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A. Omitted Proofs from Section 3
Proof of Lemma 3.2. Letmk(x) =

∑k
i=1 ai

〈
∇̃f(xi),u− xi

〉
+Dψ(u,x0) denote the function under the minimum in the

lower bound. By Proposition 3.1, vk = ∇ψ∗(zk) = arg minx∈X mk(x). Observe that mk(x) = ak

〈
∇̃f(xk),x− xk

〉
+

mk−1(x). By the definition of Bregman divergence:

mk−1(vk) = mk−1(vk−1) + 〈∇mk−1(vk−1),vk − vk−1〉+Dmk−1
(vk,vk−1).

As Bregman divergence is blind to linear and zero-order terms, we have that Dmk−1
(vk,vk−1) = Dψ(vk,vk−1). By

Proposition 3.1, vk−1 = arg minx∈X mk−1(x), and hence 〈∇mk−1(vk−1),vk − vk−1〉 ≥ 0. Therefore,

mk(vk) ≥mk−1(vk−1) + ak

〈
∇̃f(xk),vk − xk

〉
+Dψ(vk,vk−1).

Using the definition of ∇̃f(xk), the change in the lower bound is:

AkLk −Ak−1Lk−1 ≥ akf(xk) + ak 〈∇f(xk),vk − xk〉+Dψ(vk,vk−1)− ak 〈ηk,x∗ − vk〉 . (A.1)

For the change in the upper bound, we have:

AkUk −Ak−1Uk−1 =Akf(yk)−Ak−1f(yk−1)

=akf(xk) +Ak(f(yk)− f(xk)) +Ak−1(f(xk)− f(yk−1)).
(A.2)

By convexity of f(·):
f(xk)− f(yk−1) ≤〈∇f(xk),xk − yk−1〉 . (A.3)

Combining (A.1)-(A.3) and (AGD+):

AkGk −Ak−1Gk−1 ≤ ak 〈ηk,x∗ − vk〉 −Dψ(vk,vk−1) +Ak(f(yk)− f(xk))−Ak 〈∇f(xk),yk − xk〉 ,

as claimed.

B. AGD+ for Smooth and Strongly Convex Minimization
Here we show that AGD+ can be extended to the setting of smooth and strongly convex minimization. As is customary (Nes-
terov, 2013), in this setting we assume that ‖ · ‖ = ‖ · ‖2 so that f(·) is L-smooth and µ-strongly convex w.r.t. the `2 norm,
for L <∞ and µ > 0. To distinguish from the non-strongly-convex case, we refer to AGD+ for smooth and strongly convex
minimization as µAGD+.

To analyze AGD+ in this setting, we need to use a stronger lower bound Lk, which is constructed by the same arguments as
before, but now using strong convexity instead of regular convexity. Such a construction gives:

Lk =

∑k
i=1 aif(xi) + minu∈X m(u)−

∑k
i=1 ai 〈ηi,x∗ − xi〉 −Dψ(x∗,x0)

Ak
, (B.1)

where

mk(u) =

∑k
i=1 ai

(
〈∇f(xi),u− xi〉+ µ

2 ‖u− xi‖2
)

+Dψ(u,x0)

Ak
.

While it suffices to have ψ be an arbitrary function that is strongly convex w.r.t. the ‖ · ‖2, for simplicity, we take
ψ(x) = µ0

2 ‖x‖
2, where µ0 will be specified later.

For θk = ak
Ak

, the algorithm can now be stated as follows:

vk = argmin
u∈X

mk(u),

xk =
1

1 + θk
yk−1 +

θk
1 + θk

vk−1,

yk = (1− θk)yk−1 + θkvk,

(µAGD+)

where, x1 = x0 = y0 = v0 is an arbitrary initial point from X .
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As before, the main convergence argument is to show that AkGk ≤ Ak−1Gk−1 and combine it with the bound on the initial
gap G1. We start with bounding the initial gap, as follows.

Proposition B.1. If ψ(x) = µ0

2 ‖x‖
2, where µ0 = a1(L − µ), then A1G1 ≤ A1(L−µ)

2 ‖x∗ − x0‖2 + Eη1 , where Eη1 =
a1 〈η1,x∗ − v1〉.

Proof. As x1 = x0, the initial lower bound is:

A1L1 =a1f(x1) + a1 〈∇f(x1),v1 − x1〉+
(a1µ

2
+
µ0

2

)
‖v1 − x1‖2 −

µ0

2
‖x∗ − x0‖2 − a1 〈η1,x∗ − x1〉 .

As a1 = A1, it follows that y1 = v1, and hence:

A1U1 =a1f(v1)

≤a1f(x1) + a1 〈∇f(x1),v1 − x1〉+
a1L

2
‖v1 − x1‖2

=a1f(x1) + a1

〈
∇̃f(x1),v1 − x1

〉
+
a1L

2
‖v1 − x1‖2 − a1 〈η1,v1 − x1〉 ,

where the inequality is by the smoothness of f(·). Combining the bounds on the initial upper and lower bounds, it follows:

A1G1 ≤
µ0

2
‖x∗ − x0‖2 +

a1L− a1µ− µ0

2
‖v1 − x1‖2 + a1 〈η1,x∗ − v1〉

≤ a1(L− µ)

2
‖x∗ − x0‖2 + Eη1 ,

as, by the initial assumption, µ0 = a1(µ− L) and Eη1 = a1 〈η1,x∗ − v1〉.

To bound the change in the lower bound, it is useful to first bound mk(vk)−mk−1(vk−1), as in the following technical
proposition.

Proposition B.2. Let ψ(x) = a1(L−µ)
2 ‖x‖2. Then:

mk(vk) ≥mk−1(vk−1) + ak

〈
∇̃f(xk),vk − xk

〉
+
Ak−1µ

2
‖vk − vk−1‖2 +

akµ

2
‖vk − xk‖2.

Proof. Observe that, by the definition of mk(·), mk(vk) = mk−1(vk) + ak

〈
∇̃f(xk),vk − xk

〉
+ ak

µ
2 ‖vk − xk‖.

The rest of the proof bounds mk−1(vk) − mk−1(vk−1). Observe that, as vk−1 = argminu∈X mk−1(u), it must be
〈∇mk−1(vk−1),u− vk−1〉 ≥ 0, ∀u ∈ X . As Bregman divergence is blind to linear terms:

mk−1(vk)−mk−1(vk−1) = 〈∇mk−1(vk−1),u− vk−1〉+Dmk−1
(vk,vk−1)

≥ Dmk−1
(vk,vk−1)

=
Ak−1µ

2
‖vk − vk−1‖2 +

a1(L− µ)

2
‖vk − vk−1‖2.

The rest of the proof is by a1(L−µ)
2 ‖vk − vk−1‖2 ≥ 0.

We are now ready to move to the main part of the convergence argument, namely, to show that AkGk ≤ Ak−1Gk−1 for a
certain choice of ak.

Lemma B.3. Let ψ(x) = a1(L−µ)
2 ‖x‖2 and 0 < ak ≤ Ak

√
µ
L . Then: AkGk ≤ Ak−1Gk−1 + Eηk , where Eηk =

ak 〈ηk,x∗ − vk〉.

Proof. As Uk = f(yk), we have that:

AkUk −Ak−1Uk−1 ≤ Akf(yk)−Ak−1f(yk−1). (B.2)
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Using Proposition B.2, the change in the lower bound is:

AkLk −Ak−1Lk−1 ≥akf(xk) + ak

〈
∇̃f(xk),vk − xk

〉
+
Ak−1µ

2
‖vk − vk−1‖2 +

akµ

2
‖vk − xk‖2

+ ak 〈ηk,x∗ − xk〉 .
(B.3)

Denote wk = Ak−1

Ak
vk−1 + ak

Ak
xk. By Jensen’s Inequality:

Ak−1µ

2
‖vk − vk−1‖2 +

akµ

2
‖vk − xk‖2 ≥

µAk
2
‖vk −wk‖2. (B.4)

Write ak
〈
∇̃f(xk),vk − xk

〉
as:

ak

〈
∇̃f(xk),vk − xk

〉
= ak 〈∇f(xk),vk −wk〉+ ak

〈
∇f(xk),

Ak−1

Ak
(vk−1 − xk)

〉
+ ak 〈ηk,vk − xk〉 . (B.5)

As ak
Ak
≤
√

µ
L and by smoothness of f(·) :

ak 〈∇f(xk),vk −wk〉+
µAk

2
‖vk −wk‖2 ≥ Ak

(〈
∇f(xk),

(
xk +

ak
Ak

(vk −wk)
)
− xk

〉
+
L

2
‖ ak
Ak

(vk −wk)‖2
)

≥ Ak
(
f

(
xk +

ak
Ak

(vk −wk)

)
− f(xk)

)
. (B.6)

Combining (B.3)-(B.6), we have the following bound for the change in the lower bound:

AkLk −Ak−1Lk−1 ≥Akf
(
xk +

ak
Ak

(vk −wk)

)
−Ak−1f(xk) + ak

〈
∇f(xk),

Ak−1

Ak
(vk−1 − xk)

〉
+ ak 〈ηk,x∗ − vk〉 .

Using the definition of wk, θk = ak
Ak
, and (µAGD+), it is not hard to show that yk = xk + ak

Ak
(vk −wk) and ak

Ak
(vk−1 −

xk) = xk − yk−1, which, using the convexity of f(·), gives:

AkLk −Ak−1Lk−1 ≥ Akf(yk)−Ak−1f(yk−1)− ak 〈ηk,x∗ − vk〉 . (B.7)

Combining (B.7) and (B.2), the proof follows.

Theorem B.4. Let ψ(x) = L−µ
2 ‖x‖

2, a1 = 1, ai
Ai

= γi ≤
√

µ
L for i ≥ 2, and let yk,xk evolve according to (µAGD+).

Then, ∀k ≥ 1:

f(yk)− f(x∗) =
A1

Ak
· (L− µ)‖x∗ − x0‖2

2
+

∑k
i=1 ai 〈ηi,x∗ − vi〉

Ak

≤
(
Πk
i=1 (1− γi)

) (L− µ)‖x∗ − x0‖2

2
+

∑k
i=1 ai 〈ηi,x∗ − vi〉

Ak
.

Proof. Applying Lemma B.3, it follows that Gk ≤ A1G1

Ak
+

∑k
i=1 E

η
i

Ak
= A1

A2
· A2

A3
· · · · · Ak−1

Ak
G1 +

∑k
i=1 E

η
i

Ak
. As Ai−1

Ai
=

1− ai
Ai

= 1− γi, we have Gk ≤
(
Πk
i=1 (1− γi)

)
G1 +

∑k
i=1 E

η
i

Ak
. The rest of the proof is by applying Proposition B.1 and

using that f(yk)− f(x∗) ≤ Gk.

Using the same arguments for bounding the noise term as in the case of smooth minimization (Section 3), we have the
following corollary.
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Corollary B.5 (of Theorem B.4). If ηi = 0 (the noiseless gradient case), setting γi =
√

µ
L , we recover the standard

convergence result for accelerated smooth and strongly convex minimization:

f(yk)− f(x∗) ≤
(

1−
√
µ

L

)k
L− µ

2
‖x∗ − x0‖2.

If E[‖ηi‖] ≤Mi and maxu∈X ‖x∗ − u‖ ≤ Rx∗ , then setting γi =
√

µ
L :

E[f(yk)− f(x∗)] ≤
(

1−
√
µ

L

)k
L− µ

2
‖x∗ − x0‖2 +

Rx∗

∑k
i=1 aiMi

Ak
.

If ηi’s are zero-mean and independent and E[‖ηi‖2] ≤ σ2, then:

E[f(yk)− f(x∗)] ≤
(
Πk
i=1 (1− γi)

) L− µ
2
‖x∗ − x0‖2 +

σ2
∑k
i=1

ai
2

Ai

µAk

In particular, setting:

• ai
Ai

= γi =
√

µ
L ,

E[f(yk)− f(x∗)] ≤
(

1−
√
µ

L

)k
L− µ

2
‖x∗ − x0‖2 +

σ2

√
µL

• ai = ip for p ∈ Z+,

E[f(yk)− f(x∗)] = O

(
p+ 1

kp+1
· (L− µ)‖x∗ − x0‖2

2
+

(p+ 1)2

pk
· σ

2

µ

)
.

Proof. The bounds for ηi = 0 and for E[‖ηi‖] ≤Mi and maxu∈X ‖x∗ − u‖ ≤ Rx∗ are straightforward.

Assume that ηi’s are zero-mean and independent and denote ψk(x) =
∑k
i=1 ai

µ
2 ‖x− xi‖2 + µ0

2 ‖x− x0‖2. Observe that
the strong convexity parameter of ψk is µAk + µ0 > µAk. From Fact 2.4, vk = ∇ψ∗k(zk). Similarly as for the case of
smooth minimization, let v̂k = ∇ψ∗(zk + akηk). Then v̂k is independent of ηk, and, using Fact 2.5, we have:

E[ak 〈ηk,x∗ − vk〉] = E[ak 〈ηk,x∗ − v̂k〉] + E[ak 〈ηk, v̂k − vk〉]

≤ ak
2

µAk
‖ηk‖2.

Combining with Theorem B.4, we get E[f(yk)− f(x∗)] ≤
(
Πk
i=1 (1− γi)

)
L−µ

2 ‖x∗ − x0‖2 +
σ2 ∑k

i=1
ai

2

Ai

µAk
. The rest of

the proof follows by plugging in particular choices of ai.

Let us make a few more remarks here. When ηi’s are zero-mean, independent, and E[‖ηi‖2] ≤ σ2, even the vanilla version
of µAGD+ does not accumulate noise (the noise averages out). Under the same assumptions and when ai = i, we recover
the asymptotic bound from (Ghadimi & Lan, 2012).7 More generally, ai = ip for any constant integer p gives a convergence
bound for which the deterministic term vanishes at rate 1/kp+1 while the noise term vanishes at rate 1/k. When p = log(k)

for a fixed number of iterations k of µAGD+, we get E[f(yk)− f(x∗)] = O
(

log(k)
klog(k)

· (L−µ)‖x∗−x0‖2
2 + log(k)

k · σ
2

µ

)
, i.e.,

the deterministic term (independent of noise) decreases super-polynomially with the iteration count, while the noise term
decreases at rate log(k)/k. This is a much stronger bound than the one from (Ghadimi & Lan, 2012) and closer to the
theoretical lower bound Ω

((
1−

√
µ
L

)k · (L−µ)‖x∗−x0‖2
2 + · σ

2

µk

)
from (Nemirovskii & Yudin, 1983).

Note that in the setting of constrained (bounded-diameter) minimization, (Ghadimi & Lan, 2013) obtained the optimal
convergence bound O

((
1−

√
µ
L

)k · (L−µ)‖x∗−x0‖2
2 + · σ

2

µk

)
by coupling the algorithm from (Ghadimi & Lan, 2012) with

a domain-shrinking procedure resulting in a multi-stage algorithm. We expect it is possible to obtain a similar result for
µAGD+ by coupling it with the domain-shrinking from (Ghadimi & Lan, 2013).

7Note that the independence of ηi’s is a stronger assumption than used in (Ghadimi & Lan, 2012). Nevertheless, we can obtain the
same bounds as stated in Corollary B.5 for the same assumptions as in (Ghadimi & Lan, 2012) using the same arguments as for the case
of smooth minimization (see Appendix C.2).
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C. Different Models of Inexact Oracle
C.1. Adversarial Models

There are two main adversarial models of inexact gradient oracles that have been used in the convergence analysis of
accelerated methods: the approximate gradient model of (d’Aspremont, 2008) and inexact first-order oracle of (Devolder
et al., 2014). The approximate gradient model (d’Aspremont, 2008) defines the inexact oracle by a deterministic perturbation
satisfying the following condition for all queries:

|〈η,y − z〉| ≤ δ, ∀y, z ∈ X .

Hence, this model is only applicable to constrained optimization with bounded-diameter domain and bounded (adversarial)
additive noise. Under these assumptions, (d’Aspremont, 2008) proves that it is possible to approximate f(x∗) up to an error
of δ achieving an accelerated rate. We can show the same asymptotic bound8 by applying the assumption to Equation (3.2)
in Proposition 3.5. This yields:

Gk ≤
Dψ(x∗,x0)

Ak
+ δ

whenever ak
2

Ak
≤ µ

L for all k. Setting ak = µ
L ·

k+1
2 yields Ak = k2 +O(k), which establishes the accelerated decrease of

the first term in the error bound above.

The inexact first-order oracle (Devolder et al., 2014) is a generalization of the model from (d’Aspremont, 2008) that defines
the inexact oracle by:

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L

2
‖y − x‖2 + δ.

As stated in (Devolder et al., 2014), this model does not apply to noise-corrupted gradients per se, but rather to “non-smooth
and weakly smooth convex problems”. In other words, the model was introduced to characterize the behavior of accelerated
methods on objective functions that are non-smooth, but close to smooth. Our results agree with those of (Devolder et al.,
2014) and lead to the same kind of error accumulation. To see this, observe that we only use the definition of smoothness
when bounding Eek in Theorem 3.4. Thus, the error from the inexact oracle would only appear as E = Eek ≤ Akδ, leading
to:

f(yk)− f(x∗) ≤
Dψ(x∗,x0)

Ak
+

∑k
i=1Ai
Ak

· δ,

This is exactly the same bound as in Theorem 4 of (Devolder et al., 2014), but we obtain it through a generic algorithm with
a simple analysis.

C.2. Generalized Stochastic Models

It is possible to generalize the results from Lemma 3.7 to the noise model from (Lan, 2012; Ghadimi & Lan, 2012). In such
a model, ηk = G(xk, ξk) −∇f(xk), where {ξi}ki=1’s are i.i.d. random vectors, E[ηk] = 0 and E[‖ηk‖2∗] ≤ σ2. Let Fk
denote the natural filtration up to (and including) iteration k. Then v̂k = ∇ψ∗(zk + akηk) is measurable w.r.t. Fk−1 (as
{xi}ki=1 and {ξi}k−1

i=1 are measurable w.r.t. Fk−1). It follows that:

E[Eηk |Fk−1] = akE[〈ηk,x∗ − vk〉 |Fk−1] = akE[〈ηk,x∗ − v̂k〉 |Fk−1] + akE[〈ηk, v̂k − vk〉 |Fk−1]

≤ ak
2

µ
E[‖ηk‖2∗] ≤

ak
2σ2

µ
. (C.1)

Define Γk
def
= AkGk −

∑k
i=1

ak
2σ2

µ . Then, using the results from Section 3 and (C.1):

E[Γk − Γk−1|Fk−1] = E
[
AkGk −Ak−1Gk−1 −

ak
2σ2

µ
|Fk−1

]
= E

[
Eηk −

ak
2σ2

µ
|Fk−1

]
≤ 0,

i.e., Γk is a supermartingale. Hence, we can conclude that E[Γk] ≤ E[Γ1], implying E[Gk] ≤ A1

Ak
E[G1] +

∑k
i=2 ai

2σ2

µAk
, and

we recover the same bound as in Lemma 3.7:

E[f(yk)]− f(x∗) ≤
Dψ(x∗,x0)

Ak
+

∑k
i=1 ai

2σ2

µAk
.

8We actually obtain better constants than those in Theorem 2.2 of (d’Aspremont, 2008).



On Acceleration with Noise-Corrupted Gradients

(a) ση = 0 (b) ση = 10−5 (c) ση = 10−3 (d) ση = 10−1

(e) ση = 0 (f) ση = 10−5 (g) ση = 10−3 (h) ση = 10−1

Figure 2: Median performance of gradient descent (GD) and accelerated algorithms (AGD, AXGD, AGD+ with restart and
slow-down semi-heuristics and TO-AGD+) over 50 repeated runs on a hard instance for unconstrained smooth minimization
for ηk ∼ N (0, σηI) over Rn and for: (a)-(d) 500 iterations; (e)-(h) 100 iterations.

D. Additional Experiments
D.1. “Hard Instance” for Unconstrained Smooth Minimization

Unconstrained Minimization In Section 5, we compared various accelerated algorithms with gradient descent (GD)
when restart and slow-down semi-heuristics are disabled and enabled. We also included a comparison with AGD+ when
its parameters are set according to Corollary 3.9 (TO-AGD+). Since the step sizes of TO-AGD+ depend on the number of
iterations, one may hope that TO-AGD+ could outperform other accelerated algorithms for a smaller number of iterations.
However, this is not true – for a smaller number of iterations, in the best case TO-AGD+ matches the performance of other
algorithms with restart and slow-down. When all algorithms have the same performance, they all essentially run their vanilla
versions – without restart and slow down and for their standard accelerated step sizes. This is illustrated in Fig. 2.

“Hard Instance” over Simplex The set of experiments in Figure 3 correspond to the minimization of the hard instance
function for smooth optimization, constrained over the probability simplex. It should be compared to the unconstrained
version in Figure 1. As predicted, we observe that the presence of constraints decreases the effect of error accumulation
as the boundary of the feasible set limits the variance. Given the low variance due to the constraints, the effect of
RESTART+SLOWDOWN is less evident for this batch of experiments.

D.2. Regression on Epileptic Seizure Dataset

For the second set of experiments, we used the Epileptic Seizure Recognition Dataset (Andrzejak et al., 2001) obtained
from (Lichman, 2013). The dataset consists of brain activity EEG recordings for 100 patients at different time points and in
five different states, of which only one indicates epileptic seizure. The dataset contains 11500 rows and 179 columns, of
which the first 178 columns are features while the last column indicates whether the patient was in seizure. Before running
the experiments, we standardize the data using a standard preprocessing function from the Python Sci-kit library.

Linear regression and LASSO. We performed linear regression on the considered dataset mainly to illustrate the
performance of the algorithms in the bounded regime (for `1-constraints – LASSO), which we discuss here. The results for
standard, unconstrained linear regression are similar to the results for logistic regression discussed below and are omitted.

Fig. 4(a)-4(d) shows the performance of GD and accelerated algorithms for `1-constrained linear regression (LASSO) on the
Epileptic Seizure Recognition Dataset. Interestingly, the experiments suggest that there are cases when AGD performes
better than AXGD and AGD+. In particular, in the noiseless (Fig. 4(a)) and the low-noise (Fig. 4(b)) settings, AGD performs
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(a) ση = 0 (b) ση = 10−5 (c) ση = 10−3 (d) ση = 10−1

(e) ση = 0 (f) ση = 10−5 (g) ση = 10−3 (h) ση = 10−1

(i) ση = 0 (j) ση = 10−5 (k) ση = 10−3 (l) ση = 10−1

Figure 3: Performance of gradient descent (GD) and accelerated algorithms (AGD, AXGD, AGD+) on a hard instance for
unconstrained smooth minimization for ηk ∼ N (0, σηI) and over probability simplex (a)-(d) without and (i)-(l) with
RESTART+SLOWDOWN and RESTART+SLOWDOWN-2.

much better than worst-case and converges faster than AXGD and AGD+.

However, the faster convergence comes at the expense of lower stability to noise as the noise becomes higher. Specifically,
as the noise is increased, AGD performs only marginally better and with higher variance than AXGD and AGD+ (Fig. 4(c)),
and stabilizes to much higher mean and variance in the very high-noise setting (Fig. 1(d)).

Intuitively, “greedy” gradient steps that AGD takes may reduce the function value significantly and lead to faster convergence
in the noiseless and low-noise settings, while making the convergence very sensitive to the noise from the last iteration, as
the gradient steps only depend on the last seen (noisy) gradient. In contrast, AXGD and AGD+ are more stable to noise, since
both of their per-iteration steps depend on the aggregate gradient (and thus, aggregate noise) information.

As expected from the analytical results from Section 3, restart and slow-down does not noticeably improve the mean error of
the algorithms (Fig. 4(e)-4(h), 4(i)-4(l)). However, in agreement with the analysis, it can reduce the error variance in the
high-noise-variance setting (Fig. 4(l)). We also note that TO-AGD+ is more stable over the repeated methods’ execution, at
the expense of slower initial convergence.

Logistic regression. Finally, we evaluated the performance of the accelerated algorithms and GD for (unregularized)
logistic regression on the Epileptic Seizure Recognition Dataset. The results are shown in Fig. 5.

Similar as in the case of unconstrained minimization from the beginning of this section, in the noiseless and low-noise
settings (Fig. 5(a), 5(b)) all accelerated algorithms perform similarly and restart and slow-down does not lead to any
noticeable improvements or degradation (Fig. 5(e), 5(i), 5(f), 5(j)). Once the noise is high enough (Fig. 5(c), 5(d)), all
accelerated algorithms begin to accumulate noise, while restart and slow-down stabilize their performance to a low error
mean and variance. Interestingly, in all the experiments, when RESTART+SLOWDOWN and RESTART+SLOWDOWN-2 are
employed all accelerated algorithms perform at least as good as GD in terms of the error mean and variance.
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(a) ση = 0 (b) ση = 10−5 (c) ση = 10−3 (d) ση = 10−1

(e) ση = 0 (f) ση = 10−5 (g) ση = 10−3 (h) ση = 10−1

(i) ση = 0 (j) ση = 10−5 (k) ση = 10−3 (l) ση = 10−1

Figure 4: Performance of GD and accelerated algorithms (AGD, AXGD, AGD+, TO-AGD+) for linear regression over `1-ball
(LASSO) on Epileptic Seizure Recognition Dataset (Andrzejak et al., 2001) (a)-(d) without noise reduction; (i)-(l) sample
run with TOAGD+, RESTART+SLOWDOWN and RESTART+SLOWDOWN-2; and (i)-(l) 50 repeated runs and the median
with TOAGD+, RESTART+SLOWDOWN and RESTART+SLOWDOWN-2.



On Acceleration with Noise-Corrupted Gradients

(a) ση = 0 (b) ση = 10−5 (c) ση = 10−3 (d) ση = 10−1

(e) ση = 0 (f) ση = 10−5 (g) ση = 10−3 (h) ση = 10−1

(i) ση = 0 (j) ση = 10−5 (k) ση = 10−3 (l) ση = 10−1

Figure 5: Performance of gradient descent (GD) and accelerated algorithms (AGD, AXGD, AGD+, TO-AGD+) for logistic
regression on Epileptic Seizure Recognition Dataset (Andrzejak et al., 2001) (a)-(d) without noise reduction; (e)-(h) sample
run with noise reduction; and (i)-(l) 50 repeated runs and the median run with noise reduction.


