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Abstract

We study the problem of controlling linear time-
invariant systems with known noisy dynamics and
adversarially chosen quadratic losses. We present
the first efficient online learning algorithms in this
setting that guarantee O(

√
T) regret under mild

assumptions, where T is the time horizon. Our
algorithms rely on a novel SDP relaxation for the
steady-state distribution of the system. Crucially,
and in contrast to previously proposed relaxations,
the feasible solutions of our SDP all correspond to
“strongly stable” policies that mix exponentially
fast to a steady state.

1. Introduction
Linear-quadratic (LQ) control is one of the most widely
studied problems in control theory (Anderson et al., 1972;
Bertsekas, 1995; Zhou et al., 1996). It has been applied
successfully to problems in statistics, econometrics, robotics,
social science and physics. In recent years, it has also re-
ceivedmuch attention from themachine learning community,
as increasingly difficult control problems have led to demand
for data-driven control systems (Abbeel et al., 2007; Levine
et al., 2016; Sheckells et al., 2017).

In LQ control, both the state and action are real-valued
vectors. The dynamics of the environment are linear in the
state and action, and are perturbed by Gaussian noise. The
cost is quadratic in the state and control (action) vectors. The
optimal control policy, which minimizes the cost, selects the
control vector as a linear function of the state vector, and
can be derived by solving the algebraic Ricatti equations.

The main focus of this work is control of linear systems
whose quadratic costs vary in an unpredictable way. This
problemmay arise in settings such as building climate control
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in the presence of time-varying energy costs, due to energy
auctions or unexpected demand fluctuations. To measure
how well a control system adapts to time-varying costs, it
is common to consider the notion of regret: the difference
between the total cost of the controller, one that is only
aware of previously observed costs, and that of the best fixed
control policy in hindsight. This notion has been thoroughly
studied in the context of online learning, and particularly in
that of online convex optimization (Cesa-Bianchi & Lugosi,
2006; Hazan, 2016; Shalev-Shwartz, 2012). LQ control was
considered in the context of regret by Abbasi-Yadkori et al.
(2014), who give a learning algorithm for the problem of
tracking an adversarially changing target in a system with
noiseless linear dynamics.

In this paper we consider online learning with fixed, known,
linear dynamics and adversarially chosen quadratic cost
matrices. Our main results are two online algorithm that
achieve O(

√
T) regret, when comparing to any fast mixing

linear policy.1 One of our algorithms is based on Online
Gradient Descent (Zinkevich, 2003). The other is based on
Follow the Lazy Leader (Kalai & Vempala, 2005), a variant
of Follow the Perturbed Leader with only O(

√
T) expected

number of policy switches.

Overall, our approach follows Even-Dar et al. (2009). We
first show how to perform online learning in an “idealized
setting”, a hypothetical setting in which the learner can
immediately observe the steady-state cost of any chosen
control policy. We proceed to bound the gap between the
idealized costs and the actual costs.

Our technique is conceptually different to most learning
problems: instead of predicting a policy and observing its
steady-state cost, the learner predicts a steady-state distri-
bution and derives from it a corresponding policy. Impor-
tantly, this view allows us to cast the idealized problem as a
semidefinite program which minimizes the expected costs
as a function of a steady state distribution (of both states and
controls). As the problem is now convex, we apply OGD
and FLL to the SDP and argue about fast-mixing properties
of its feasible solutions.

1 Technically, we define the class of “strongly stable” policies
that guarantee the desired fast mixing property. Conceptually,
slowly mixing policies are less attractive for implementation, given
their inherent gap between their long and short term cost.
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For online gradient descent, we define a “sequential strong
stability” property that couples consecutive control matrices,
and show that it guarantees that the observed state distribu-
tions closely track those generated in the idealized setting.
We then show that the sequence of policies generated by the
online gradient descent algorithm satisfies this property.

In Follow the Lazy Leader, following each switch our al-
gorithm resets the system—a process that takes a constant
number of rounds, after which the cost of playing the new
policy is less than its steady-state cost.

The holy grail of reinforcement learning is controlling a
dynamical stochastic system under uncertainty, and clearly
both MDPs and LQ control are well within this mission
statement. There are obvious differences between the two
models: MDPs model discrete state and action dynamics
while LQ control addresses continuous linear dynamics
with a quadratic cost. In this work we are inspired by
methodologies from online-MDP and regret minimization to
derive new results for LQ control. We believe that exploring
the interface between the two will be fruitful for both sides,
and holds significant potential for future RL research agenda.

1.1. Related Work

LQ control can be seen as a continuous analogue of the
discrete Markov Decision Process (MDP) model. As such,
our results are conceptually similar to those of Even-Dar et al.
(2009), who derive regret bounds for MDPs with known
dynamics and changing rewards. However, our technical
approach and the derivation of our algorithms are very
different than those applicable in context of MDPs.

Among the many follow-up works to Even-Dar et al. (2009),
let us note Yu et al. (2009) and Abbasi et al. (2013) that
propose lazy algorithms similar to our second algorithm. We
remark that, compared to our O(

√
T) regret bounds, Abbasi-

Yadkori et al. (2014) give an O(log2 T) regret bound under
much stronger assumptions.2 Similar bounds are established
by Neu & Gómez (2017) for online learning in linearly
solvable MDPs, that were shown to capture appropriately
discretized versions of LQ control systems (Todorov, 2009).
In light of these results, it is interesting to investigate whether
our bounds are tight or can actually be improved. We leave
this investigation for future work.

An orthogonal line of research that has gained popularity
in recent years is controlling linear quadratic systems with
unknown fixed dynamics. The majority of recent papers deal
with off-policy learning: either by policy gradient (Fazel
et al., 2018); by estimating the transition matrices (Dean
et al., 2017); or by improper learning (Hazan et al., 2017;

2Not only their setting assumes that Qt = Q and Rt = I for all t
for a fixed and known matrix Q � 0, they also make non-trivial
norm assumptions on the corresponding optimal control matrix K?.

Arora et al., 2018). In contrast to that, Abbasi-Yadkori &
Szepesvári (2011) and Ibrahimi et al. (2012) present an
on-policy learning algorithm with O(

√
T) regret.

Semidefinite programming for LQ control has been used in
the past (Balakrishnan & Vandenberghe, 2003; Dvijotham
et al., 2013; Lee & Hu, 2016), mostly in the context of
infinite-horizon constrained LQRs (Lee & Khargonekar,
2007; Schildbach et al., 2015). Inmany of these formulations,
one has to solve the SDP exactly to obtain a stabilizing
solution; in other words, only the optimal policy is known
to be stable and suboptimal policies need not be stabilizing.
This is not the case in our SDP formulation, as any feasible
solution is not only stable but, in fact, strongly-stable (see
the formal definition in Section 3).

2. Background
2.1. Linear Quadratic Control

The standard linear quadratic (Gaussian) control problem
is as follows. Let xt ∈ Rd be the system state at time
t and let ut ∈ Rk be the control (action) taken at time
t. The system transitions to the next state using linear
time-invariant dynamics

xt+1 = Axt + But + wt ,

wherewt are i.i.d. Gaussian noise vectors with zeromean and
covariance W � 0 . The cost incurred at each time point is a
quadratic function of the state and control, xT

t Qxt + uT
t Rut ,

for positive definite matrices Q and R.

A policy is a mapping π : Rd 7→ Rk from the current state
xt to a control (i.e., an action) ut . The cost of a policy after
T time steps is

JT (π) = E
[ T∑
t=1

xT
t Qxt + uT

t Rut
]
,

where u1, . . . , uT are chosen according to π; the expecta-
tion is w.r.t. the randomness in the state transitions and
(possibly) the policy. In the infinite-horizon version of
the problem, the goal is to minimize the steady-state cost
J(π) = limT→∞(1/T)JT (π).

In the infinite-horizon setting and when the system is con-
trollable,3 it is well-known that the optimal policy is given
by constant linear feedback ut = K xt . For the optimal
K , the dynamics are given by xt+1 = (A + BK)xt + wt ,
and K is guaranteed to be stable; a policy K is called
stable if ρ(A + BK) < 1, where for a matrix M, ρ(M)
is the spectral radius of M. In this case, xt converges
to a steady-state (stationary) distribution, i.e., xt has the

3The system is controllable if the matrix (B AB · · · Ad−1B)
has full column-rank. Under the controllability assumption, any
state can be reached in at most d steps (ignoring noise).
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same distribution as (A + BK)xt + wt . This implies that
E[xt ] = 0, and the covariance matrix X = E[xt xT

t ] satisfies
X = (A + BK)X(A + BK)T +W .

The steady-state cost of a stable policy K with steady-state
covariance X is given by J(K) = (Q + KTRK) • X . Here •
denotes element-wise inner product, i.e., A • B = Tr(ATB).

2.2. Problem Setting

We consider an online setting, where a sequence of positive
definite cost matrices Q1, . . . ,QT , R1, . . . , RT is chosen by
the environment ahead of time and unknown to the learner.
We assume throughout that Tr(Qt ),Tr(Rt ) ≤ C for all t,
for some constant C > 0. We assume that the dynamics
(A, B) are time-invariant and known, and that the system
is initialized at x0 = 0. At each time step t, the learner
observes the state xt , chooses an action ut , and suffers cost
xT
t Qt xt + uT

t Rtut . Thereafter, the system transitions to the
next state.

A (randomized) learning algorithm A is a mapping from xt
and the previous cost matrices Q0, ...,Qt−1 and R0, . . . , Rt−1
to a distribution over a control ut . We define the cost of
an algorithm as JT (A) = E[

∑T
t=1 xT

t Qt xt + uT
t Rtut ], where

u1, . . . , uT are chosen at random according to A.

The goal of the learner is to minimize the regret, defined as:

RT (A) = JT (A) −min
π∈Π

JT (π) ,

where Π is a set of benchmark policies. In the sequel, we fix
Π to be the set of all strongly stable policies; we defer the
formal definition of this class of policies to Section 3 below.

3. Strong Stability
In this section we formalize the notion of a strongly stable
policy and discuss some of its properties. Intuitively, a
strongly stable policy is a policy that exhibits fast mixing
and converges quickly to a steady-state distribution. Note
that, while stable policies K (for which ρ(A + BK) < 1)
necessarily converge to a steady-state, nothing is guaranteed
regarding their rate of convergence. The following definition
helps remedy that.
Definition 3.1 (Strong Stability). A policy K is (κ, γ)-
strongly stable (for κ > 0 and 0 < γ ≤ 1) if ‖K ‖ ≤ κ, and
there exists matrices L and H such that A + BK = HLH−1,
with ‖L‖ ≤ 1 − γ and ‖H‖‖H−1‖ ≤ κ.

Strong-stability is a quantitative version of stability, in the
sense that any stable policy is strongly-stable for some
κ and γ (See Lemma B.1 in the supplementary material).
Conversely, strong-stability implies stability: if K is strongly-
stable then A + BK is similar to a matrix L with ‖L‖ < 1,
and so ρ(A + BK) = ρ(L) ≤ ‖L‖ < 1, i.e., K is stable.

Notice that for a strongly stable K it may not be the case that
‖A + BK ‖ < 1, and a non-trivial transformation H , I may
be required to make the norm smaller than one (this is indeed
the case with feasible solutions to our SDP relaxation).

Strong stability ensures exponentially fast convergence to
steady-state, as is made precise in the next lemma.
Lemma3.2. For all t = 1, 2, . . . let X̂ t be the state covariance
matrix on round t starting from some X̂0 � 0 and following
a (κ, γ)-strongly stable policy π(x) = K x. Then X̂1, X̂2, . . .
approaches a steady-state covariance matrix X , and further,
for all t it holds that

‖ X̂ t − X ‖ ≤ κ2e−2γt ‖ X̂0 − X ‖.

This exponential convergence is true even if the policy
is randomized and follows K in expectation; that is, if
E[π(x)|x] = K x, and provided that Cov[π(x)|x] is finite.

Proof. Let us first analyze deterministic policies. As noted
above, we know that K is stable and as a result the state
covariances X̂ t approach a steady-state covariance X . By
definition, we have

X̂ t+1 = (A + BK)X̂ t (A + BK)T +W ∀ t ≥ 0;
X = (A + BK)X(A + BK)T +W .

Subtracting the equations and recursing, we have X̂ t − X =
(A + BK)t (X̂0 − X)((A + BK)t )T, which gives

‖ X̂ t − X ‖ ≤ ‖(A + BK)t ‖2‖ X̂0 − X ‖.

For further bounding the right-hand side, observe that (A +
BK)t = HLtH−1, thus

‖(A + BK)t ‖ ≤ ‖H‖‖H−1‖‖L‖t ≤ κ(1 − γ)t ≤ κe−γt .

Combining the inequalities gives the result for deterministic
policies.

For randomized policies with E[u|x] = K x and finite V =
Cov[u|x], the dynamics of the state covariance take the form

X̂ t+1 = (A + BK)X̂ t (A + BK)T + BV BT +W ∀ t ≥ 0;
X = (A + BK)X(A + BK)T + BV BT +W .

Since the analysis above only depends on the difference
between the equations, the added BV BT term has no effect
on the convergence of Xt . Note, however, that the steady
state X itself will be a function of V in general. �

Let us state one more property of strongly stable policies
that will be useful in our analysis.
Lemma 3.3. Assume that K is (κ, γ)-strongly stable, and let
X and U be the covariances of x and u at steady-state when
following K . Then Tr(X) ≤ (κ2/γ)Tr(W) and Tr(U) ≤
(κ4/γ)Tr(W).
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3.1. Sequential strong stability

We next present a stronger notion of strong stability which
plays a central role in our analysis. Roughly speaking, the
goal is to argue about fast mixing when following a sequence
of different policies K1,K2, . . . (rather than a fixed policy K
throughout). In this case, for any kind ofmixing to take place,
not only does one has to require that each policy is strongly
stable, but also that the sequence is “slowly changing.” This
motivates the following definition.
Definition 3.4 (sequential strong stability). A sequence of
policies K1, . . . ,KT is (κ, γ)-strongly stable (for κ > 0 and
0 < γ ≤ 1) if there exist matrices H1, . . . ,HT and L1, . . . , LT

such that A + BKt = HtLtH−1
t for all t, with the following

properties:

(i) ‖Lt ‖ ≤ 1 − γ and ‖Kt ‖ ≤ κ;
(ii) ‖Ht ‖ ≤ β and ‖H−1

t ‖ ≤ 1/α with κ = β/α;
(iii) ‖H−1

t+1Ht ‖ ≤ 1 + γ/2.

Strongly stable sequences mix quickly, in the following sense
(proof is deferred to the full version of the paper).
Lemma 3.5. Let πt (x) = Kt x (t = 1, 2, . . .) be a sequence
of policies with respective steady-state covariance matrices
X1, X2, . . ., such that K1,K2, . . . is a (κ, γ)-strongly stable
sequence and ‖Xt − Xt−1‖ ≤ η for all t, for some η > 0. Let
X̂ t be the state covariance matrix on round t starting from
some X̂1 � 0 and following this sequence. Then

‖ X̂ t+1 − Xt+1‖ ≤ κ
2e−γt ‖ X̂1 − X1‖ +

2ηκ2

γ
.

The same is true even if the policies are randomized, such
that E[πt (x)|x] = Kt x and Cov[πt (x)|x] exists and is finite.

4. SDP Relaxation for LQ control
We now present our SDP relaxation for the infinite-horizon
LQ control problem. Our presentation requires the following
definitions. Consider an LQ control problem parameterized
by matrices A, B,Q, R and W . For any stable policy (for
which a steady-state distribution exists), define

E(π) = E

(
xxT xuT

uxT uuT

)
, (1)

where x is distributed according to the steady-state dis-
tribution of π, and u = π(x). Then, the infinite horizon
cost of π is given by J(π) = (Q 0

0 R
) • E(π). For a policy

πK (x) = K x defined by a stable control matrix K (i.e., for
which ρ(A + BK) < 1), this matrix takes the form

E(K) =
(

X XKT

K X K XKT

)
, (2)

where X is the state covariance at steady-state. (We slightly
abuse notation and write E(K) instead of E(πK )). In this
case, one also has J(K) = J(E(K)) = (Q + KTRK) • X .

4.1. The relaxation

We can now present our SDP relaxation for the LQ control
problem given by (A, B,Q, R,W), which takes the form:

minimize J(Σ) =
(
Q 0
0 R

)
• Σ

subject to Σxx =
(
A B

)
Σ

(
A B

)T
+W, (3)

Σ � 0, Tr(Σ) ≤ ν.

Here, ν > 0 is a parameter whose value will be determined
later, and Σ is a (d + k) × (d + k) symmetric matrix that
decomposes to blocks as follows:

Σ =

(
Σxx Σxu

ΣT
xu Σuu

)
,

where Σxx is a d × d block, Σuu is k × k, and Σxu is d × k.

The program Eq. (3) is a relaxation in the following sense.
Lemma 4.1. For any stable policy π such that at steady-state
E‖x‖2 + E‖u‖2 ≤ ν, the matrix Σ = E(π) is feasible for (3).

Proof. Let π be any stable policy and consider the matrix
Σ = E(π). Then Σ � 0 (by definition, recall Eq. (1)),
and satisfies the equality constraint of (3), since if x is at
steady-state and u = π(x), then Ax + Bu + w has the same
distribution as x for w ∼ N(0,W) independent of x and u,
thus E[xxT] = E[(Ax+Bu+w)(Ax+Bu+w)T]; the latter is
equivalent to Σxx = (A B)Σ(A B)T+W . Finally, observe
that Tr(Σ) = ETr(xxT)+ETr(uuT) = E‖x‖2 +E‖u‖2 where
x, u are distributed according to the steady-state distribution
of π, hence Σ satisfies the trace constraint. �

4.2. Extracting a policy

We next show that from any feasible solution to the SDP,
one can extract a stable policy with the same (if not better)
cost, provided that W � 0. For any feasible solution Σ for
the SDP, define a control matrix as follows:

K(Σ) = ΣT
xuΣ

−1
xx . (4)

Note that, due to the equality constraint of the SDP, our
assumption W � 0 ensures that Σxx � 0, thus Σxx is
nonsingular and K(Σ) is well defined.
Theorem 4.2. Let Σ be any feasible solution to the SDP,
and let K = K(Σ). Then the policy π(x) = K x is stable, and
it holds that E(K) � Σ. In particular, E(K) is also feasible
for the SDP and its cost is at most that of Σ.

Without the trace constraint, the theorem particularly implies
that for the optimal solutionΣ? of the SDP, the corresponding
control matrix K? = K(Σ?) is an optimal policy for the
original problem, recovering a classic result in control theory.
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Proof of Theorem 4.2. Our first step is to show that

Σ � Σ′ =

(
Σxx ΣxxKT

KΣxx KΣxxKT

)
. (5)

To see this, observe that by definition of K = K(Σ) we have

Σ = Σ′ +

(
0 0
0 Σuu − Σ

T
uxΣ

−1
xxΣux

)
.

Thus, it suffices to show that Σuu − ΣT
uxΣ

−1
xxΣux is PSD. The

latter matrix is the Schur complement of Σ, and is PSD
because Σ is PSD.

Next, we show that the control matrix K gives rise to a stable
policy. Let us develop Eq. (3). First, since W � 0 we also
have that Σxx � 0. Moreover, by Eq. (5),

Σxx = (A B)Σ(A B)T +W

� (A + BK)Σxx(A + BK)T +W

� (A + BK)Σxx(A + BK)T .

Let λ and v be a (possibly complex) eigenvalue and left-
eigenvector associated with A + BK . Then,

v∗Σxxv > v∗(A + BK)Σxx(A + BK)Tv = |λ |2v∗Σxxv ,

which, by v∗Σxxv > 0, implies |λ | < 1. This is true for all
eigenvalues λ, and shows that ρ(A + BK) < 1, that is, K
is stable.

Finally, let us show that E(K) � Σ′, which together with
Eq. (5) would imply our claim E(K) � Σ. Denote by X the
state covariance at steady-state when following K; then,

E(K) =
(

X XKT

K X K XKT

)
.

To establish that E(K) � Σ′ it is enough to show X � Σxx .
To this end, let ∆ = Σxx − X and write

X + ∆ � (A + BK)X(A + BK)T +W

+ (A + BK)∆(A + BK)T

= X + (A + BK)∆(A + BK)T ,

from which we get ∆ � (A + BK)∆(A + BK)T. Applying
the latter inequality recursively, we obtain

∆ � (A + BK)n∆((A + BK)T)n .

Recall that ρ(A+ BK) < 1; thus, taking the limit as n→∞,
we get (A+ BK)n∆((A+ BK)T)n → 0, which implies ∆ � 0.
This shows that X � Σxx , as required.

To complete the proof observe that E(K) is feasible for the
SDP since E(K) � Σ and Σ is feasible. Furthermore, since
(Q 0

0 R
) is PSD, we have

J(E(K)) =
(
Q 0
0 R

)
• E(K) ≤

(
Q 0
0 R

)
• Σ = J(Σ). �

4.3. Strong stability of solutions

Let us show that from a solution to the SDP one can extract
a strongly stable policy.
Lemma 4.3. Assume that W � σ2I and let κ =

√
ν/σ.

Then for any feasible solution Σ for the SDP, the policy
K = K(Σ) is (κ, 1/2κ2)-strongly stable.

Proof. According to Theorem 4.2, the policy K is (weakly)
stable and the matrix Σ̂ = E(K) is feasible for the SDP. Let
X = Σ̂xx be the state covariance of K at steady-state. Since
Σ̂ is feasible, and since W � σ2I, we have

X � (A + BK)X(A + BK)T + σ2I . (6)

In particular, this means that X � σ2I. On the other hand,
we have Tr(X) ≤ Tr(Σ̂) ≤ ν, thus X � νI. Overall,

σ2I � X � νI . (7)

Given that X is nonsingular, we can define L = X−1/2(A +
BK)X1/2. Multiplying Eq. (6) by X−1/2 from both sides,
we obtain I � LLT + σ2X−1 � LLT + κ−2I . Thus LLT �

(1 − κ−2)I, so ‖L‖ ≤
√

1 − κ−2 ≤ 1 − κ−2/2. Also, Eq. (7)
shows that ‖X1/2‖‖X−1/2‖ ≤ κ. It is left to establish the
bound on the norm ‖K ‖F. To this end, use the fact that

X • KKT = Tr(K XKT) = Tr(Σ̂uu) ≤ ν

togetherwith X � σ2I (recall Eq. (7)) to obtainσ2‖K ‖2F ≤ ν,
that is, ‖K ‖F ≤ κ. �

We can also prove an analogous statement for sequences of
feasible solutions, provided that they change slowly enough
(we defer the proof to the full version of the paper).
Lemma 4.4. Assume that W � σ2I and let κ =

√
ν/σ. Let

Σ1, Σ2, . . . be a sequence of feasible solutions of (3), and
suppose that ‖Σt+1 − Σt ‖ ≤ η for all t for some η ≤ σ2/κ2.
Then the sequence K1,K2, . . ., where Kt = K(Σt ) for all t is
(κ, 1/2κ2)-strongly stable.

5. Online LQ Control
In this section we describe our gradient based algorithm for
online LQ control, presented in Algorithm 1. The algorithm
maintains an “ideal” steady-state covariance matrix Σt by
performing online gradients steps directly on the SDP we
formulated in Section 4 (with the linear cost functions
changing from round to round). Then, a control matrix Kt

is extracted from the covariance Σt and is used to generate a
prediction.

Notice that the predictions made by the algorithm are ran-
domly drawn from theGaussianN(Kt xt,Vt ), and only follow
the extracted policies K1,K2, ... in expectation. This ran-
domization step is crucial for the algorithm to exhibit fast



Online Linear Quadratic Control

Algorithm 1 Online LQ Controller
Parameter: η, ν > 0
Initialize Σ1 = In×n with n = d + k
for t = 1, 2, . . . do
Receive state xt
Compute Kt = (Σt )ux(Σt )

−1
xx ,Vt = (Σt )uu−Kt (Σt )xxKT

t

Predict ut ∼ N(Kt xt,Vt ); receive Qt , Rt

Update:
Σt+1 = ΠS

[
Σt − η

( Qt 0
0 Rt

) ]
,

where ΠS is the Frobenius-norm projection onto

S =

{
Σ ∈ Rn×n

����� Σ � 0, Tr(Σ) ≤ ν,
Σxx =

(
A B

)
Σ

(
A B

)T
+W

}
end for

mixing: sampling the prediction from a distribution with
the right covariance ensures the observed covariance ma-
trices converge to those generated by the algorithm, and
consequently this sequence “mixes” more quickly.

For Algorithm 1 we prove the following guarantee.
Theorem 5.1. Assume that Tr(W) ≤ λ2 and W � σ2I.
Given κ > 0 and 0 ≤ γ < 1, set ν = 2κ4λ2/γ and η =
σ3/(2C

√
νT). The expected regret of Algorithm 1 compared

to any (κ, γ)-strongly stable control matrix K? is at most

JT (A) − JT (K?) = O
(
κ10λ5

γ2.5σ3 C
√

T
)
,

provided that T ≥ 8κ4λ2/(γσ2).

We remark that the theorem (in fact, Algorithm 1 itself)
tacitly assumes that the SDP defined by S is feasible; oth-
erwise, the set of strongly-stable policies is empty and the
statement of Theorem 5.1 is vacuous.

Proof. Fix an arbitrary (κ, γ)-strongly stable control matrix
K?, and denote by Σ̂?1 , . . . , Σ̂

?
T be the covariances induced

by using K? throughout. Also, let Σ̂1, . . . , Σ̂T be the actual
observed covariance matrices induced by the algorithm.
Denoting Lt =

( Qt 0
0 Rt

)
, the expected regret of the algorithm

can be then written as follows:
T∑
t=1

Lt • (Σ̂t − Σ̂
?
t ) =

T∑
t=1

Lt • (Σ̂t − Σt )

+
T∑
t=1

Lt • (Σt − Σ
?) (8)

+
T∑
t=1

Lt • (Σ
? − Σ̂?t ).

Observe that the sequence Σ1, . . . , ΣT generated by the algo-
rithm is feasible for the (feasibility) SDP described by the

set S. Thanks to Lemma 4.3, for any feasible Σ ∈ S the
corresponding control matrix K(Σ) is (κ̄, γ̄)-strongly stable,
for κ̄ =

√
ν/σ and γ̄ = σ2/2ν; in particular, this applies to

each of the matrices Σt .

We proceed by bounding each of the sums on the right-hand
side of Eq. (8). We start with the second term and use a
well-known regret bound for the Online Gradient Descent
algorithm, due to Zinkevich (2003).

Lemma 5.2. We have

T∑
t=1

Lt • (Σt − Σ
?) ≤

4ν2

η
+ 4C2ηT .

Additionally, the Σt are slowly changing in the sense that,
for all t,

‖Σt+1 − Σt ‖F ≤ 4Cη. (9)

We next bound the first term, now relying on Eq. (9) and the
fact that the sequence of (randomized) policies chosen by
Algorithm 1 is strongly stable.

Lemma 5.3. If η ≤ σ2/4C κ̄2, it holds that

T∑
t=1

Lt • (Σ̂t − Σt ) ≤
16C2 κ̄4

γ̄
ηT +

4C κ̄4

γ̄
ν.

Finally, the last term in Eq. (8) can be bounded using the
strong stability of K?.

Lemma 5.4. For any (κ, γ)-strongly stable K?,

T∑
t=1

Lt • (Σ
? − Σ̂?t ) ≤ 2C

κ4ν

γ
.

The theorem now follows by plugging in the bounds we
established in Lemmas 5.2 to 5.4 into Eq. (8) and setting
our choices of η and ν. (See the full version of the paper for
details.) �

6. Oracle-based Algorithm
In this section we present a different approach that is based
on Follow the Lazy Leader (Kalai & Vempala, 2005). In
contrast to Algorithm 1, this approach does not require a
lower bound on the noise but rather relies on occasionally
performing resets, and needs a bound on the cost of this
reset (this is established in the full version of the paper under
reasonable assumptions). We assume access to an Oracle
procedure that receives cost matrices Q, R, and parameter
ν > 0. It returns a control matrix K that minimizes the
steady-state cost, subject to Tr(X) + Tr(K XKT) ≤ ν, where
X is the steady-state covariance matrix associated with K .4

4Oracle can be implemented by solving the SDP in Section 4.



Online Linear Quadratic Control

Algorithm 2 Follow the Lazy Leader
Parameter: η, ν > 0, transition matrices A, B, distribu-
tion µ.
Sample Qp

1 ∈ R
d×d ,Rp

1 ∈ R
k×k from dµ.

Set Q̂1 ← 0, R̂1 ← 0
for t = 1, 2, . . . do
Receive state xt .
Compute Kt ← Oracle(Q̂t +Qp

t , R̂t +Qp
t , ν).

Predict ut ← Kt xt .
Receive Qt ,Rt .
Update Q̂t+1 = Q̂t +Qt , R̂t+1 = R̂t + Rt .
With probability min

{
1, dµ(Q

p
t −Qt,R

p
t −Rt )

dµ(Q
p
t ,R

p
t )

}
, set

Qp
t+1 ← Qp

t −Qt .
Rp
t+1 ← Rp

t − Rt ,
else, perform reset and set

Qp
t+1 ← −Qp

t .
Rp
t+1 ← −Rp

t .
end for

Algorithm 2 is similar to Follow the Perturbed Leader, and
in fact behaves the same in expectation. At every round t,
Oracle is called using the sum of previously seen Qs and
Rs plus an additional random noise, Qp

t and Rp
t . Oracle

returns a matrix Kt that is used to choose ut = Kt xt .

For the measure dµ, we use the joint measure over sym-
metric matrices Q and R, whose upper triangle is sampled
coordinate-wise i.i.d from Laplace(1/η). The "lazyness" of
the algorithm stems from Qp

1 , . . . ,Q
p
T and Rp

1 , . . . , Rp
T being

sampled dependently over time such that the cumulative
perturbed loss only changes with small probability between
rounds. Consequently, the expected number of switches of
K as well as the expected number of resets are only O(ηT).

The reset step in the algorithm, informally, drives the system
to zero at some cost. Here we assume that B has full column-
rank in which case we can reset in one step. In the full
version of the paper, we show how resetting can be done
over a sequence of steps under much weaker assumptions.
Observation 6.1. Suppose that B has full column-rank.
Resetting the system in round t can be done by setting ut =
−B†Axt , such that at the next round xt+1 = wt+1. Moreover,
the expected cost of the reset is at most Cν(1 + ‖B†A‖2).

For Algorithm 2 we will show the following regret bound.
Theorem 6.2. Assume that Tr(W) ≤ λ2, and suppose that
the cost of a reset is at most Cr . Then for ν = 2κ4λ2/γ, the
expected regret of Algorithm 2 against any (κ, γ)-strongly-
stable control matrix K? satisfies

E
[
JT (A) − JT (K?)

]
= O

(
(d + k)3/4

√
Cν(Cr + Cν)T

)
.

Remark 6.3. Oracle requires that the matrices Q and R are
PSD. Nonetheless, we invoke Oracle using the perturbed

cumulative loss (Q̂t +Qp
t , R̂t + Rp

t ) that might not be PSD,
as the perturbations Qp

t and Rp
t themselves are typically

not PSD. To solve this issue, we first notice that with high-
probability (Vershynin, 2010), we have ‖Qp

t ‖ ≤ O(d/η) and
‖Rp

t ‖ ≤ O(k/η). Therefore, to guarantee that the perturbed
cumulative loss is PSD, we can add an initial large pretend
loss by setting Q̂1 = (d/η)I and R̂1 = (k/η)I. This would
contribute an O(Cν(d + k)/η) term to the regret which
ensures that, by our choice of η, Theorem 6.2 still holds.

Proof of Theorem 6.2. Let X̂1, . . . , X̂T be the actual ob-
served covariance matrices induced by Algorithm 2. Also,
let X̂?1 , . . . , X̂?T be the covariances induced by using a fixed
control matrix K? throughout. Similarly, define X1, . . . , XT

to be the covariance matrices of the steady-state distributions
induced by K1, . . . ,KT respectively, and X? that of K?.

As in the analysis of OGD, the expected regret can be
decomposed as follows:

T∑
t=1
(Qt + KT

t RtKt ) • X̂ t − (Qt + (K?)TRtK?) • X̂?t

=
T∑
t=1
(Qt + KT

t RtKt ) • (X̂ t − Xt )

+
T∑
t=1
(Qt + KT

t RtKt ) • Xt − (Qt + (K?)TRtK?) • X?

+
T∑
t=1
(Qt + (K?)TRtK?) • (X? − X̂?t ). (10)

The second term in Eq. (10), the regret in the “idealized
setting”, is bounded due to Kalai & Vempala (2005). It
requires the additional observation that, by Lemma 3.3, we
have Tr(X?) + Tr(K?X?(K?)T) ≤ ν.

Lemma 6.4. Assume Tr(Qt ),Tr(Rt ) ≤ C for all t. Then,

E

[
T∑
t=1

Tr(Xt (Qt + KT
t RtKt )) − Tr(X?(Qt + (K?)TRtK?))

]
≤ 8ηC2ν

√
d + kT +

16ν(d + k)
η

.

Moreover, the probability that the algorithm changes Kt and
performs a reset at any step t is at most ηC

√
d + k.

The third term of Eq. (10) is bounded by 2Cκ4ν/γ due to
Lemma 5.4. It remains to bound the first term in the equation.
To that end, we will next show that after the system is reset,
the cost of the learner on round t is at most that of the
steady-state induced by Kt .

Lemma 6.5. Suppose the learner starts playing K at state
xt0 = wt0 . Then the expected cost of the learner is always
less then the steady-state cost induced by K .
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Figure 1. Data center cooling loop; see Section 7.

Proof. Let xt0 = wt0 , and recall that xt+1 = (A+BK)xt +wt .
Let X̂ t be the covariance of xt , and X be the covariance
of x at the steady-state induced by K . Then, Xt0 = (A +
BKt0 )Xt0 (A + BKt0 )

T +W .

We now show that X̂ t � X for all t ≥ t0 by induction. Indeed,
for the base case X̂ t0 = W � (A+BKt0 )Xt0 (A+BKt0 )

T+W =
X . Now assume that X̂ t � Xt0 , that implies

X̂ t+1 = (A + BKt0 )X̂ t (A + BKt0 )
T +W

� (A + BKt0 )Xt0 (A + BKt0 )
T +W = X .

Since Qt + KT
t RtKt is PSD, the expected cost of the learner

at time t is (Qt + KT
t RtKt ) • Xt ≤ (Qt + KT

t RtKt ) • X . �

Combining Lemmas 6.4 and 6.5 obtains the theorem (see
the full version of the paper for more details). �

7. Experiments
We demonstrate our approach on the problem of regulating
conditions inside a data center (DC) server floor in the
presence of time-varying power costs. We learn system
dynamics from a real data center, but vary the costs and run
algorithms in simulation.

Fig. 1 shows a schematic of the cooling loop of a typical
data center. Water is cooled to sub-ambient temperatures
in the chiller and evaporative cooling towers, and then sent
to multiple air handling units (AHUs) on the server floor.
Server racks are arranged into rows with alternating hot
and cold aisles, such that all hot air exhausts face the hot
aisle. The AHUs circulate air through the building; hot air is
cooled through air-water heat exchange and blown into the
cold aisle, and the resulting warm water is sent back to the
chiller and cooling towers. The primary goal of floor-level
cooling is to control the cold aisle temperatures (CATs) and
differential air pressures (DPs). The control vector includes
the blower speed and water valve command for each of
n = 30 AHUs, set every 30s. The state vector includes 2n
temperature measurements and n pressure measurements, as
well as sensor measurements and controls for the preceding
time step. System noise is in part due to variability in server
loads and the temperature of the chilled water.

Figure 2. Normalized regret RT /T for FLL and Recent strategies,
with power costs generated uniformly (top) and by random walk
(bottom). Resets occur at time steps indicated by dashed lines.

We learn a linear approximation (A, B) of the dynamics in
the operating range of interest on 4h of exploratory data
with controls following a random walk. We estimate the
system noise covariance W as the empirical covariance of
training data residuals. For the purpose of the experiment,
we amplify the noise by a factor of 5. We set the diagonal
coefficients of Qt corresponding to the most recent (normal-
ized) sensor measurements to 1 and remaining coefficients
to 0, and keep Qt = Q constant throughout the experiment.
We set diagonal coefficients of Rt corresponding to water
usage (valve command) to 1 throughout, and all coefficients
corresponding to power usage (fan speed) to rt . We generate
rt by (a) i.i.d sampling a uniform distribution on [0.1, 1], and
(b) using a random walk restricted to [0.1, 1] taking steps of
size 0.1,−0.1, 0 with probabilities 0.1,−0.1, 0.8 respectively.

We run the FLL algorithm on this problemwith the following
modifications: we set Qp

1 = Q, and Rp
1 = Ik , an upper bound

on Rt . Rather than executing hard resets to 0, we perform a
soft reset by running a policy Kreset for n steps. Here Kreset

is similar to the next FLL policy, but based on the 1.1 times
the corresponding state cost Q.

We compare the cost of FLL to that of a fixed linear controller
that is based on the average of the Rt matrices, and to aRecent
strategy which selects one of ten controllers corresponding
to power costs in r ∈ {0.1, 0.2, ..., 1} based on the most
recently observed Rt . The normalized regret 1

T RT of to the
two strategies is shown in Fig. 2. FLL performance quickly
approaches that of the fixed linear policy in both cases, and
is better than the Recent strategy on uniform random costs.
The Recent strategy has an advantage in the case where costs
vary slowly, and empirical performance of FLL could likely
be improved in this case by forgetting the old costs.
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