Supplementary Material:
Efficient Model-Based Deep Reinforcement Learning with
Variational State Tabulation

1 VaST pseudocode

Algorithm 1 Variational State Tabulation.

Initialize replay memory M with capacity N/
Initialize sweeping table process B with transition add queue QF and delete queue Q-

1: for each episode do

2: Sett« 0
3: Get initial observations oq
4: Process initial state 59 <— arg max, g4(s|oo)
5. Store memory (og, 59) in M
6: while not terminal do
7: Set t +—t+1
8: Take action a; with e-greedy strategy based on Q(st_l, a) from B
9: Receive r¢, o4
10: Process new state §; <— argmax, ¢s(S|0t—k:t)
11: Store memory (o, ¢, ag,) in M
12: Put transition (8;_1,as,7¢,5;) on QF
13: if training step then
14: Set gradient list G < {}
15: for sample in minibatch do
16: Get (0j_g—1:j,a;) from random episode and step j in M
17: Process q¢(s;-1|0j—k—1:j—1); 4o(5;|0j—k:j) with encoder
18: Sample 5;_1, §; ~ g4 with temperature A
19: Process pg(0;|3;), pe(8;la;,$;-1) with decoder and transition network
20: Append Vg ¢ F (0, ¢;0j_k—1.5) to G
21: foriin {j—1, j} do
22: Process 57°" <— arg max, q¢($|0i—k:)
23: Get (51;1, iy Tiy Siy Qi1 Tit1, §i+1) from M
24: if 5, # 57 then
25: Put (§i_1, a;, T, §i), (51, Ait1yTit 15 §¢+1) on Q~
26: Put (51‘_1, a;, T, E?ew% (5?6’&)7 Aix1,Ti41, <§i+1) on Q+
27: Update §; < 57°" in M
28: end if
29: end for
30: end for
31: Perform a gradient descent step according to G with given optimizer
32: end if
33: end while
34: end for

2 Details to prioritized sweeping algorithm

We follow the “Prioritized Sweeping with reversed full backups” algorithm (Van Seijen and Sutton| 2013))
with some adjustments: a subroutine is added for transition deletions, and priority sweeps are performed
continuously except when new transition updates are received. The @)-values of unobserved state—action pairs
are never used, so we simply initialize them to 0. Finally, we kept a model of the expected immediate rewards
E[r|s, a] explicitly, although this is not necessary and was not used in any of the experiments presented; we
omit it here for clarity.

In the algorithm, discretized states 5 are simplified to s.

Algorithm 2 Prioritized Sweeping Process.
Initialize V(s) = U(s) = 0 for all s
Initialize Q(s,a) =0 for all s, a
Initialize Nyq, N5 =0 for all s, a, s’
Initialize priority queue P with minimum priority cutoff p,n
Initialize add queue Q1 and delete queue Q~

1: while True do

2: while QF, O~ empty do

Remove top state s’ from P
AU« V(s')=U(s)
U(s') + V(')
for all (s,a) pairs with N;; >0 do

Q(s,a) < Q(s,a) + YN, /Nsqo - AU

V(s) « maxp{Q(s,b)|Ng > 0}

add/update s in P with priority |U(s) — V(s)] if |U(s) — V(s)| > pmin
10: end for
11: end while
12: for (s,a,r,s') in QT do
13: Nyq < Nyg+1; N& « N5 +1
1 Q(s,0) « [Q(5,0)(No — 1) + 7 +3U(5)]/Noa
15: V(s) < maxp{Q(s,b)|Ng, > 0}
16: add/update s in P with priority |U(s) — V(s)| if |U(s) — V()| > Dmin
17: end for
18: for (s,a,r,s’) in Q= do

© P NPT Rw

19: Nyq < Nyg —1; N5« N5 —1
20: if Ny, > 0 then

21: Q(s,a) < [Q(s,a)(Nsa + 1) — (r +7U(5"))]/Nsa
22: else

23: Q(s,a) «+ 0

24: end if

25: if 3, Ny > 0 then

26: V(s) + maxp{Q(s,b)|Ng > 0}
27: else

28: V(s)+ 0

29: end if

30: add/update s in P with priority |U(s) — V(s)| if |U(s) — V()| > Pmin
31: end for
32: end while

3 Details to ()-value estimation

Here, we simplify the discretized states s to s for clarity. We denote S as the set of all states corresponding to
d-length binary strings, Q(s, a) as the Q-value estimate used for action selection, and Q(s, a) as the Q-value
for a state—action pair in the lookup table as determined by prioritized sweeping (which is only used if (s, a)
has been observed at least once).

In order to calculate Q(st, a) for a particular state—action pair, we first determine the Hamming distance
m to the nearest neighbour(s) s € S for which the action a has already been observed, i.e.

m= nleiél{D(st, $)|Nsq > 0}, (1)

where D(sy, s) is the Hamming distance between s; and s and Ny, denotes the number of times that action
a has been taken from state s. We then define the set Sy, of all m—nearest neighbours to state s,

Som = {5 € S|D(s1,5) = m}, (2)
and the @-value estimate used for action selection is then given by

) Niq s
Q)= ZSEZS""S) 3)
s€EStm sa

If (s¢,a) has already been observed, then m = 0, S, = {s:} and Q(s;,a) = Q(s¢,a). If m =1, Q(s, a)
corresponds to an experience—weighted average over all states s with a Hamming distance of 1 from sy, m = 2
to the average over neighbours with a Hamming distance of 2 etc.

Q(st,a) can be seen as the Q-value of an abstract aggregate state sy, consisting of the m-nearest
neighbours to s;. To show this, we introduce the index set of past experiences £, = {(7, p)|s = s,a¥ = a}
that contains all the time indices 7 for all episodes p where action a was chosen in state s (taking into
account all reassignments as described in section 2.3 of the main text and in . With the above
definition of Ny, we see that Ny, = |Esq|, i.e. there are Ny, elements in the set &,. With this and the

update mechanism of prioritized sweeping (Algorithm 2|) we can write

Qs,a) = — 3 r¢+7]\,1m S Vst (4)

N,
54 1 u€Esa THEEsa

where V(s) = maxp{Q(s,b)|Ng > 0}. Substituting this into we obtain

Q() ZsEStm [ET,ME‘SM ’I“¢ + ZT,MEt‘:sa V(S¢+1):|
St,) = .
ZSEStm Nsa

We now consider an aggregate state s, by treating all states s € Sy, as equivalent, i.e. &, o = {(7,u)|s# €
Sim,aft = a}. With this definition we get > s, 0. ee., = 2rpuee,, , and we obtain

(5)

~ ZT.,U.E&'S a Tﬁ + Y ZT HEEs, a V(S¢+1)
Q(st,a) = — = (6)

Stm @
= Q(st’ma CL),

where we used to obtain the second equality.

4 Extended latent dimensionality analysis

A 0005 — g-64 —
- d=32 005
53 — d=24 g -
2 —_—d=16 0 004 —
S 0000 3
IS IS
003
: W il :
o N o
2 -0.005 k’nl:g//"' P Y4) g oo
AT
z w [}l)‘/ Z o001
S 5‘4/,{‘3 /m“ A
0010 i 0.00
100% 100% —

N V

60% &

80%

60%

40% 40%

% Revisited State-Action Pairs

() % Revisited State-Action Pairs w

20% 20% /
0% 0%
3 4
8 8
c c
g 8 4
0 0
o o o
s s
= =
[=} Q 2
<] <]
a a
[N [N
gt g
2 g 1
< <

D 100%

80%

100%

80%

60%

60%

40% 40%

% Reassigned States
% Reassigned States

20% 20%

0% 0%

0e+00 2e+05 5e+05 8e+05 1e+06 1le+06 2e+06 2e+06 2e+06 0e+00 le+05 2e+05 3e+05 4e+05 5e+05
Agent Steps Agent Steps

Figure 1: Effect of latent dimensionality in a large maze (left column, Figure 3B in main text) and a small
maze (right column, Figure 6 in main text). [A] Average reward. [B] Cumulative percentage of revisited
state—action pairs over the course of training. The sharp transition at 50 000 steps corresponds to the
beginning of training. [C] The average lookup distance m as a function of time. [D] The average percentage
of observations from a minibatch that were reassigned to a different state during training.

5 Extended sample efficiency results

A 0.0075

—— VaST
0.0050 NZC QQAMA N
o ' —— Prioritized D-DQN A’,"!.a ' \ \“A
Q 00025 ~--- LSH N ‘."‘ \/AYi
: Szl s
'(% 0.0000 A, "v ' ‘ A"Y‘,‘A
: . / Y LA
g -0.0025 LA '\ % ’
S -0.0050 ’V‘ '4'
©
(]
Z -0.0075 ;
-0.0100 SN Le==a_ /NS
-0.0125
Agent Steps
B
—— VaST N\
0.0050 __ NEC A:A\N\/“‘/‘
o 00025 noriized D-DQN }/:'\'gj, \y’é\gé\%&\w/
8 S==NISH 1 v A\,‘V’ n \/
=~ 0.0000 N ’M \
E R
£ —0.0025 '
o PURIFL S
& -0.0050 A AN S
©
% -0.0075
-0.0100
-0.0125 A
0.0 0.2 0.4 0.6 0.8 1.0

Agent Steps 1le6

Figure 2: Performance comparison between models for [A4] rewarded forced runs (identical to Figure 5B in
main text) and [B] penalized forced runs. Black arrows indicate addition of teleporter and forced runs.

6 Effect of training on frame histories
A 50.0
47.5
45.0
425

40.0

ok (41 ,‘ i bakbotid 4 ‘ |
375 \‘ . M ‘“c\“"‘ﬁ","!‘1“‘:‘ i v"l‘*vl“u‘ AL LAl

\'klr\\»‘ &
35.0

325

30.0

10 ll
9 LH‘ ol | . l | I‘H I]“ “ Y . UM [T | |
ik i

U |1'h vu It
it w “: o

|

Iw 8 |
- ‘
14—1
= |

6 \1‘\ I

H'\ “{‘1111’\), ’ \\/ l \v
5 |
4
0 1 2 3 4 5
Agent Steps %108

Figure 3: The free energy cost function over the course of training on Pong, broken into [A] the recon-
struction terms and [B] the transition and entropy terms, conditioning on three additional past frames of
observations (k = 3) and no additional frames (k = 0). Training with past frames as input resulted in faster
learning on Pong (main text, Figure 7). As shown here, training on past frames conveys no added benefit in
reconstructing the current frame, but instead decreases the additional cost terms.

7 Hyperparameters

7.1 3D Navigation

For the three network—based models, hyperparameters were chosen based on a coarse parameter search in
two mazes (Figure 3 excluding the hazards and Figure 5 excluding the teleporter), using the previously
published hyperparameters as a starting point for the baselines (Pritzel et al., [2017; [Schaul et al., [2015;
Mnih et al., |2015). In all mazes except the smaller Plus—Maze, the agents explored randomly for 50 000
steps to initialize the replay memory before training; ¢ was then annealed from 1 to 0.1 over 200 000 steps.
In the Plus—Maze, the agents explored randomly for 10 000 steps and € was annealed over 40 000 steps. We
used € = 0.05 for evaluation during test epochs, which lasted for 1000 steps. In all tasks we used a discount
factor of 0.99.

The encoder of VaST and the networks for NEC and Prioritized D-DQN all shared the same architecture,
as published in (Mnih et all 2015), with ReLU activations. For all three networks, we used the Adam
optimizer (Kingma and Bayj, [2014) with 5, = 0.9, 82 = 0.999, and € = 1le—8, and trained on every 4th step.
Unless otherwise stated, we used a replay memory size of A/ = 500 000 transitions.

7.1.1 VaST

We used a latent dimensionality of d = 32 unless otherwise stated. For training, we used a minibatch size of
128 and a learning rate of 2 x le—4. For sweeping, we used ppin = 5 x le—5. For the Con-crete relaxation,
we used the temperatures suggested by Maddison et al.| (2016)): Ay = 2/3 for sampling from the posterior
and evaluating the posterior log—probability and Ay = 0.5 for evaluating the transition and initial state
log—probabilities.

For the decoder architecture, we used a fully—connected layer with 256 units, followed by 4 deconvolutional
layers with 4 x 4 filters and stride 2, and intermediate channel depths of 64, 64 and 32 respectively. We used
an MLP with 3 hidden layers (with 512, 256 and 512 units respectively) for each action in the transition
network.

7.1.2 NEC

We used a latent embedding of size 64, ny = 50 for the n—step @-value backups, and o = 0.1 for the
tabular learning rate. We performed a 50 approximate nearest—neighbour lookup using the ANNoy library
(pypi.python.org/pypi/annoy) on Differentiable Neural Dictionaries of size 500 000 for each action. For
training, we used a minibatch size of 32 and a learning rate of 5 x le—5.

7.1.3 Prioritized D-DQN

We used the rank—based version of Prioritized DQN with o = 0.7 and § = 0.5 (annealed to 1 over the course
of training). We used a minibatch size of 32 and a learning rate of le—4 and updated the target network
every 2000 steps.

7.1.4 LSH

The LSH-based algorithm does not use a neural network or replay memory, since the embedding is based
on fixed random projections. We achieved the best results with d = 64 for the latent dimensionality. For
prioritized sweeping, we used py,in = 5 X le—5.

7.2 Atari: Pong

We used a latent dimensionality of d = 64, a replay memory size of A" = 1 000 000 transitions, and annealed
€ over 1 000 000 steps. All other hyperparameters were the same as for navigation.

References

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXw:1412.6980, 2014.

C. J. Maddison, A. Mnih, and Y. Whye Teh. The Concrete Distribution: A Continuous Relaxation of
Discrete Random Variables. ArXiv e-prints arXiv:1611.00712, November 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540), 2015.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals, Demis Hass-
abis, Daan Wierstra, and Charles Blundell. Neural episodic control. In Proceedings of the 34th International
Conference on Machine Learning, volume 70, 2017.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

Harm Van Seijen and Richard S Sutton. Efficient planning in MDPs by small backups. In Proceedings of
the 30th International Conference on Machine Learning, volume 28, 2013.

	VaST pseudocode
	Details to prioritized sweeping algorithm
	Details to Q-value estimation
	Extended latent dimensionality analysis
	Extended sample efficiency results
	Effect of training on frame histories
	Hyperparameters
	3D Navigation
	VaST
	NEC
	Prioritized D–DQN
	LSH

	Atari: Pong

