Appendix to
An Iterative, Sketching-based Framework for Ridge Regression

A. Preliminary Results

We start by reviewing a result regarding the convergence of a matrix von Neumann series for (I — P)_l. This will be an
important tool in our analysis.

Proposition 8. Let P be any square matrix with ||P||, < 1. Then (I — P) " exists and
(I-P)'=I+) P"
=1

Next, we state and prove another fundamental result. This provides an alternative formulation of the ridge regression solution
vector, which will be one of our primary building blocks. The result has previously appeared in Saunders et al. (1998), but
we provide a proof here for completeness.

Lemma 9. (Saunders et al., 1998) Let A € R™*% b € R", and X > 0 be the inputs of the ridge regression problem. The
solution to eqn. (1) can also be expressed as

x* = AT (AAT +1L,) ' b.

Proof. Let A = UX;V | be the full SVD representation of A with UUT = UTU = I, and V;V| = V[V, = 1,.
Further, ¥, = (E O) e R4 and V F= (V A% J_), where 3 and V are as described in Section 1.3. Additionally, V |
consists the bottom d — n columns of V ;. Note that U remains the same in both the thin as well as full SVD representations,
since we assume the design matrix A to have full row-rank.

Under this setup, we have
ATA + M, =V;S[UTUS V] + AVV] = V; (Z73 + M) V],
where we used the fact that UTU = I,,. Now, we can rewrite eqn. (2) as
x* = (ATA+ M) ATb = [V, (2]2; + L) V] ATb
—V; (Z]8; + L) VIVETUTD = V; (S]5; + A1) =JUD, (29)

where we noticed that (E}E 7+ ALy) ! exists since Z}E ¢ + Alg is a diagonal matrix with non-zero entries.

From eqn. (29), we further have

- 2 I, ! b)) 2 I,) %
(ZT8; +AL) ' =] = <( +OA ) ilg_n)< >= <( “0") > (30)

where 0’s denote null matrices with compatible dimensions.
Combining eqn. (29) and eqn. (30), we obtain

2 -1 2 -1
x"=Vy <(E * )(\)In) 2) U'b= (V V) <<2 * )(\)In) E) U'b
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=V(E2+A,) '2Ub= (VEUHUEZ }(Z2 +AI,)"'=UDb

—ATU(Z? 4+ AL,) " 'UTb = AT [U(Z2 +AL,)UT] b
— AT [US?UT +AUU"] 'b= AT (AAT +AL,) b,

where we used the facts that £71(22 + A\I,,) '3 = (£2 + \L,) ! and that AAT = UX2UT by the thin SVD of A. This
completes the proof. O

B. Proof of Theorem 1

The overall proof strategy is similar to that of Theorem 2 (see Section 3). In terms of algebraic manipulation, this proof is
simpler as the final bound does not involve any additive term. We begin by providing an alternative expression of x*(7) that
is easier to work with.

Lemma 10. Forj =1,2,....t, letbU) pe the intermediate response vectors in Algorithm 1 and x*U) be the vector defined
in eqn. (15). Then for any j = 1,2, ..., t, x*) can also be expressed as

x*0) = VGl tUuTbY),
where G =1, + AX 2.
Proof. Setting A = UX VT in eqn. (3), we have
x*@ = vEUT (US2UT 4 AUUT) ' b = VE (22 + AL,) ' UTHY)
—VE (S (L, +A272) %)UY = vE(2Gx) T UTHY)
= VG ' 1uTbY), (31)

where we note that G~! exists. This completes the proof. O

Our next result expresses the intermediate vectors XU/) of Algorithm 1 in terms of the vectors x*(/).

Lemma 11. Let A € R"*% b € R", and A\ > 0 be the inputs of the ridge regression problem and G is as defined in
Lemma 10. Further, let S € R%** be the sketching matrix and define,

E=V'SS'V -1,
If the constraint of eqn. (6) is satisfied i.e. HEHQ <1, thenforallj =1,...,1,
0 = x*0) 4 VRG™'=1UTBY),
where R = ZZI(—l)Z(G_IE)Z.
Proof. Denote W = SST. Using the thin SVD of A, we can rewrite X\/) as follows:
%) = veUT (USVTWVSUT + AUUT) ' b0

—vxuT (UE (In n E) sUT 4+ /\UUT)A RE)

~VEUT (US (I, + B+ ?) £U") ~po)

—vuTus-! (In +E+ /\2*2) e gT®) (32)

—vV <In +E+AE‘2)_1E‘1UTb(j)7 (33)

where in the second equality we used the fact that E = VTWV — I,. Furthermore, we note that (I, + E + Ax—2)~t
exists since I, + E = VTWV is positive semidefinite and A3 =2 is positive definite (A > 0).
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Proceeding further with eqn. (33), we have
X0 —v (In +E+ AE*Q) TsluThe) v (G + E) T s-1yTho)
-V (G (In +G‘1E))_1 »-1UThU) . (34)
Notice that, since ||E||2 < 1, we have

of
o?+ A

o8], < L], <o 1= 7 <0 &

Thus, taking P = —G~LE in Proposition 8 implies that (I, + G~'E)~! exists and

(In + G*lﬁ)fl — 1, + i(—nl (G*lﬁ)Z = I, +R. (36)
=1

Finally, combining eqns. (34) and (36), we have
. ~\ —1 ) ~ .
%) = v (In + G*lE) G-z luThY) = v (In + R) G 'z 1uThW)
— VG '='UTbY + VRG'Z'UTLY) = x*0) 4 VRG'E-1UTBY), (37)
where the last equality follows from Lemma 10. This concludes the proof. O

Corollary 12. Assuming the structural condition of eqn. (6), we further have, forall j = 1,2,...t,
||§(j) _ X*(J’)H2 < 5||X*(j)||2.
In addition, applying Lemma 6 yields

H;((t) _ X*(t)H2 < €HX*(t)||2.

Proof. From the structural condition of eqn. (6), we have

PN _ ~ 1y € o2 \e e
e8], <lelL JB], <le 5 - (25) s <5 @)

Moreover, eqn. (37) gives

%9 — x*@)|, = [VRG™!S"1UTb|, = [RGIE"1UTb|;
< |R[2|GTI=TIUTD|; = |R[2[VGIET1UTb|; = |Rlf2[|x* 7|, (39)

where we used the unitary invariance and sub-multiplicativity of the spectral norm, as well as eqn. (31).

Next, from eqn. (36) and (38) and we have

Rl =30 (¢B) | <3| (c B
=1 2 =1 2
> 1\ s ¢
S (o H) <5 () - L=

Here, eqn. (40) follows from the triangle inequality, sub-multiplicativity of the 2-norm, and the fact that /2 < 1/2. Finally,
combining eqns. (39) and (40) we have

||§(j) _ X*(j)||2 < 5||X*(j)H2- 41)
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Note that, as Lemma 6 does not assume any specific structural condition, it holds in this case as well. Thus, repeated
application of eqns. (24) and (41) results in the bound

t t—1
I =y = | 050 x = R - " = LR = KO - xO], < .
J=1 j=1
This concludes the proof. O

The next result provides a critical inequality that can be used recursively in order to establish Theorem 1.

Lemma 13. Ler x*U), j = 1,...,t, be the vectors of eqn. (15). Forany j = 1,...,t — 1, if the structural condition of
eqn. (6) is satisfied, then

IO+l < eflx* 2. (42)

Proof. Forany j =1,2,...%, we have

X*(j+1)H _ AT(AAT+/\I,L)71b(j+1)“
2 2

—|[ATAAT +L,) 7 (b9 — Ay - ARD)) H2

= AT(AAT + /\In)*l (b(j) _ (AAT + )\In)(ASSTAT Jr)\In)—lb(j))H
2

—||AT(AAT +AL,) b0 — AT(ASSTAT 4 AL) b
2

— || _,~<<j>H <e ‘ X*(j)H : (43)
2 2
where the last inequality follows from eqn. (41). This completes the proof. O
Proof of Theorem 1. From Corollary 12, we have
I — x|l < ellx™ @]l (44)

and applying Lemma 13 iteratively yields

Finally, combining eqns. (44) and (45), we conclude

o)

2

Sf—:’
2

X*(t71)H < 52‘
2

X*(t72)H <. < €t71 ||X*||2 ) (45)

5" = x|y < e [lx7l, -
This completes the proof of Theorem 1. O

C. Proof of Theorem 2

In this section, we will only highlight (and prove) those results which has been either mentioned or stated without proof in
Section 3, in order to give reader a complete picture.

Lemma 14. Forj = 1,2,....t, let b\9) be the intermediate response vectors in Algorithm 1 and x*\9) be the vector defined
in eqn. (15). then forany j = 1,2,...t, x*U) can also be expressed as
x*0) = ve2n-luThW (46)

Proof. From eqn. (15) and the thin SVD representation of A, we have
x*0) = AT (AAT +A1,) ' b = VEUT (US2UT 4+ AUUT) ' b0
= VE(S242L) T UTBY =V [ (22 +L) T 2| 200 — vEERTIUThY), @)

where we used the fact that 33 = 3 (32 + AL,) ~''3. This concludes the proof. O
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Proof of Lemma 5. Denote W = SST. Using the thin SVD representation of A, we have

%) — AT (AWAT +2L,) ' bV

—v=UT (USVTWVEUT +AUUT) " b
—VEUT (U(SVTWVS +L,) UT) ' bW
=VIUTU (SVIWVE + AL,) " UTHY) (48)

Clearly, the matrix XVT WV X is (symmetric) positive semidefinite and \I,, is a positive definite matrix (as A > 0). Thus,
SVTWVZX + AL, is positive definite, and the underlying inverse exists.

Now, proceeding with eqn. (48) and noting that UUT = UTU = I,,, we have

%) = vy (EVTWVE +AL,) UTHY
23 (EAWVTWVE,) B'S +4L,) UThY)
A A
—VE (35! (2 +E) ;'S +AL,) " UTbY (49)
(22, (32 +E) £S48 ' 5,228, 5, '%) T UThV)
(35 (B3 +E+ A, 328, 57's) UThY)
—VE (33,11, + B)5;'8) T UThW), (50)

where eqn. (49) used the fact that £, VIWVX, = 2% + E and eqn. (50) follows from the fact that £3 + A X 2%, €
R™*™ is a diagonal matrix with i*" diagonal element

(B3 +ATNE7?E,),, = o P
A @G22 4N o2

forany i = 1,2,...n. Thus, we have (X3 + AX 272X, ) = L,.

Since || E||2 < 1, taking P = —E in Proposition 8 implies that (I, + E) ! exists and (I, + E)~! = I, + >0, (—1)‘E".
Thus, eqn. (50) can further be expressed as

V) =vee-ly, (1, +E) ' 2,2 'UTbY

-V, (I + Z éE‘“’) 2 1UuThW)

=1
=viz~UbY + VE,RE,\ZIUTHY
=x*0) + VE,RE, 2 'UTBY), (51)
where we applied Lemma 14 in the last line. This concludes the proof. O

Proof of Lemma 6. We prove by induction on ¢.

For t = 1, eqn. (15) boils down to
x*W = AT(AAT + 21,) " 'bW) = x*.

For t = 2, we have

x*@ = AT(AAT +AL,)"'b®@
= AT(AAT 4+ AL,)"! (b<1> —ay® - A§<1>)
= AT(AAT + AL,)"! (b<1> — (AAT 4+ AL,)(ASSTAT + /\In)*lb“))
= AT(AAT +2L,) " 'b® — AT(ASSTAT + \I,,)"'b™M
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=x* —x,
Now, suppose eqn. (24) is also true for t = p, i.e.,
p—1
x* = x* =) "%, (52)
j=1

Then, for t = p + 1, we can express x*®) as
"D — AT(AAT 4 AL,) " 1p®+D
=AT(AAT + 1, ! (b<p> “ay® — Ag(p))
— AT(AAT +2L,)"! (b@) — (AAT £ AL,)(ASSTAT + /\In)‘lb(”))
=AT(AAT +21,) " 'b® — AT(ASSTAT +AL,) " 'b®

p—1 p
—x*®) 5 — [ x* _ Zg(j) E-{ () Zg(i) ,
Jj=1 Jj=1

where the second last equality in the last line follows from eqn. (52).

By the induction principle, we have proven eqn. (24). O

Proof of Lemma 7. From eqn. (15), we have forany j = 1,2,...¢,

x*(jH)H - AT(AAT+>\In)*1b(j+1)‘

2 2

=|[AT(AAT + AL,)! (bm oy - Aim)H
2

~ | AT(AAT +2L) 7 (b9 — (AAT+ L) (ASSTAT + A1) 1B |

= AT(AAT+/\In)71b(J) ,AT(AssTAT+/\In)71b(3)H
2

) . ) 1 )
— |5+ 7~<J>H <£ ’ *(a)H = HUT bu)H 53
X X 9= 2 X 9 + m k,L 9 ) ( )
where the last inequality follows from eqn. (23).
Next, forany j = 1,2,...,t — 1, using the thin SVD representation of A, we can rewrite bU+1) ag

BUTD — bU) — Ayl — AZ0)
=b"¥) — (AAT + \I,)(ASSTAT 4+ AL,)"'bW)
—bU) — U (22 +AL,) UTU (TV'SSTVE + AL,) UTHY)
—b?) —U (224 AL, (S5 S VTSSTVE, £1'S + AL,) T UTb?

E+x2
—b¥) —U (2% 4+ AL,) (2,11, + E)=;'E) T UTBY) (54)
—b) U (22 +AL,) B'S)\(I, + E) 'S, 21 UTbY (55)
—b) — U (22 4+ ML) B7'S\(I, + R)S, 51U | (56)

where eqn. (54) follows from the same steps performed from eqn. (49) to eqn. (50). Also, eqn. (55) and eqn. (56) follow
from Proposition 8 as ||E||, < ﬁ < 1.

Moreover, note that (22 + )\In) 2*1232’1 = I,, and using the fact that UUT =1,,, we can rewrite eqn. (56) as

bl =pl) —UUTBY) — U (2% +AL,) =72\ RE,E1UTHY)
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=-U(2?+),) Z7 'S RE\Z'UTDLY) . (57)

Next, combining eqns. (18) and (57), we have

HU-ILJ_b(j-H) H2 = H—ULU(E2 FAL)SIS,RE,E1UTHY) H2

IN

|UT L U(Z2 4 )L, *12,\}]2HR||2H2AE*1UTb(j)H2

I /\

\[HUELU (22 4+ AL)E 55, =m0

2 10k
= QLﬂ [0 _syx Inoi) (B2 +AL)E'E, |, Hzm*UTb(j)HQ. (58)

(Ur Ug) (Z2+L,)T7 15, HE,\ZflUTb(j)HZ

Now, similar to equation eqn. (20), we apply triangle inequality and the fact that £' = (£71)), + (1 ")k, 1 to get the
following inequality

=38 UTDY p < [[(B1) S3ZTUTBY o + (B kL B3ETTUTDY5. (59)

Ay Ao

We now proceed to bound A; and Ay separately.
Bounding A ;. Using VTV = I,,, we have

A = H(E;l)k VT(VE?\E_lUTb(]) H H k VT *(])H < H kHQ HVTH2 ‘ <

X*mH <
2

where we used the facts that x*(/) = VE3X~1UTbU) (see Lemma 14 in the Appendix), The last inequality follows from
our assumption that o7 > .

*(j)H
2

(L+A/o})

v Hz ’ (60)

Bounding A,. Rewriting U = (Uk Uk,J_)’ we have

T .
AQ - H k‘ iR 22 1UTb j)H ‘(Exl)k,L Eizfl (gir > b(])
1 2
LA IO R (TR RE
= H il 333 (UZ,L) b ) < |IB3 k1 )OI H2 (UZL> b H2 61)
_ _ . 1 )
< (=3 e 23271, HUZ’me‘ N e, HU-’CI—’Lb(])HQ

1 .
— U bW
\F/\H k.l

(62)

2

Equality in eqn. (61) holds because note that ((2;1) kL 33X71) € R"™" is a diagonal matrix whose (4, 4)th diagonal
entry is equal to \/127“ if i > k and zero otherwise.

In order to upper bound ||, X1 UTb()||,, we combine eqns. (59), (60) and (62) to obtain

o] < 3
2

ol + e,
X 9 + \/X k,L 9 (63)

Next, it can easily be verified that

[(0G—tyxr Tnoi) (B2 + AL)E TN, = /o7, + A < V2A, (64)
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where the last inequality in eqn. (64) directly follows from the definition of k i.e. o7 1 <A

Further, combining eqns. (58), (63) and eqn. (64), we have

OLb ] < o5 AR (Ve 5 o], ) 6
Ui 35 L9 (65)
Finally, putting together eqns. (53) and (65), we conclude
_ 1 _ .
], oz R <o (o, + 5 Jonaee)
[ .+ 75 VR <S¢ +— Ul i (66)
forany j =1,2,...,t —1. O

D. Connection to Preconditioned Richardson Iteration

In Algorithm 1, let ) = 21:1 y¥). Therefore, after ¢ iterations the final output is given by X* = AT y(!), Furthermore,
from our construction,

b)) =blU=D _ (AAT 4+ AL,)(ASSTA + AL,)"1bU—D
=bU= — (AAT 4+ \I,,)yU Y
=bU=2 — (AAT + \L,)yU =2 — (AAT + \L,)yU Y
—pU-2) _ (AAT +)1,) (y(J D4 yl- 2))

=b® — (AAT +)1,,) (y(j%) 4yl 44 y(l))
=b— (AAT + I,y Y. (67)

Again, repeatedly using the definition of /) and eqn. (67), we obtain
y@) = g0 4 y0) = $G-D 4 (ASSTAT 4+ \I,,)"'b@
— 30D 4 (ASSTAT 4 A1) (b (AAT 4+ AL,)yU~ 1)) (68)
Thus, our Algorithm 1 can be formulated as a preconditioned Richardson iteration to solve the linear system
(AAT +)I,)y =b (69)

with preconditioner P~ = (ASSTAT + AI,,) ! and step-size one.

Next, we state an important result on the convergence of preconditioned Richardson iteration and use it to show that subject
to our structural conditions in eqns. (6) and (8), y(” converges to the true solution y* = (AAT + AL,) " !b as t increases.

Lemma 15. (Corollary 2.4.1 of (Quarteroni & Valli, 1994)) The preconditioned Richardson method of eqn. (68) converges
if and only if the maximum eigenvalue (spectral radius) of P~ (AAT + \I,,) satisfies:

Amax (PTHAAT +)1,)) < 2,

where P = ASSTAT + )I,,.
Proof of convergence under the structural condition of eqn. (6). Consider the condition of eqn. (6):

IVTSSTV — L5 < 5 & —SI,xV'SSTV-I,<-1,

N ™

_ &
2
- — gAAT < ASSTAT AAT < ;AAT (70)
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N (1 _ g) AAT < ASSTAT < (1 n g) AAT

N (1 - g) AAT 4 AL, < ASSTAT + AL, < (1 n %) AAT £,

= (1-5) (AAT+L) < ASSTAT 4 L, < (14 5) (AAT+ 2L, (71)
P

where we obtain eqn. (70) by pre- and post-multiplying the previous inequality by UX and XUT respectively and using the
facts that A = UXVT and AAT = UX2U". Furthermore, eqn. (71) holds as (1 — ¢/2) < 1 and (1 + &/2) > 1. Next,
pre- and post- multiplying eqn. (71) by P~1/2, we obtain

(1+ g)_l L < P72 (AAT L) P72 < (1 g)_l I,

which implies that the eigenvalues of P~1/2 (AAT + I, ) P~1/2 are bounded between (1 + £) ' and (1-%) ~'. More-

over, notice that P—1/2 (AAT +)I,) P12 is similar to P! (AAT + AL,) which implies that both matrices have same

set of eigenvalues and therefore the eigenvalues of P~ (AAT + AL,,) are also bounded between (1 + £) ~'and (1-¢) !
Finally, using € < 1, we obtain

Amax (PTHAAT +T,)) < (1- 3)71 <2.

This concludes the proof. O

Proof of convergence under the structural condition of eqn. (8). Using the SVD of A, it is easy to verify that
[ZAVTSSTVE, — 23|,
=[(AAT + \1,)"ZASSTAT(AAT + L)% — (AAT + L) 2AAT(AAT + AL,) % |. (72)

Using eqn. (72), we rewrite the structural condition of eqn. (8) as follows:

—4% I, < (AAT + AL,) 2ASSTAT(AAT + AL,) "% — (AAT + AL,) *AAT(AAT + AL, ? < 7
Now, pre- and post-multiplying the above inequality by (AAT + \I,,) 2, we obtain
- 4\% (AAT +AL,) < ASSTAT — AAT < 4575 (AAT +)L,)

= - 4% (AAT +AL,) < ASSTAT 1+ AL, — (AAT + AL, < 4%/5 (AAT + L)

= (1 — 4\[) (AAT +1,) < AssTp;T + L, < <1 + M) (AAT +)I,). (73)
As before, pre- and post-multiplying eqn. (73) by P~1/2, we obtain

<1 + 4;) <P (AAT + L) P12 (1 - &) L
Now, using a similar argument as in the previous case, we obtain
/\maX(P’l(AAT +AI,)) < (1 - M>_1 <2, ase<l.

This concludes the proof. O

Number of Iterations. The above derivations imply that the eigenvalues of P~*(AAT + \L,) are bounded between
(14 O(e)) " and (1 — O())~" and thus the condition number of P~'(AAT + AL,) is constant whenever ¢ is constant.
Now, using Theorem 2.3.1 of (Kyng, 2017), we can argue that for any error parameter ¢’ = O(¢), the preconditioned
Richardson iteration needs O (In(1/¢’)) steps to converge.
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E. Bias-Variance Trade-off

Our next result quantifies the bias-variance trade-off for under-constrained ridge regression.

Lemma 16. Let the data-generation model be given by egn. (12). Then, the mean squared error (MSE) of X* can be
expressed as follows

MSE(x*) = o” | (AAT + ML) 'A% + [ (AT(AAT + ML) A — 1) o, - (74)

Proof. The covariance matrix of b is given by E [(b — E(b))(b — E(b))"] and is denoted Var(b). Since the ridge
regression estimator x* of the parameter vector X is given by eqn. (3), we have

E(x*) =E (AT(AAT + \L,)"'b) = AT (AAT + AL,) ' E (b)
= AT (AAT £ )L,) " Axg = %0 + (AT(AAT + AL) A — 1) x0 = X0 + b(x"), (75)

where
b(x*) = (AT (AAT +AL,) A - Id) X0

is the underlying bias in estimating x, through x*.
Furthermore, combining second equality in eqn. (75) with eqn. (3), we obtain
x* —E(x*) = AT(AAT + \I,) ! (b — E(b))
and thus
(x* —E(x")) (x* —E(x*))" = AT(AAT + AL,) "' (b —E(b)) (b —E(b))" (AAT +\I,)) A (76)
Taking expectation on both sides of eqn. (76) and using the linearity of expectation, we have
Var(x*) = AT(AAT + \L,) " 'Var(b) (AAT + \L,) *A = c?AT(AAT +\I,,) 2A, (77)

where we used the fact that Var(b) = o21,,.

In order to decompose MSE(x*) into the variance and bias components, we add and subtract E(x*) and proceed as follows:

MSE(x*) = E [||x* - xOHﬂ =E [IIX* - E(x*) + E(x*) - XOHﬂ

E [ = E(x") + 03] = E [Ix" —EG)3] + G5 (78)

[
M=~

d
E (¢ — EG))| + 063 = - [Var(e), + [b(ae)I3

1
r (Var(x*)) + [|b(x")]|2 . (79)

&+

Here, x} is the i element of x*. To achieve the second equality in eqn. (78), we used the fact that E (x* — E(x*)) = 0.
Further, combining eqn. (75), eqn. (77) and eqn. (79), we have

MSE(x") =o”tr (AT(AAT + AL,) 2A) + || (AT(AAT + AL,) A — 1) x|

— 02 ||(AAT + ML) AL+ [[(AT(AAT +AL) A — 1) xol[5 -

Variance Bias2

This concludes the proof. O
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E.1. Proof of Theorem 4 under eqn. (6)

First, we present the following result showing an alternative formulation of H (AAT + )\In)’lAH =

Lemma 17. Let A € R™*? be the design matrix and \(> 0) be the ridge parameter of the ridge regression problem. Then,
we have

(@) |[(AAT+ ML) 'All, =|Z'G™,, and (80)
) ||(AT(AAT +21,)'A — 1) xol|, = | (VGT'VT - 1,) Xol|, » (81)

where G =1,, + \X 2.
Proof. Part (a): Using the thin SVD representation of A and putting I,, = UUT, we have
|(AAT+AL) A, = |(U2UT + auuT) oSV
~|(uz@, +rzzuT) T usvT|
~[(uzesuT) " usvT| (82)

Clearly, G~! exists. Further, using the fact that UTU = I,, and exploiting unitary invariance of Frobenius norm, we can
rewrite eqn. (82) as

[(AAT + L) 'A|, = [[UZ'G 'z 'UTUZVT||, = |=7'G7| (83)

I
which concludes the proof of part (a).

Part (b): Tt suffices to show that AT(AAT + A\I,,)"'!A = VG~'VT. From the thin SVD representation of A, we have

AT(AAT +)1,)7'A = VEUT (US2UT +AUUT) T USVT
=VEUT (US(L, + A2~ 3)2UT) " UV’
= VvsUT (USGEUT) UsvT
=vu'uz'g's'uTusv’
=VGT'VT,

where we used the facts that G~ exists and that UTU = I,,. This completes the proof. O

Our next result bounds each term in eqn. (14) separately subject to the structural condition of eqn. (6).

Lemma 18. Let A € R"¥9 b € R, and X\ > 0 be the inputs of the ridge regression problem. Let S € RY** be the

sketching matrix in Algorithm 1 and define R
E=V'SS'V-1I,.

Further, assume for some constant 0 < € < 1, if the condition of eqn. (6) is satisfied i.e. ||]§||2 < /2, then

(@) o*||(ASSTAT + ML) 'A% < (142)% 0® | (AAT + ML) 'A%, and (84)

(b) [[(AT(ASSTAT + L) 'A — L) o3 < (1 +e7)? || (AT(AAT + ML) "A — L) %o,  (85)
where y1 = (14 o3 /).

Proof. Let W = SST. As before, we start with the thin SVD representation of A.
Part (a): We have

[(AWAT + AL,) 'A% = H (US(VTWV)SUT 4+ AUUT) UZVTHi
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~ -1 2
- (UE(In +E)SUT 4+ )\UUT> usvT
F

~ -1 2
- (UE(In +E+ AE*Q)EUT) usvT
F

—~ 2
- UE‘l(In+E+/\Z‘2)‘12‘1UTUEVTHF. (86)

Now, using the facts that UUT = I,, and the unitary invariance of the Frobenius norm, we can rewrite eqn. (86) as

~ 2 e 2
e W =SSR

2 2
- Hz-l ((In +EG—1)G) : 87)

F

- Hz—lc;—l (In + ITDG,—l)_1

F

where G = I,, + AX~2 and is invertible. Further, (I,, + ]?)(}_1)_1 exists because of Proposition 8 and the fact that
I[EG1]]2 < /2 (the proof is the same as eqn. (38)). Thus, eqn. (87) holds. Moreover, taking P = —EG™!
Proposition 8 yields

(In + EG*)A = i(—nf (EG*)Z s (88)

£=0
Next, combining eqns. (87) and (88) and applying strong sub-multiplicativity, we obtain

[(AWAT +AL) 'A% = [[='a )% < ITIZ =G . (89)

Next, using eqn. (88) and the fact |[EG (|5 < £/2 yields

il = [ (Be) | <3 (Be)'
£=0 9 =0 2
<> ([Be]) =3 (5) = p=ree ©0

where the first inequality is due to the triangle inequality, the second one follows from sub-multiplicativity and the last
inequality holds as 0 < € < 1.

Finally, combining eqn. (80), eqn. (89), eqn. (90) and multiplying both sides by o2, we have
o | (ASSTAT + ML) 'A% < (142)2 02 ||(AAT + AL,) A%
Part (b): We have

[(AT(AWAT + AL,) 'A — 1) xo |,
=[|(VEUT(USVTWVEU' + AUUT)'USVT - L) x|,

Il
/N

VvEUT (US(VIWV +222)xUT) ' UusvT - Id) XOH

Il
N TN TN

VvxUT (US1, +E + AE*Q)ZUT) usvT - Id) Xo

2

veuT UE G+ E)EUT) usvT — 1d> X0

2

- VEUTUZ LG+ B)” 12*1UTU2VT—Id)on2, 1)



An Iterative, Sketching-based Framework for Ridge Regression

where G = I,, + AX~2 and is invertible. Further, using the similar argument as in Lemma 11, (G + E)*l exists and
eqn. (91) holds. Thus, we have

| (AT(AWAT + AL,) 'A — 1) %o,

_ (V (G+E)" VT - Id> XOHQ - (V (G(In + G’lﬁ))_l \A 1d> %o

2

=[|(v (n+R) e VT -1,

—[(VG='VT —1,) xo + VRG~ 1VTXOH , (92)

1
= ( I, +G™~ 1E> G71VT — Id> X0

where - ,
B _ (e E)
R 2( 1) (G E)

Using the same argument as in eqn.(38), we have |G~ 1EH2 < ¢/2, and by Proposmon 8,1, + G~ 'E is invertible and
(I, + G™E)~! = I, + R. Thus eqn. (92) holds. Moreover, from eqn. (40), we have |R ||, < e.

Proceeding further, we have

H (VG'VT —1,) xo + Vﬁc;*lVTon2

< (VG — L) o, + [VRG Vx|
< J(VG'VT —Ly) o, + IR ]2 [ G, %ol
<[(VG'VT —1a) xo||, + & lI%0ll, , (93)

where the first step is due to the triangle inequality, the second inequality follows from sub-multiplicativity and the last step
holds as ||[R||2 < e and |G| < 1.

Next, we seek to upper-bound [|xq||z in terms of || (VG™'VT — L) xo||,. We begin by noticing that

[(VGT'VT — 1) x0/[, > omin(VGT'VT = 1g)|xq - (94)

Now, we need to bound the smallest singular value of VG-IVT —1,. We write

VG 'V -1, =VG VT — (VVT +V,V])

G '-1, 0 vT G '-1, 0 T
v v (St ) () (e )V

where V; = (V A% J_) € R*9 consisting of the right singular vectors in the full SVD representation of A with
ViV} = V[V, =1, and thus,

0 Idfn

H

11 \2
(VGIVT —1,)? =V, <(G L) 0 ) VT (95)

We observe that eqn. (95) is the SVD representation of (V(}_lVT — Id)2. Since VG~ 1VT —1,is symmetric, we have

mln(VG 1VT - Id) = Omin [(VG?IVT - Id)Q] = HllIl H“
1<i<d
. 02 ? . 012 2
1I<nil£1n{<g Y 1> 1 7121%% (0?4_)\—1)

A2 A2
= min

1<i<n A+ 02)2  (A+02)2
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and hence,
Omi (VG_lVT -1, = L (96)
min )\ + O_% .
Therefore, combining eqns. (94) and (96), we have
i 1T
Ixoll2 < (1 + A) [(VG™'VT — 1) x| - 97)

Again, combining eqns. (92), (93) and (97) yields

2
(AT AWAT 430 A ) ol = (VG VT ol = (1 %) VGV -1
= (14en) [(VGTIVT = Ta) x|
=1 +en)|[[(ATAAT + ML) A — 1) x0]|,, , (98)
where the last equality follows directly from Lemma 17.

Finally, squaring both sides of eqn. (98) concludes the proof. O
Final bound on the MSE. For ¢ = 1, the MSE of the output of Algorithm 1 is given by

MSE(R") = 0” || (ASSTAT + AL,) 'A% + || (AT(ASSTAT + ML) A — 1) x5
<02 (14¢)? |(AAT + ML) A% + (1 +em)? | (AT(AAT + AL,) A — L) x5
< (1+e7)” (02 [(AAT +AL) AL + [ (AT(AAT +AL) 1A — L) xo )
= (1+em1)® MSE(x*) = (1 + 2671 + £247) MSE(x")
< (1+2e7f 4+ &77) MSE(x*) = (1 + 3e77) MSE(x"),
where the first inequality directly follows from Lemma 18 and the second inequality is due to the fact that v; > 1 as well as
Lemma 16. The last inequality is again due to the facts thaty; > 1 and e < 1.
E.2. Proof of Theorem 4 under eqn. (8)

First, we provide an alternative formulation of [|(AAT + A\L,) ' Al|p and || (AT(AAT + AIL,) "' A — 1) X¢||2 using the
thin SVD of A.

Lemma 19. Let A € R"*? be the design matrix and \(> 0) be the ridge parameter of the ridge regression problem. Then,
we have

(@) |[(AAT +AL) A, =253, (99)
(b) [|[(AT(AAT +AL,) A = 1) xo|, = ||[(VEIVT = 1) xo], - (100)

Proof. First, recall the matrix X defined in eqn. (7). The proof directly follows from Lemma 17. Note that 3 =
(I, + AX %)~ ! is the same as G! in Lemma 17. Thus, we have

I(AAT + L) A == 6| = |55,

and
[(ATAAT + L) A L) o, = [ (VG VT L) o], - = [ (VERVT L),

This concludes the proof. O
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Our next result bounds both each term in eqn. (14) separately subject to the structural condition of eqn. (8).

Lemma 20. Let A € R"¥9 b € R, and X\ > 0 be the inputs of the ridge regression problem. Let S € RY** be the
sketching matrix in Algorithm 1 and define,

E=3X,V'SS'VxE, - X3 .
Further, assume for some constant 0 < € < 1, if the condition of eqn. (8) is satisfied i.e. |E|2 < 4f’ then

(@) 02 ||(ASSTAT + AL,) 'A% < (1+27:)% o |(AAT + L) A (101)
(b) ||(AT(ASSTAT + L) 'A — L) xo|[5 < (1 +£72)? | (AT(AAT + AL,) A — 1) xol[5 , (102)

where o = max{W» 1+ 07/}

Proof. Let W = SST. As before, we start with the thin SVD representation of A.
Part (a):

|[(AWAT +AL,) A, = [(USVTWVETUT +auUT) usvT||

= [vEvVWVET+aL) " UTuEvT||

||(EEA1(2AVTWVE,\)2;12+)\In)‘1EHF

= |(ZZHZ3 + E)S'S + AL) T2, (103)
= |EZ M (Z3+E)SIS+AZS (ENE TSN D) Y,
||(22;1(22 +E+AS,E7ENED) IS,

= |E= ML+ E)E'E) Y, (104)

In eqn. (103), we used the fact that X, VTWV X, = X2 + E. Further, eqn. (104) holds as (33 + AX),X72%,) € R
is a diagonal matrix with i-th diagonal entry equal to

(23 + A3, 7%x:,) :"7’2+L:1
A A Mii T g2 T o2 4

forany ¢ = 1,2,...n. Thus, we have (2%\ + )\EAE*QEA) =1,.
Since ||E||2 < 1, taking P = —E in Proposition 8 implies that (I, + E)~! exists and (I, + E)~! = I, + > ;2 (—1)‘E".
Let R = Y2, (—1)’E". Then, eqn. (104) can further be simplified as

[(AWAT + ML) A, = [|[Z7' S0, + B) 'S\ '2|, = |[=7'S\@L, + E) 'S,
— =A@ + RS = BT E + EUIRRE
|58, + IS SRS, = |2 7153, + |5 S35 RS,
1= 28+ IR 257, 12z [ 25] (105)

IN A

where the first inequality follows from the triangle inequality and the second inequality is due to strong-sub-multiplicativity.

For the second term on the right hand side of eqn. (105), we have | Rz < 575 (by eqn. (18)), =52 = /1 + A\o2 and
[|Xx]l, < 1. Using these facts, eqn. (105) boils down to

ICAWAT +2L) A < B85 + 1+*HE A

\f
< (Q+em) |28}, = L +e) [(AAT + ML) A, , (106)
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where the second inequality follows from the facts: ﬁ <land,/1+ U% < 72.The last step is due to Lemma 19. Finally,
squaring both sides of eqn.(106) and then pre-multiplying by o2 concludes the proof.

Part (b): We have

[(AT(AWAT +2L) A ~ L) x|, = || (VETUT (USVIWVETUT +AUUT) ' USVT - L) x|
- (Vz:T (EVTWVET +2L) 2V - L) x|

VET (25,13, VTWVE)S ST 4+ A1,)  2VT —Id) XOH
2

_ (VET (22; (24 E)S'ST+1,) VT - Id) x()H2 . (107)

where we used the fact that 3, VIWVX, = 332 + E. Proceeding in the same way as in the proof of part (a), we have

|[(AT(AWAT + AL,) 'A = 1) 0|, = [|(VEATa + R)ZAVT — 1) xol,

= [(VEIVT —Li+ VEARELVT) x|,

< [(VBRVT = L) x|, + [ (VEARELVT) xo

< [(VERVT = La) x|, + [ VEAREAVT|, 1o

= [[(VEIVT = L) x|, + [ ZaREx |, %0l

< [[(VERVT = L) xol, + Rl %ol

< [(VERVT — 1) ol + 55 ol (108)

where R = Z;il (—1)“E’. In the above expression, the first inequality follows from the triangle inequality, the second and
third inequalities are due to sub-multiplicativity and the fact that [ 3|, < 1. The final inequality holds as ||R||, < - f by
eqn. (18).

Note that
[(VEIVT = 14) x0||, = omin(VEZVT — Ly)|[xo2 - (109)
We seek to bound the smallest singular value of VZ?\VT — I; which can be expressed as

VIV -1, =VE3VT — (VVT +V V])

3 2 -1, 0 vT\ 2-1, 0 T
v (Mot ) B v (et )

where Vy = (V. V) € R?*? consisting of the right singular vectors in the full SVD representation of A with
VfVJTc = VJTch = I, and thus,

T (22 - In)2 0 T
(VZ Vv —Id) Vf( A 0 I, . Vf- (110)

H

Observe that eqn. (110) is the SVD representation of (VEZVT —I;)%. Since V3 VT — 1, is symmetric, we have

2yT 2y T .
rnln(VE vV - Id) = Omin I:(VE V' — Id) } = 121;161 H”
_ 02 2 ‘ 012 2
_1I<ni1£n{<a 24\ 1) )1 _1I<nil£n(ai2+)\_1>
A2 22

02 T (At op)?
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and hence
A
Omin(VERVT = 1) = Pl (111)
1
Therefore, combining eqns. (109) and (111), we have
U% 247 T
[xoll2 < ( 1+ 5% [(VEIVT —14) %o, - (112)

Finally, combining eqns. (108) and (112), we obtain

2
[(AT(AWAT + ML) A — 1) xo|, < [|(VERVT = 1) xo], + % (1 + ”;) [(VERVT = 1) x|,

< (VERVT = La) xo|, + 7 [ (VERVT — La) xo
(1+em2) [[(VERVT ~ 1) o],
=(1+e7) ||(AT(AAT + ML) 'A — 1) x0|, , (113)

where the second inequality follows from the facts: ﬁ < land (1 + 07?) < 7. The last step is due to Lemma 19. Finally,
squaring both sides of eqn. (113) concludes the proof. O

Final bund on the MSE. For ¢ = 1, MSE of the output of Algorithm 1 is given by
MSE(R") = 0” || (ASSTAT + AL,) 'A% + ||(AT(ASSTAT + ML) A — 1) x5
2 2
<o?(1+e7)? |(AAT + AL) A + (1 +292)? [ (AT(AAT + AL) A — 1) xo[;
2 2
= (1+2%)° (0% (AAT + AL)'AllL + | (AT(AAT + L) A ~ 1) xo[;)
= (1+e72)” MSE(x") = (1 + 2672 + £293) MSE(x")
< (1+42e75 +2735) MSE(x*) = (1 + 3ev3) MSE(x"),
where the first inequality directly follows from Lemma 20, the third equality follows from Lemma 16, and the last inequality
is due to the facts that v > 1 and e < 1.
F. Ridge Leverge Scores

In this section, we begin by revisiting the definition of ridge leverage scores (Cohen et al., 2017) and then provide an
alternative expression that is easier to work with.

Definition 1. The i-th column ridge leverage score of the matrix A € R™*? with respect to the ridge parameter X > 0 is
defined as

& (AT(AAT +)1,)'A) (114)

i )

fori =1,2,...,d.
In the next result, we present a more compact version of eqn. (114) using the thin SVD representation of A.

Lemma 21. Let A € R"*? be the design matrix and \ > 0 be the ridge parameter. Eqn. (114) can also be expressed as
= VSl a1

fori=1,2,....d.

Proof. First, using the fact A = UXVT, we have

AT(AAT £)1,)'A = VEUT (USVTVEUT 4 AUUT) " UsvT
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—v=UT (US*UT +AUUT)  USVT

—VEUT (U? +AL,)UT) ' USVT

=VEU'UZ? +AL,) 'UTUDVT

=VI(Z?+A,) 'V, (116)

=3

where we used the facts that UUT = UTU=1,, V'V =1, and (22 + AIL,) is invertible. Now, combining eqn. (114)
and eqn. (116), we have

I =(VE3VT), = (V). S (V) = IVaSall; = [(VEDil3 -

i

This concludes the proof. O

G. Proof of Theorem 3

This result is similar in spirit to Theorem 4.2 of Holodnak & Ipsen (2015), but our objective and (therefore) the analysis are
slightly different in two ways. First, Holodnak & Ipsen (2015) presented a probabilistic bound for the 2-norm of the relative
error whereas our bound holds for the 2-norm of the absolute error. Second, we have an additional condition || X[z < 1
which enables us to come up with a minimum value for s that depends only on ||X||% and not on the stable rank of X.

We first state two auxiliary results: a stable rank (intrinsic dimension) matrix Bernstein concentration inequality (Theorem 22)
and a bound for the singular values of a difference of positive semi-definite matrices (Theorem 23). We then utilize these
two results to obtain a proof of Theorem 3.

Theorem 22. (Theorem 7.3.1 of Tropp (2015)) Let Y ; be s independent real symmetric random matrices, with E(Y ;) =0,
J=1,2,...,s Letmaxi<j<s | Y,ll2 < p1 and P be a symmetric positive semi-definite matrix such that 3 _, E(Y?) < P.

Then, for any & > ||P||§/2 + p1/3, we have

s 62/2 )
P Y| >e] <4intdim(P)exp( ———"—— ],
2| 22 ) = ddn(®) (o7t s

where intdim(P) £ tr(P)/||P||2.

Theorem 23. (Theorem 2.1 of Zhan (2001)) If M and N are real symmetric positive semi-definite matrices € R™*™, with
singular values 01 (M) > 03(M) > -+ > 0,,(M) and 01(N) > 09(N) > -+ - > 0,,,(IN), then the singular values of the
difference Ml — N is bounded by

Uj(M—N)§0j<O N)’ 1<j<m.
In particular, we have |M — N||2 < max{||M]||2, || N||2}-
Proof of Theorem 3. Let rank(X) = p and X = UxXx V be the thin SVD representation of X with Ux € R¥*?,
Vx € R™*? such that U;Ux = V;(VX = I,. Also, 3x € R?** is the diagonal matrix consisting of the non-zero

singular values of X arranged in a non-increasing order i.e. 01(X) > 02(X) > - -- > ¢,(X) > 0. Further, according to the
statement of the theorem, we have, ||X||2 = 01(X) < 1.

Setting C = XS, we have

XTSSTX -X'X =CCT -X"X = | Y € (CT), | - XX
j=1

S 1 S
=> (c*j(cT)j* - SXTX> =>Y;, 117)
j=1 j=1
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where Y; = C*j(CT)j* — %XTX.
Clearly,

E(Y;) =E (C*j(CT)j* - iXTX> =E (Cyy(CT)j) - %XTX

d d

3 (X X ), e L x -
1 1

=-X"™X - -X"X =0, (18
S S

where the third equality follows from Algorithm 2 and the definition of expectation. Thus, we have shown that Y ;’s have
zero mean. Next, we check that the assumptions of Theorem 22 are satisfied.

Bound for maxi<j<s || Y,|2. As pereqn. (117), Y; = C,;(CT);, — 1X X is a difference of two positive semi-definite
matrices. We apply Theorem 23 to obtain
J

1 Xk
} L {' I3 ||X||2}
. 5 s 1<i<d Di

1 X 13 5 X%
=-max { ————5-——-, || X|[5 ¢ = , (119)
s 1<Z<d{(X¢*||§/||X||§:) ? s

which holds forall j = 1,2,...s.

1
1Y ]2 = HC*]-(CT)J XTXH < maX{HC*J(CT il gXTX

1
XTX

IN

XT *z Xz*
1122<d \/S \/SDi

2
Thus, we have shown that maxs << [|[Y;|l2 < ”XS”F £ o1

The matrix P. From the definition of Y; in eqn. (117), we have
Y, =C.,;(C"),. - %XTX =Y, + %XTX = C,;(C");.
- <Yj + iXTX>2 = (C.(€T).)" = Cy(CT);.Cy(CT)0
=Y -Y,X'X-X"XY; +3 (XTX) =C.;(CT);.C.;(CT)j.. (120)
Taking expectations on both sides of eqn. (120) and noting that E(Y ;) = 0 gives
E(Y?) + 5 (XTX)? = B(C.y(CT);.Ci(CT);0)

XT *1 Xi* XT *1 Xi*
-3 (0 X O X )

—1 SPi /SPi ~/SDi +/5Di

d
| ), - L5 (IRl )
_ 1 xT *Z( il 2 ) (X)X
Ly (X 72\ ) <)

pi

2

X

_ X F§ (X" Xiw = ” 2||FXTX (121)
S

Summing both sides of eqn. (121) over j gives

[IX
ZE Y2 | ||F XTX (XTX)2
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X%

XTX—%V »2vI
S - X&ax Vx

X
” ”FV DV (122)
S

where D € R”*” is diagonal matrix whose i-th diagonal entry is equal to

o _J1 it i=1
"] 03(X) otherwise.

?

The second-to-last inequality in eqn. (122) holds because 22:1 IE(YJQ-), %XTX and 1(XTX)? are all positive semi-
definite matrices. Further, the last inequality follows from the fact that £% < D as 01(X) = [|X||2 < 1.

Note that ||D||; = 1 and
P P
D)=1+ Zaf(x) =1-02(X) + Zaﬁ(x
—1—01(X)+IIXHF < 1+||XHF (123)
Again,

IIXII IIXII IIXII
IP[2 = —£ ||VxDVg|, = —£ D[, = —£, (124)

where the second equality follows from the unitary invariance of 2-norm.

Similarly, from eqn. (123)

X X X2
(@) = Ble g (vipvg) = Kl ) < e gz, (125
Combining eqns. (124) and (125) yields
RS 2
- tr (P) =14+ [1X17) >
= < S = .
intdim(P) Pl = X 1+ X% (126)
Application of Theorem 22. From eqn. (117), we have
P(|XT8S™TX - XTX|,>e) =P | [D_Y;|| >¢]. (127)
=1,
Applying Theorem 22 to the right hand side of eqn. (127) yields:
P ZY > ¢ | < 4intdim(P) ex <—€2/2)
2t : PP+ pie/3

e2/2

2 2
F F
s 3s

B ) B se?
=4 'XF)eXp( X2 <2+ze/3>> ' (128)

Clearly, P (|| XTSSTX — XTX]||, > ¢) < 4 holds if the right hand side of eqn. (128) is at most 4, i.e.,

862

: 40+ X))
1+ X e (~ ey ) < 0 Ty 2 i ()
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2 2
o (2 2) B (AN
3 € 0

As e < 1, eqn. (129) holds if

8IX[I% | (4 + IX][%)

> 1 .
=3 5

Finally, it still remains to be shown that the last condition of Theorem 22 is satisfied, i.e., ¢ > ||P||§/ ® + p1/3. We solve the

following equation for ¢:

se?
10+ IXIE) o0 (< s 577 ) =
(tIXlE) e (- Rz T 2e7m)
4(1 4 ||1X|1% 4(1+ ||X]Z
— 3522~ 2|X|2n (( t ”F)>g—6||x%1n (( *l ”F)> ~0

J
— =B+ /B2 + 68,

where )
X7 n (*HFE)

3s
Observe that e > 2¢ +- ||P||;/2 if 3> £ and 63 > ||P||2. Both conditions will be satisfied if

2 2
NEEL R

)

1) e

which is always true since § < 1. This concludes the proof.

H. Additional Experiment Results

H.1. Synthetic Data Experiments

We generate synthetic data using the same mechanism as Chen et al. (2015). Specifically, we construct the n x d design
matrix via A = MDV " + oE, where M is an n x s matrix with i.i.d. standard Gaussian entries; D is an s X s diagonal
matrix with diagonal entries D;; = 1—(i—1)/aforeachi =1,...,s; and V is a d X n column-orthonormal matrix containing
a random s-dimensional subspace of R?. Note that MDV T is a rank s matrix with linearly decreasing singular values.
Further, E is an n X d noise matrix with i.i.d. standard Gaussian entries; and o > 0 balances the strength of the signals
MDYV " with the noises E. Finally, the response vector b € R" is given by b = Ax + ve, where x € R? and e € R" are
i.i.d. standard Gaussian vectors. Following Chen et al. (2015), we set n = 500, d = 50,000, s = 50, « = 0.05, and v = 5.

Sketch size = 20000 Sketch size = 20000 Number of iterations = 10 Sketch size = 20000  Number of iterations = 10
10’ \ —Ridge Jeverage w0\ —-Ridge leverage W —e— Ridge leverage —e— Ridge leverage A
c 10? \ Leverage - \ Leverage c Leverage c . Leverage
S . -~ Uniform =10 -=== Uniform £ 10 == Uniform %10 == Uniform %
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Figure 2. Experiment results on synthetic data (errors are on log-scale).

The experiment results on synthetic data are shown in Figure 2, and are consistent with our observations regarding Figure 1.
Figures 2a and 2b plot the relative error of the solution vector and the objective sub-optimality (for a fixed sketch size) as the
iterative algorithm progresses. Figure 2c plots the relative error of the solution with respect to varying sketch sizes (the plots
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for objective sub-optimality are analogous and are thus omitted). We observe that both the solution error and the objective
sub-optimality decay exponentially as our iterative algorithm progresses.’

In Figure 2d, we keep the design matrix unchanged (n remains fixed), while varying the regularization parameter A €
{10, 20, 50, 75,100, 150}, and plot the relative error of the solution against the degrees of freedom d (for a fixed sketch
size and number of iterations). We observe that the relative error decreases exponentially as d) decreases (as A increases).
Thus, the sketch size or number of iterations necessary to achieve a certain precision in the solution also decreases with d,
even though n remains fixed.

H.2. Additional Results on Real Data

As noted in Section 5, we conjecture that using different sampling matrices in each iteration of Algorithm 1 (i.e., introducing
new “‘randomness” in each iteration) could lead to improved bounds for our main theorems. We evaluate this conjecture
empirically by comparing the performance of Algorithm 1 using either a single sampling-and-rescaling matrix S (the setup
in the main paper) or drawing (independently) a new sampling-and-rescaling matrix at every iteration j.

Figure 3 shows the relative approximation error vs. number of iterations on the ARCENE dataset for increasing sketch
sizes. We observe that using a newly sampled sketching matrix at every iteration enables faster convergence as the iterations
progress, and also reduces the minimum sketch size s necessary for Algorithm 1 to converge. Also note that the minimum
sketch size requirement is smaller when ridge leverage scores are used to construct S as compared to leverage score sampling
probabilities; this confirms our discussion in Section 2.1: for ridge leverage score sampling, setting s = O(c¢~2dy Ind))
suffices to satisfy the structural condition of eqn. (8), while for leverage scores, setting s = O(e~2nInn) suffices to satisfy
the structural condition of eqn. (6) (recall that n can be substantially larger than the effective degrees of freedom d ).
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Figure 3. Relative approximation error vs. number of iterations on ARCENE dataset for increasing sketch size s (errors are on log-scale).
Top row: using a single sampling-and-rescaling matrix S throughout the iterations. Botfom row: sampling a new S at every iteration j.

3For these experiments, we have set the regularization parameter A = 10 in the ridge regression objective as well as when computing
the ridge leverage score sampling probabilities.



