. We choose the best regularization parameter for each
method by a validation set.

Synthetic Data. For synthetic dataset, we assume there
are 1,000 tasks, 10,000 items and each item has 64 fea-
tures. The underlying ranking models are generated by
W* = U*(V*)T, where U* € R64X20, V* € RlOOO,QO’
and U,V ~ N(0,1). The feature matrix is generated by
X € R64x10,000 " X A/(0,1). We sample 800 pairs for
each user as training data, with labels based on underlying

Table 2. Comparisons on synthetic data. Ours-k is (Factorization
RankSVM) with rank k.

TIME/EPOCH TRAIN AcC TEST AccC
RANKSVM JOT 0.08 0.52 0.508
RANKSVM SEP 0.13 0.999 0.808
RANKSVM VAR 0.18 0.964 0.719
OURs-10 0.07 0.872 0.820
OURS-20 0.10 0.999 0.964
OURS-30 0.17 1.000 0.943

Table 3. Statistics of datasets. d is the dimension of item features.

DATASET USERS ITEMS d
SYNTHETIC 1000 10000 64
YAHOO! MOVIES 7,642 106,954 194,697
HETREC2011-2K 2,133 10,197 173
MOVIELENS 20M 138,493 27,278 15,603

rating R = (W*)TX.

Table 2 shows that our algorithms outperform other
rankSVM algorithms on synthetic datasets. Also, as showed
in Figure 1, We observe that RANKS VM JOINTLY suffers
from under-fitting (low training and test accuracy). On the
other hand, RANKSVM SEPARATELY has the over-fitting
problem (high training accuracy but low test accuracy) since
it does not have enough samples for learning each individual
task. Since the underlying U, V' have rank 20, our model
with rank 20 performs the best. However, even if we choose
rank to be 10 or 30, our model still significantly outperforms
the other models.

Real World Datasets. We use recommender system as
an application to compare our algorithm with other ranking
algorithms. Each user is treated as a “ranking task”, and the
observed pairs are generated from training ratings. Note that
we are also given item features xy, ..., x,, and the goal
is to learn a personalized ranking model w; for each user.
The testing items are unseen in the training phase, which
is different from classical matrix completion problem—the
goal of classical matrix completion is to complete the matrix,
while our goal is to learn the function that can generalize
to unseen items. The only matrix completion work that can
utilize the feature information to predict unseen items is
inductive matrix completion (Jain & Dhillon, 2013) (IMC),
which is a special case of factorization machine (Rendle,
2010). Although they do not allow pairwise comparisons as
input, for the completeness of comparison, we still include
them into comparison and give them the original rating data
as input.

We choose three datasets in our real-world application ex-
periments: (1) Yahoo! Movies User Ratings and Descriptive
Content Information V1_0' (2) HetRec2011-MovieLens-2K
(Cantador et al., 2011). (3) MovieLens 20M Dataset (Harper

"http://research.yahoo.com/Academic_Relations
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Figure 1. Testing accuracy comparisons with synthetic data

& Konstan, 2016). For the first dataset, we use the title and
abstract of each movie and combine them as the feature
matrix X. For the second and third datasets, we take the
genres information of each movie as features. See Table3
for more information.

The results for datasets (1) and (2) are presented in Table4.
Clearly, our method outperforms other algorithms both in ac-
curacy and in speed. Note that dataset (1) has dense features
and dataset (2) has sparse features, and our algorithm per-
forms well in both cases. For dataset (3), there are more than
100,000 ranking tasks and other algorithms take more than
1000 seconds per epoch. However, our algorithm only takes
about 100 seconds per epoch, and converges to a solution
with 63.4% testing accuracy.

We also plot the time vs accuracy curves in Figure Our
algorithms consistently get better accuracy compared to all
other methods. Note that sometimes RANKSVM JOINTLY
is fast in the beginning, but eventually it cannot converge to
a good solution.
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Figure 2. Visualization of the basic ranking function learned by
our algorithm.
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6.1. Feature Embedding

Visualize basic ranking functions. Finally, we visualize
the basic ranking functions learned by our model. We take
the Yahoo! movie dataset, where each feature corresponds
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Figure 3. Visualization of the basic ranking function learned by
our algorithm.

to a word in movie title and abstract. We select a basic
ranking function (a column of U) from our model and show
the top 25 features with most positive weights and bottom
25 features with most negative weights in Figure 2, 3. The
visualization of ranking function clearly demonstrates inter-
esting common patterns of users’ tastes.

7. Conclusions

We propose a new algorithm for learning multiple ranking
functions based on the combination of RankSVM and ma-
trix factorization. We show that the model can be solved
efficiently, has good statistical guarantee, and outperforms
other methods on real datasets in both training time and
prediction accuracy. Our algorithm can be used in many
online personalized ranking systems. An interesting direc-
tion is to introduce non-linearity (e.g., neural networks) in
the feature side of our model and learn U, V with neural
network weights jointly.
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Table 4. The comparisons on real world recommender system datasets. Our algorithm is faster and more accurate than other ranking-based
approaches. Since IMC is a totally different algorithm and has a different notion of epoch, we do not include its time per epoch here.
Method-x means we use rank x for the method.

YAHOO-MUSIC MOVIELENS
METHOD TIME PER TRAIN AcC TEST AcCC METHOD TIME PER TRAIN ACC TEST AcCC
EPOCH EPOCH
RANKSVM joT 85 0.761 0.750 RANKSVM JOT 7.1 0.618 0.619
RANKSVM SEP 130 0.999 0.715 RANKSVM SEP 8.0 0.630 0.617
RANKSVM VAR 309 0.881 0.642 RANKSVM VAR 50 0.629 0.565
IMC-100 - 0.997 0.802 IMC-150 - 0.535 0.532
OURS-30 1.10 0.932 0.770 OURS-50 7.0 0.684 0.648
OURsS-100 2.85 0.999 0.804 OURs-150 7.5 0.704 0.651
OURS-200 5.40 0.999 0.775 OURS-250 8.7 0.706 0.650
Yahoo! Yahoo!
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Figure 5. Testing accuracy comparisons with HetRec2011-MovieLens-2K
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