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Abstract
Ridge regression is a variant of regularized least
squares regression that is particularly suitable in
settings where the number of predictor variables
greatly exceeds the number of observations. We
present a simple, iterative, sketching-based algo-
rithm for ridge regression that guarantees high-
quality approximations to the optimal solution
vector. Our analysis builds upon two simple
structural results that boil down to randomized
matrix multiplication, a fundamental and well-
understood primitive of randomized linear alge-
bra. An important contribution of our work is the
analysis of the behavior of sub-sampled ridge re-
gression problems when the ridge leverage scores
are used: we prove that accurate approximations
can be achieved by a sample whose size depends
on the degrees of freedom of the ridge-regression
problem rather than the dimensions of the design
matrix. Our empirical evaluations verify our theo-
retical results on both real and synthetic data.

1. Introduction
In statistics and machine learning, ridge regression (Gunst
& Mason, 1977; Hoerl & Kennard, 1970) (also known as
Tikhonov regularization or weight decay) is a variant of
regularized least squares problems where the choice of the
penalty function is the squared `2-norm. Formally, let A ∈
Rn×d be the design matrix and let b ∈ Rn be the response
vector. Then, the linear algebraic formulation of the ridge
regression problem is as follows:

Z∗ = min
x∈Rd

{
‖Ax− b‖22 + λ‖x‖22

}
, (1)

where λ > 0 is the regularization parameter. There are two
fundamental motivations underlying the use of ridge regres-
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sion. First, when d� n, i.e., the number of predictor vari-
ables d greatly exceeds the number of observations n, fitting
the full model without regularization (i.e., setting λ to zero)
will result in large prediction intervals and a non-unique
regression estimator. Second, if the design matrix A is
ill-conditioned, solving the standard least-squares problem
without regularization would depend on (ATA)−1. This
inversion would be problematic if ATA were singular or
nearly singular and thus adding even a little noise to the ele-
ments of A could result in large changes in (ATA)−1. Due
to these two considerations, solving standard least-squares
problems without regularization may provide a good fit to
the training data but may not generalize well to test data.

Ridge regression abandons the requirement of an unbiased
estimator in order to address the aforementioned problems.
At the cost of introducing bias, ridge regression reduces the
variance and thus might reduce the overall mean squared
error (MSE). The minimizer of eqn. (1) is

x∗ =
(
ATA + λId

)−1
ATb, (2)

or, equivalently (see Saunders et al. (1998) and Lemma 9 in
Appendix A),

x∗ = AT
(
AAT + λIn

)−1
b. (3)

Both formulations work for any λ > 0 for either under-
constrained or over-constrained ridge regression problems,
regardless of the rank of the design matrix A. It is easy to
see that x∗ can be computed in time

O(ndmin{n, d}+ min{n3, d3}) = O(ndmin{n, d}).

In our work, we will focus on design matrices A ∈ Rn×d
with d � n, which is the most common setting for ridge
regression. For simplicity of exposition, we will assume
that the rank of A is equal to n.1 In the context of ridge
regression, a much more important quantity than the rank
of the design matrix is the effective degrees of freedom:

dλ =

n∑
i=1

σ2
i

σ2
i + λ

≤ n, (4)

where σi are the singular values of A.

1Our results can be slightly improved to depend on the rank ρ
of the matrix A instead of n.
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The recent flurry of activity on Randomized Linear Algebra
(RLA) (Drineas & Mahoney, 2016) and the widespread use
of sketching as a tool for matrix computations (Woodruff,
2014), resulted in many novel results for ridge regression.
In Section 1.2 we discuss relevant prior work.

1.1. Our Contributions

We present a novel iterative algorithm (Algorithm 1) for
sketched ridge regression and two simple sketching-based
structural conditions under which Algorithm 1 guarantees
highly accurate approximations to the optimal solution x∗.
More precisely, Algorithm 1 guarantees that, as long as a
simple structural constraint is satisfied, the resulting approx-
imate solution vector x̂∗ satisfies (after t iterations)

‖x∗ − x̂∗‖2 ≤ εt‖x∗‖2. (5)

Prior to discussing the aforementioned constraint, we note
that error guarantees of the above form are highly desir-
able. Indeed, beyond being a relative error guarantee, the
dependency on ε drops exponentially fast as the number of
iterations increases. It is easy to see that by setting εt = ε′,
O(ln(1/ε′)) iterations would suffice to provide a relative
error guarantee with accuracy parameter ε′. This means that
converging to, say, ten decimal digits of accuracy would
necessitate only a constant number of iterations. See Sec-
tion 1.2 for a comparison of this bound with prior work.

Let V ∈ Rd×n be the matrix of right singular vectors of A;
recall that A has rank n. For eqn. (5) to hold, a sketching
matrix S ∈ Rd×s is to be constructed such that (for an
appropriate choice of the sketching dimension s� d)

‖VTSSTV − In‖2 ≤
ε

2
. (6)

We note that the constraint of eqn. (6) has been the topic
of intense research in the RLA literature; this is precisely
the reason why we use eqn. (6) as the building block in
our analysis. Indeed, assuming that n � d, one can use
the (exact or approximate) column leverage scores (Ma-
honey & Drineas, 2009; Mahoney, 2011) of A to satisfy the
aforementioned constraint, in which case S is a sampling-
and-rescaling matrix. Perhaps more interestingly, a variety
of oblivious sketching matrix constructions for S can be
used to satisfy eqn. (6). We discuss various constructions
for S in Section 2.1.

One deficiency of the structural constraint of eqn. (6) is
that all known constructions for S that satisfy the constraint
need a number of columns s that is proportional to n. As
a result, the running time of any algorithm that computes
the sketch AS is also proportional to n. It would be much
better to design algorithms whose running time depends on
the degrees of freedom dλ, which is upper bounded by n, but
could be significantly smaller depending on the distribution
of the singular values and the choice of λ.

Towards that end, we analyze Algorithm 1 under a second
structural constraint. We define a diagonal matrix Σλ ∈
Rn×n whose i-th diagonal entry is given by

(Σλ)ii =

√
σ2
i

σ2
i + λ

, i = 1, . . . , n. (7)

Notice that ‖Σλ‖2F = dλ. Our second structural condition
is given by

‖ΣλV
TSSTVΣλ −Σ2

λ‖2 ≤
ε

4
√

2
. (8)

Similarly to the constraint of eqn. (6), the constraint of
eqn. (8) can also be satisfied by, for example, sampling with
respect to the ridge leverage scores of Alaoui & Mahoney
(2015); Cohen et al. (2017) or by oblivious sketching matrix
constructions for S. The difference is that, instead of having
the column size s of the matrix S depend on n, it now de-
pends on dλ, which could be considerably smaller. Indeed,
it follows that by sampling-and-rescaling O(dλ ln dλ) pre-
dictor variables from the design matrix A (using either exact
or approximate ridge leverage scores (Alaoui & Mahoney,
2015; Cohen et al., 2017) we can satisfy the constraint of
eqn. (8). Similarly, oblivious sketching matrix constructions
for S can be used to satisfy eqn. (8). We discuss construc-
tions for S in Section 2.1.

However, this improved dependency on dλ instead of n
comes with a mild loss in accuracy. For simplicity, we only
state a result when λ satisfies σ2

k+1 ≤ λ ≤ σ2
k for some

integer k, 1 ≤ k ≤ n.2 In words, λ can be thought of as
“regularizing” the bottom n−k singular values of the design
matrix A, since it dominates them. In this case, we prove
that the approximation x̂∗ returned by Algorithm 1 satisfies

‖x∗ − x̂∗‖2 ≤
εt

2

(
‖x∗‖2 +

1√
2λ

∥∥UT
k,⊥b

∥∥
2

)
. (9)

Here Uk,⊥ ∈ Rn×(n−k) denotes the matrix of the bottom
n − k left singular vectors of the design matrix A. In
words, we achieve an additive-relative error approximation,
where the additive error part depends on the norm of the
“piece” of the response vector b that lies on the regularized
component of the design matrix A. As this piece grows, the
quality of the approximation worsens. The error decreases
exponentially fast with the number of iterations.

Another contribution of our work is Theorem 4, which
proves that the mean-square-error (MSE) of the approxi-
mate solution x̂∗ is a relative error approximation to the
MSE of x∗, under the structural assumptions of eqns. (6)
or (8), even after a single iteration.

2The bound of eqn. (9) can be easily generalized to hold when
c1σ

2
k+1 ≤ λ ≤ c2σ

2
k for some constants c1, c2 > 0. For simplic-

ity of exposition, we assume that both c1 and c2 equal one.
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To the best of our knowledge, our bounds are a first attempt
to provide general structural results that guarantee high-
quality approximations to the optimal solution vector of
ridge regression. Our first structural result can be satisfied
by sampling with respect to the leverage scores or by the
use of oblivious sketching matrices whose size depends on
the rank of the design matrix and guarantees relative error
approximations. Our second structural result presents the
first accuracy analysis for ridge regression when the ridge
leverage scores are used to sample predictor variables. In-
terestingly, the ridge leverage scores have been used in
a number of applications involving matrix approximation,
cost-preserving projections, clustering, etc. (Cohen et al.,
2017), but their performance in the context of ridge regres-
sion has not been analyzed in prior work. Our work here
argues that the second structural condition can be satisfied
by sampling with respect to the ridge leverage scores. The
number of predictor variables to be sampled depends on the
degrees of freedom of the ridge-regression problem rather
than the dimensions of the design matrix, and results in a
relative-additive error guarantee.

1.2. Prior Work

In this section, we discuss our contributions in the con-
text of the large and ever-growing body of prior work on
sketching-based algorithms for regression and ridge regres-
sion. The work more closely related to ours is Chen et al.
(2015), which (in our notation) returns an approximation x̂∗

to x∗ that satisfies (with high probability) a relative error
guarantee of the form

‖x∗ − x̂∗‖2 ≤ ε‖x∗‖2.

The running time of the proposed approach is O(nnz(A) +
ε−2n3 ln(n/ε)). The proposed approach is also based on
sketching A using RLA tools such as the count-min sketch
of Clarkson & Woodruff (2013) and the sub-sampled Ran-
domized Hadamard Transform of Ailon & Chazelle (2009);
Sarlós (2006); Drineas et al. (2011). Compared to our work,
notice that their dependency on ε is exponentially higher:
our approach has a running time that grows with ln(1/ε)
whereas the above bound grows proportionally to 1/ε2. Ad-
ditionally, our analysis can be made to depend on the degrees
of freedom of the ridge-regression problem (see Theorem 2
and Section 2.1). Finally, we complement the bounds on
the MSE for the response vector presented in Theorem 6
of Chen et al. (2015) with a relative-error guarantee on the
MSE of the solution vector (see Theorem 4). We should
also mention that prior to Chen et al. (2015); Lu et al. (2013)
proposed a fast approximation algorithm for the computa-
tion of the kernel matrix using the sub-sampled randomized
Hadamard transformation (SRHT).

Recently, Wang et al. (2017) presented many results on
ridge-regression problems assuming n� d. In this setting,

the main motivation for ridge regression is to deal with the
potential ill-conditioning of the design matrix A. Wang et al.
(2017) presented sketching-based approaches that guaran-
tee relative error approximations to the value of the ob-
jective Z∗, as opposed to the actual solution vector. Our
approach and analysis is quite different and is applicable
where d� n; the results of Wang et al. (2017) do not gen-
eralize to this setting. However, recent work by Avron et al.
(2017a;b) also focused on d� n: for example, Theorem 17
of Avron et al. (2017b) presents structural conditions under
which the value of the objective Z∗ can be estimated up to
relative error accuracy, but no bounds are presented for the
approximate solution vector. This last result seems to ne-
cessitate two structural conditions: the first one is identical
to the condition of eqn. (6), but the second one is on the
spectral norm of an approximate matrix product that is not
needed in our analysis.

Our work was partially motivated by Pilanci & Wainwright
(2016), where an iterative algorithm (the so-called Iterative
Hessian Sketch) was presented for standard (i.e., λ = 0),
over-constrained (n� d) regression problems. Indeed, the
authors provide strong motivation that clarifies the need for
algorithms for regression problems whose running times de-
pends on ln(1/ε) in order to achieve ε-relative-error approx-
imations. We emphasize that the transition from standard
to regularized regression problems as well as from the over-
to the under-constrained case is far from trivial. Indeed,
algorithms and structural results for over-constrained regres-
sion problems date back to 2006 (Drineas et al., 2006b),
whereas the analogous results for ridge-regression problems
appeared after 2015. Similarly, the only result that we know
for under-constrained regression problems (λ = 0, n� d)
appeared in Section 6.2 of Drineas et al. (2012).

Another line of research that motivated our approach was
the recent introduction of ridge leverage scores (Alaoui &
Mahoney, 2015; Cohen et al., 2017). Indeed, our Theorem 2
presents a structural result that can be satisfied (with high
probability) by sampling columns of A with probabilities
proportional to (exact or approximate) ridge leverage scores
(see Section 2.1). The number of sampled predictor vari-
ables (columns of A) is proportional to O(dλ ln dλ). To
the best of our knowledge, this is the first result showing
a strong accuracy guarantee for ridge regression problems
when the ridge leverage scores are used to sample predic-
tor variables, in one or more iterations. We also note a
recent application of ridge leverage scores (Calandriello
et al., 2017a;b) where the authors presented a row sampling
algorithm in order to construct a kernel sketch which is
eventually used in a second-order gradient-based method
for online kernel convex optimization.

In yet another relevant line of work, much research recently
focused on the computation and inversion of the kernel ma-
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trix AAT (or ATA). A number of recent papers have con-
sidered the problem of fast kernel approximation for large
datasets (Zhang et al., 2015; Avron et al., 2017b; Musco &
Musco, 2017; Calandriello et al., 2017c; Wang et al., 2017).
However, direct comparison of the bounds presented in the
aforementioned papers and our work is not straightforward,
since our objective (accuracy of the approximate solution
vector) is different than the objective of the above papers.
In this context, there are also several recent works (Cutajar
et al., 2016; Rudi et al., 2017; Ma & Belkin, 2017) that con-
sidered preconditioned gradient-based methods to develop
fast and scalable approaches for approximating kernels.

Finally, Gonen et al. (2016) presented a sketching-based pre-
conditioned SVRG approach for ridge regression problems
that converges to the optimal solution in a number of itera-
tions that depends on ln(1/ε), returning an ε-relative-error
approximation to the objective value Z∗. However, no such
bounds were presented for the actual solution vector.

1.3. Notation

We use a,b, . . . to denote vectors and A,B, . . . to denote
matrices. For a matrix A, A∗i (Ai∗) denotes the i-th column
(row) of A as a column (row) vector. For vector a, ‖a‖2
denotes its Euclidean norm; for a matrix A, ‖A‖2 denotes
its spectral norm and ‖A‖F denotes its Frobenius norm. We
refer the reader to Golub & Van Loan (1996) for properties
of norms that will be quite useful in our work. For a matrix
A ∈ Rn×d with d > n of rank n, its (thin) Singular Value
Decomposition (SVD) is equal to the product UΣVT, with
U ∈ Rn×n (the matrix of the left singular vectors), V ∈
Rd×n (the matrix of the right singular vectors), and Σ ∈
Rn×n a diagonal matrix whose diagonal entries are the
singular values of A. Computation of the SVD takes, in this
setting, O(n2d) time. We will use the notation Uk ∈ Rn×k
to denote the matrix of the top k left singular vectors and
Uk,⊥ ∈ Rn×(n−k) to denote the matrix of the bottom n−k
left singular vectors. We will often use σi to denote the
singular values of a matrix implied by context. Additional
notation will be introduced as needed.

2. Iterative, Sketching-based Ridge Regression
Algorithm 1 iteratively computes a sequence of vectors
x̃(j) ∈ Rd for j = 1, . . . , t and returns the estimator x̂∗ =∑t
j=1 x̃(j) to the true solution vector x∗ of eqn. (3).

In words, Algorithm 1 is quite simple: roughly, it solves
ridge regression problems with the residual vector b(j) (i.e.,
the part of the vector b(j−1) that was not captured in the pre-
vious iteration) as the new response vector for i = 1, . . . , t.
Our main quality-of-approximation results (Theorems 1
and 2) argue that returning the sum of those intermedi-
ate solutions results in a highly accurate approximation

Algorithm 1 Iterative, sketching-based ridge regression

Input: A ∈ Rn×d, b ∈ Rn, λ > 0; number of iterations
t > 0; sketching matrix S ∈ Rd×s;
Initialize: b(0) ← b, x̃(0) ← 0d, y(0) ← 0n;
for j = 1 to t do

b(j) ← b(j−1) − λy(j−1) −Ax̃(j−1);
y(j) ← (ASSTAT + λIn)−1b(j);
x̃(j) ← ATy(j);

end for
Output: Approximate solution vector x̂∗ =

∑t
j=1 x̃(j);

to the optimal solution vector x∗. Theorem 1 presents a
quality-of-approximation result under the assumption that
the sketching matrix S satisfies the constraint of eqn. (6).

Theorem 1. Let A ∈ Rn×d, b ∈ Rn, and λ > 0 be the
inputs of the ridge regression problem. Assume that for
some constant 0 < ε < 1, the sketching matrix S ∈ Rd×s
satisfies the constraint of eqn. (6). Then, the estimator x̂∗

returned by Algorithm 1 satisfies

‖x̂∗ − x∗‖2 ≤ ε
t ‖x∗‖2 .

Here x∗ is the true solution of the ridge regression problem.

Similarly, Theorem 2 presents a quality-of-approximation
result under the assumption that the sketching matrix S
satisfies the constraint of eqn. (8).

Theorem 2. Let A ∈ Rn×d, b ∈ Rn, and λ > 0 be the
inputs of the ridge regression problem. Assume that for
some constant 0 < ε < 1, the sketching matrix S ∈ Rd×s
satisfies the constraint of eqn. (8). Then, the estimator x̂∗

returned by Algorithm 1 satisfies

‖x̂∗ − x∗‖2 ≤
εt

2

(
‖x∗‖2 +

1√
2λ

∥∥UT
k,⊥b

∥∥
2

)
.

Here, k ∈ {1, . . . , n} is an integer with σ2
k+1 ≤ λ ≤ σ2

k

and x∗ is the true solution of the ridge regression problem.

As we have already discussed, the bound of Theorem 2 is
weaker. However, the structural condition of eqn. (8) on
which the above theorem depends, can be satisfied with a
sketching matrix S whose dimensionality depends only on
the degrees of freedom dλ of the underlying ridge regression
problem, as opposed to the dimensions of the design matrix.
This could result in significant savings (see Section 2.1).

Our algorithm can also be viewed as a preconditioned
Richardson iteration (see e.g., Chapter 2 of Quarteroni &
Valli (1994)) for solving the linear system (AAT+λIn)y =
b with pre-conditioner P−1 = (ASSTAT + λIn)−1 and
step-size equal to one. More precisely, Algorithm 1 can be
formulated as

ȳ(j) = ȳ(j−1) + P−1
(
b− (AAT + λIn)ȳ(j−1)

)
,
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where ȳ(j) =
∑j
k=1 y(k) (see Appendix D for the deriva-

tion). Further, subject to the structural conditions of eqns. (6)
and (8), it can be shown that ȳ(t) converges to the true so-
lution y∗ = (AAT + λIn)−1b in O(ln(1/ε)) steps (see
Appendix D) and, consequently, the output of Algorithm 1
(which can be expressed as x̂∗ = ATȳ(t)) also converges
to x∗ = AT(AAT + λIn)−1b, the true solution of the
ridge regression problem. Our analysis offers several ad-
vantages over preconditioned Richardson iteration. In our
case, P−1(AAT + λIn) is not symmetric positive defi-
nite which, according to existing literature, implies that the
convergence of Richardson’s method is monotone in terms
of the energy-norm induced by AAT + λIn, but not the
Euclidean norm (see eqn. (2.4.17) in Quarteroni & Valli
(1994)). Additionally, standard convergence analysis of the
Richardson iteration is with respect to ȳ(t), whereas our
vector of interest is x̂∗ (which is ȳ(t) premultiplied by AT).
The equality ‖ȳ(t) − y∗‖2 = ‖x̂∗ − x∗‖2 holds if A has
orthonormal rows, which is not true in general.

We now discuss the running time of Algorithm 1. First, we
need to compute Ax̃(j−1) which takes time O(nnz(A)).
Next, computing the sketch AS ∈ Rn×s takes T (A,S)
time and depends on the particular construction of S (see
Section 2.1). Then, in order to invert the matrix Θ =
ASSTAT + λIn it suffices to compute the SVD of the
matrix AS. Notice that given the singular values of AS
we can compute the singular values of Θ; also note that
the left and right singular vectors of Θ are the same as the
left singular vectors of AS. Interestingly, we do not need
to compute Θ−1: we can store it implicitly by storing its
left (and right) singular vectors UΘ and its singular values
ΣΘ. Then, we can compute all necessary matrix-vector
products using this implicit representation of Θ−1. Thus,
inverting Θ takes O(sn2) time. Updating the vectors b(j),
y(j), and x̃(j) is dominated by the aforementioned running
times, as all updates amount to just matrix-vector products.
Thus, summing over all t iterations, the running time of
Algorithm 1 is given by

O(t · nnz(A)) +O(sn2) + T (A,S). (10)

We conclude this section by noting that our results remain
valid when different sampling matrices Sj are used in each
iteration j = 1, . . . , t, as long as they satisfy the constraints
of eqns. (6) or (8). As a matter of fact, the sketching matrices
Sj do not even need to have the same number of columns.
See Section 5 for an interesting open problem in this setting.

2.1. Satisfying the Conditions of Eqns. (6) or (8)

The conditions of eqns. (6) and (8) essentially boil down
to randomized, approximate matrix multiplication (Drineas
& Kannan, 2001; Drineas et al., 2006a), a task that has
received much attention in the RLA community. We start by
discussing sketching-based approaches: a particularly useful

result for our purposes appeared in Cohen et al. (2016).
Using our notation, Cohen et al. (2016) proved that for
X ∈ Rd×n and for a (suitably constructed) sketching matrix
S ∈ Rd×s, with probability at least 1− δ,

∥∥XTSSTX−XTX
∥∥

2
≤ ε

(
‖X‖22 +

‖X‖2F
r

)
, (11)

for any arbitrary r ≥ 1. The above bound holds for a very
broad family of constructions for the sketching matrix S
(see Cohen et al. (2016) for details). In particular, Cohen
et al. (2016) demonstrated a construction for S with s =
O(r/ε2) columns such that, for any n × d matrix A, the
product AS can be computed in timeO(nnz(A))+Õ((r3+
r2n)/εγ) for some constant γ. Thus, starting with eqn. (6)
and using this particular construction for S, let X = V
and note that ‖V‖2F = n and ‖V‖2 = 1. Setting r = n,
eqn. (11) implies that∥∥VTSSTV − In

∥∥
2
≤ 2 ε.

In this case, the running time of the sketch computation is
equal to T (A,S) = O(nnz(A)) + Õ(n3/εγ). The running
time of the overall algorithm follows from eqn. (10) and our
choices for s and r:

O(t · nnz(A)) + Õ(n3/εmax{2,γ}).

The failure probability (hidden in the polylogarithmic terms)
can be easily controlled using a union bound. Finally, a sim-
ple change of variables (using ε/4 instead of ε) suffices to
satisfy the structural condition of eqn. (6) without changing
the above running time.

Similarly, starting with eqn. (8), let X = VΣλ and note
that ‖VΣλ‖2F = dλ and ‖VΣλ‖2 ≤ 1. Setting r = dλ,
eqn. (11) implies that

∥∥ΣλV
TSSTVΣλ −Σ2

λ

∥∥
2
≤ 2ε.

In this case, the running time of the sketch computation
is equal to T (A,S) = O(nnz(A)) + Õ(d2

λn/ε
γ). The

running time of the overall algorithm follows from eqn. (10)
and our choices for s and r:

O(t · nnz(A)) + Õ(dλn
2/εmax{2,γ}).

Again, a change of variables suffices to satisfy the structural
condition of eqn. (8) without changing the running time.

We now discuss how to satisfy the conditions of eqns. (6)
or (8) by sampling, i.e., by selecting a small number of
predictor variables. Towards that end, consider Algorithm 2
for the construction of the sampling-and-rescaling matrix S.

The following theorem (see Appendix G for its proof) is of
independent interest and is a strengthening of Theorem 4.2
of Holodnak & Ipsen (2015), since the sampling complexity
s is improved to depend only on ‖X‖2F instead of the stable
rank of X for the special case where ‖X‖2 ≤ 1.3

3We do note that Theorem 3 is implicit in Cohen et al. (2017).
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Algorithm 2 Construct sampling-and-rescaling matrix

Input: Probabilities pi, i = 1, . . . , d; integer s� d;
S← 0d×s;
for j = 1 to s do

Pick ij ∈ {1, . . . , d} with P(ij = i) = pi;
Sijj ← (s pij )

− 1
2 ;

end for
Output: Sampling-and-rescaling matrix S;

Theorem 3. Let X ∈ Rd×n with ‖X‖2 ≤ 1 and let S

be constructed by Algorithm 2 with pi = ‖Xi∗‖22 / ‖X‖
2
F

for i = 1, . . . , d. Let δ be a failure probability and let
ε ∈ (0, 1] be an accuracy parameter. If the number of
sampled columns s satisfies

s ≥
8 ‖X‖2F

3 ε2
ln

(
4 (1 + ‖X‖2F )

δ

)
,

then, with probability at least 1− δ,∥∥XTSSTX−XTX
∥∥

2
≤ ε.

Using Theorem 3 with X = V we can satisfy the condition
of eqn. (6) by simply using the sampling probabilities pi =
‖Vi∗‖22 /n (recall that ‖V‖2F = n and ‖V‖2 = 1), which
are the column leverage scores of the design matrix A.
Setting s = O(ε−2n lnn) suffices to satisfy the condition
of eqn. (6). We note that approximate leverage scores also
suffice and that their computation can be done efficiently
without computing V (Drineas et al., 2012).

Finally, using Theorem 3 with X = VΣλ we can satisfy
the condition of eqn. (8) using the sampling probabilities
pi = ‖(VΣλ)i∗‖22 /dλ (recall that ‖VΣλ‖2F = dλ and
‖VΣλ‖2 ≤ 1). It is easy to see that these probabilities
are proportional to the column ridge leverage scores of the
design matrix A (see Lemma 21 in Appendix F). Setting s =
O(ε−2dλ ln dλ) suffices to satisfy the condition of eqn. (8).
We note that approximate ridge leverage scores also suffice
and that their computation can be done efficiently without
computing V (Cohen et al., 2017).

2.2. Bounding the MSE of x̂∗

Consider the data-generation model

b = Ax0 + ε, (12)

where b ∈ Rn is the response vector, A ∈ Rn×d is the
design matrix, x0 ∈ Rn is the “true” parameter vector, and
ε ∈ Rn is the noise satisfying E(ε) = 0 and E(εεT) =
σ2In, σ > 0. Then, the ridge regression estimator x∗ of
the parameter vector x0 can be expressed as in eqn. (3),
with mean squared error (MSE) given by (see Lemma 16 in
Appendix E for the derivation)

MSE(x∗) = σ2
∥∥(AAT + λIn)−1A

∥∥2

F

+
∥∥(AT(AAT + λIn)−1A− Id

)
x0

∥∥2

2
. (13)

Similarly, we can prove that the MSE of x̂∗ for the special
case where t = 1 in Algorithm 1 is equal to

MSE(x̂∗) = σ2
∥∥(ASSTAT + λIn)−1A

∥∥2

F

+
∥∥(AT(ASSTAT + λIn)−1A− Id

)
x0

∥∥2

2
. (14)

We present bounds on the MSE of x̂∗ for the special case
where Algorithm 1 is run for a single iteration (t = 1) under
the assumptions of eqns. (6) or (8). Bounds for t > 1 (more
than one iteration) are delegated to future work.

Theorem 4. Let A ∈ Rn×d be the design matrix and let
x̂∗ be the output of Algorithm 1 for t = 1. If the condition
of eqn. (6) is satisfied for some constant 0 < ε < 1, then,

MSE(x̂∗) ≤ (1 + 3εγ2
1) MSE(x∗),

where γ1 = 1 +
σ2
1

λ . If the condition of eqn. (8) is satisfied
for some constant 0 < ε < 1, then,

MSE(x̂∗) ≤ (1 + 3εγ2
2) MSE(x∗),

where γ2 = max
{

1 + σ2
1/λ,

√
1 + λ/σ2

n

}
.

3. Sketching the Proof of Theorem 2
Due to space considerations, essentially all our proofs have
been deferred to the Appendix. However, to give a flavor of
the mathematical derivations underlying our contributions,
we present an outline of the proof of Theorem 2, starting
with the special case where Algorithm 1 is run for a single
iteration (t = 1).

Using the quantities defined in Algorithm 1, let

x∗(j) = AT(AAT + λIn)−1b(j) (15)

for j = 1, . . . , t. Notice that x∗ = x∗(1). Our next result
expresses the intermediate vectors x̃(j) of Algorithm 1 in
terms of the vectors x∗(j). We remind the reader that U ∈
Rn×n and Σ ∈ Rn×n are, respectively, the matrices of the
left singular vectors and singular values of A. We will make
extensive use of the matrix Σλ defined in eqn. (7).

Lemma 5. Let A ∈ Rn×d, b ∈ Rn, and λ > 0 be the
inputs of the ridge regression problem. Let S ∈ Rd×s be the
sketching matrix and define

E = ΣλV
TSSTVΣλ −Σ2

λ.

If ‖E‖2 < 1, then for all j = 1, . . . , t,

x̃(j) = x∗(j) + VΣλRΣλΣ
−1UTb(j), (16)

where R =
∑∞
`=1(−1)`E`.
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Figure 1. Experiment results on real data (errors are on log-scale).

Now, consider the case when t = 1. Algorithm 1 returns
x̂∗ = x̃(1); also recall that x∗ = x∗(1) and b = b(1).
Therefore, applying Lemma 5 yields

x̂∗ = x∗ + VΣλRΣλΣ
−1UTb. (17)

Further, for any j = 1, . . . , t,

‖R‖2 =
∥∥ ∞∑
`=1

(−1)`E`
∥∥

2
≤
∞∑
`=1

‖E`‖2 ≤
∞∑
`=1

‖E‖`2

≤
∞∑
`=1

(
ε

4
√

2

)`
=

ε
4
√

2

1− ε
4
√

2

≤ ε

2
√

2
. (18)

where we used the triangle inequality, sub-multiplicativity
of the spectral norm, and the fact that ε

4
√

2
≤ 1

2 . Now, using
eqn. (17), we have

‖x̂∗ − x∗‖2 = ‖VΣλRΣλΣ
−1UTb‖2

≤ ‖Σλ‖2‖R‖2‖ΣλΣ
−1UTb‖2

≤ ε

2
√

2
‖ΣλΣ

−1UTb‖2

=
ε

2
√

2
‖Σ−1

λ Σ2
λΣ
−1UTb‖2. (19)

where the first inequality follows from the unitary invariance
and sub-multiplicativity of the spectral norm, and the second
inequality is due to eqn. (18) and the fact that ‖Σλ‖2 ≤ 1.

Now, let (Σ−1
λ )k denote the diagonal matrix whose first k

diagonal entries are equal to the first k diagonal entries of
Σ−1
λ and the bottom n− k diagonal entries are set to zero.

Let (Σ−1
λ )k,⊥ = Σ−1

λ − (Σ−1
λ )k. Then, we have

‖Σ−1
λ Σ2

λΣ
−1UTb‖2 ≤ ‖(Σ−1

λ )k Σ2
λΣ
−1UTb‖2︸ ︷︷ ︸

∆1

+ ‖(Σ−1
λ )k,⊥ Σ2

λΣ
−1UTb‖2︸ ︷︷ ︸

∆2

. (20)

where eqn. (20) follows from the triangle inequality and the
fact that Σ−1

λ = (Σ−1
λ )k + (Σ−1

λ )k,⊥.

Next, we bound ∆1 and ∆2 separately using eqns. (60)
and (62) in Appendix C:

∆1 ≤
√

2 ‖x∗‖2 , ∆2 ≤
1√
λ

∥∥UT
k,⊥b

∥∥
2
. (21)

Finally, combining eqns. (19), (20) and (21), we obtain

‖x̂∗ − x∗‖2 ≤
ε

2
√

2

(√
2 ‖x∗‖2 +

1√
λ
‖UT

k,⊥b‖2
)

=
ε

2

(
‖x∗‖2 +

1√
2λ
‖UT

k,⊥b‖2
)
, (22)

which concludes the proof for the t = 1 case.

Interestingly, the eqn. (22) holds more generally and can
be used to bound the distance between the intermediate
approximate solution vectors x̃(j) and the intermediate true
solution vectors x∗(j)of eqn. (15). Indeed, for j = 1, . . . , t,
we have

‖x̃(j) − x∗(j)‖2 ≤
ε

2

(
‖x∗(j)‖2 +

1√
2λ
‖UT

k,⊥b(j)‖2
)
.

(23)

The next lemma (see Appendix C for its proof) presents a
structural result for the optimal solution x∗.

Lemma 6. Let x̃(j), j = 1, . . . , t be the sequence of vectors
introduced in Algorithm 1 and let x∗(t) ∈ Rd be defined as
in eqn. (15). Then,

x∗ = x∗(t) +
t−1∑
j=1

x̃(j), (24)

where x∗ is the true solution of the ridge regression problem.

Repeated application of eqns. (23) and (24) yields

‖x̂∗ − x∗‖2 =
∥∥ t∑
j=1

x̃(j) − x∗
∥∥

2

=
∥∥x̃(t) −

(
x∗ −

t−1∑
j=1

x̃(j)
)∥∥

2
=
∥∥x̃(t) − x∗(t)

∥∥
2

≤ ε

2

(
‖x∗(t)‖2 +

1√
2λ
‖UT

k,⊥b(t)‖2
)
. (25)

The next bound (see Appendix C for its proof) provides a
critical inequality that can be used recursively in order to
establish Theorem 2.
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Lemma 7. Let b(j), j = 1, . . . , t, be the intermediate re-
sponse vectors of Algorithm 1 and let x∗(j) be the vector
defined in eqn. (15) for j = 1, . . . , t − 1. If the structural
condition of eqn. (8) is satisfied, then

‖x∗(j+1)‖2 +
1√
2λ
‖UT

k,⊥b(j+1)‖2

≤ ε
(
‖x∗(j)‖2 +

1√
2λ
‖UT

k,⊥b(j)‖2
)
. (26)

Applying eqn. (26) iteratively, we obtain

‖x∗(t)‖2 +
1√
2λ
‖UT

k,⊥b(t)‖2

≤ ε
(
‖x∗(t−1)‖2 +

1√
2λ
‖UT

k,⊥b(t−1)‖2
)

≤ · · · ≤ εt−1

(
‖x∗‖2 +

1√
2λ
‖UT

k,⊥b‖2
)
. (27)

Finally, combining eqns. (25) and (27), we conclude that

‖x̂∗ − x∗‖2 ≤
εt

2

(
‖x∗‖2 +

1√
2λ
‖UT

k,⊥b‖2
)
. (28)

4. Empirical Evaluation
We perform experiments on the ARCENE dataset (Guyon
et al., 2005) from the UCI repository (Lichman, 2013). The
design matrix contains 200 samples with 10, 000 real-valued
features; we normalize the entries to be within the interval
[0, 1]. The response vector consists of ±1 labels. We also
perform experiments on synthetic data generated as in Chen
et al. (2015); see Appendix H for details.

In our experiments, we compare three different choices of
sampling probabilities: selecting columns (i) uniformly at
random, (ii) proportional to their leverage scores, or (iii) pro-
portional to their ridge leverage scores. For each sampling
method, we run Algorithm 1 for 50 iterations with a variety
of sketch sizes, and measure (i) the relative error of the
solution vector ‖x̂

∗−x∗‖2
‖x∗‖2 , where x∗ is the true optimal solu-

tion and (ii) the objective sub-optimality f(x̂∗)
f(x∗) − 1, where

f(x) = ‖Ax− b‖22 + λ‖x‖22 is the objective function for
the ridge-regression problem.

The results are shown in Figure 1. Figures 1a and 1b plot
the relative error of the solution vector and the objective sub-
optimality (for a fixed sketch size) as the iterative algorithm
progresses. Figure 1c plots the relative error of the solution
with respect to varying sketch sizes (the plots for objective
sub-optimality are analogous and thus omitted). We observe
that both the solution error and the objective sub-optimality
decay exponentially as our iterative algorithm progresses.4

4For these experiments, we have set the regularization param-
eter λ = 10 in the ridge regression objective as well as when
computing the ridge leverage score sampling probabilities.

Next, we show that the approximation quality depends di-
rectly on the degrees of freedom dλ of the ridge-regression
problem (eqn. (4)), rather than the dimensions of the design
matrix. To this end, we keep the design matrix unchanged
(n remains fixed), and vary the regularization parameter
λ ∈ {1, 2, 5, 10, 20, 50}. Figure 1d plots the relative so-
lution error against the degrees of freedom dλ (for a fixed
sketch size and number of iterations); we observe that the rel-
ative error decreases roughly exponentially as dλ decreases
(as λ increases). Thus, the sketch size or number of itera-
tions necessary to achieve a certain precision in the solution
also decreases with dλ, even though n remains fixed.

5. Conclusion and Open Problems
We have presented simple structural results that guarantee
high-quality approximations to the optimal solution vector
of ridge regression. In particular, our second structural re-
sult presents the first accuracy analysis for ridge regression
when the ridge leverage scores are used to sample predic-
tor variables. The sample size depends on the degrees of
freedom of the ridge regression problem and not the dimen-
sions of the design matrix. An obvious open problem is
to either improve the sample size or present lower bounds
showing that our bounds are tight. Additionally, the results
of Theorem 4 should be generalized to cover the t > 1 case.

Finally, an interesting open problem would be to investigate
whether the use of different sampling matrices in each it-
eration of Algorithm 1 (i.e., introducing new “randomness”
in each iteration) could lead to provably improved bounds
for our main theorems. We conjecture that this is indeed
the case, and we present further experiment results in Ap-
pendix H which support our conjecture. In particular, the
results show that using a newly sampled sketching matrix
at every iteration enables faster convergence as the itera-
tions progress, and also reduces the minimum sketch size
necessary for Algorithm 1 to converge.
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