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Abstract

We introduce the problem of grouping a finite
set V' into m blocks where each block is a sub-
set of V' and where: (i) the blocks are individu-
ally highly valued by a submodular function f
(both robustly and in the average case) while sat-
isfying block-specific matroid constraints; and
(ii) block scores interact where blocks are jointly
scored highly via f, thus making the blocks mu-
tually non-redundant. Submodular functions are
good models of information and diversity; thus,
the above can be seen as grouping V into ma-
troid constrained blocks that are both intra- and
inter-diverse. Potential applications include form-
ing ensembles of classification/regression models,
partitioning data for parallel processing, and sum-
marization. In the non-robust case, we reduce
the problem to non-monotone submodular maxi-
mization subject to multiple matroid constraints.
In the mixed robust/average case, we offer a bi-
criterion guarantee for a polynomial time deter-
ministic algorithm and a probabilistic guarantee
for randomized algorithm, as long as the involved
submodular functions (including the inter-block
interaction terms) are monotone. We close with
a case study in which we use these algorithms to
find high quality diverse ensembles of classifiers,
showing good results.

1. Introduction

In recent years, submodular functions (Fujishige, 2005) have
been used to address an increasingly wide variety of prob-
lems in machine learning and artificial intelligence. This in-
cludes energy functions in probabilistic models (Kohli et al.,
2007; Gotovos et al., 2015; Djolonga et al., 2016), influ-
ence in social network (Kempe et al., 2003; Mossel & Roch,
2007), crowd teaching (Singla et al., 2014), non-parametric
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Bayesian estimation (Reed & Ghahramani, 2013), document
and speech summarization (Lin et al., 2009; Lin & Bilmes,
2011; Li et al., 2012), image summarization (Tschiatschek
et al., 2014; Singla et al., 2016), and clustering (Narasimhan
et al., 2005).

In this paper, we introduce and apply a new submodu-
lar optimization problem related to partitioning, cover-
ing, and packing (Schrijver, 2003). Given a set function
f:2Y — Ry, it may be normalized (i.e., f(0)) = 0), mono-
tone non-decreasing (i.e., f(A) < f(B) whenever A C B),
and/or submodular (i.e., VA,B C V, f(A) + f(B) >
f(AU B) + f(AN B)). A function g is said to be super-
modular if —g is submodular. A function m is modular if it
is both submodular and supermodular. An m-partition of V'
is a set of m subsets, called blocks, that are non-intersecting
(AT N A}T = () forall i # j) and covering (U; AT = V). An
m-covering is a set of blocks that is required only to be cov-
ering. In an m-covering, we might also have a multiplicity
constraint which is expressed as a positive integer valued
vector k = (k, : v € V) where k, € Z,.. To be a (k, m)-
covering, we must have an m-covering with no multiplicity
violations, i.e., |[{i € [m]:v € AT} < k,,Vv € V. A
packing is a set of blocks that is required only to be non-
intersecting. When we wish to refer collectively either to a
partition, a covering, or a packing, we use the term grouping.

Given a finite set V' of size n = |V, a non-negative integer
m € [1,n], and m monotone non-decreasing submodular
functions f; : 2V — R fori € [m], the problem we study
finds a feasible m-partition, or m-covering, or m-packing
7 of V into m blocks AT, A%, ..., AT, that are “good” in a
way to be described below.

Feasibility of our groupings is expressed using matroids,
which are powerful combinatorial objects that can express
many useful constraints over sets. A matroid (Oxley, 2006)
M = (V,I) consists of a finite countable set V' and a
non-empty set of “independent” subsets Z = {I, I>, ...},
where I; C V, thatis down-closed (A C BeZ = AecT)
and where all maximally independent sets have the same
size (i.e., VA, B € T with |A| < |B|, 3v € B\ A having
A+vel).

For a feasible grouping to be good, it must have several

properties. First, the blocks in the grouping should both be
individually highly diverse and also all be highly diverse
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on average, where diversity is measured by the functions
{fi}ie{m)- For example, suppose the elements of the ground
set include animal names: “goldfish” and “carp” have a sim-
ilar meaning, as do “crow” and “raven”. But fish are very
different from birds, so each of the sets {goldfish, crow}
and {carp,raven} are diverse. Second, and more impor-
tantly, different blocks should not be redundant w.r.t. each
other. This avoids the case where two different blocks
convey the same information but in different ways, some-
thing that might happen even if the two blocks are disjoint.
For example, the sets A; = {goldfish,crow} and A =
{carp, raven} are similar and hence redundant, despite being
disjoint, and thus would be undesirable blocks when chosen
together. This distinction between disjointedness and non-
redundancy is particularly relevant in the context of submod-
ular scoring functions where, as measured by a submodular
function f, redundancy between A; and As; would mean
that f(A1 U Az) ~ f(A1) and/or f(A1 U Az) =~ f(A2).
We show below that this idea has a number of natural appli-
cations, one of which we evaluate in our case study section.

The paper is organized as follows. In the remainder of this
section, we formally define our contributions (Section 1.1)
and outline their utility in practice (Section 1.2). This sec-
tion also defines objectives that, when constrainedly opti-
mized, achieve our stated grouping goals. Section 2 places
this paper in the context of previous work, and demonstrates
that our contributions are novel. Section 3 formally out-
lines our approach and Section 4 details how we achieve
cross-block diversity. Section 5 provides algorithms for con-
strainedly optimizing our objectives. Notably, we show a
bi-criterion multiplicative approximation ratio guarantee for
a fast polynomial time deterministic algorithm (Theorem 1),
and also provide a randomized version of the algorithm giv-
ing a guarantee with high probability (using Lemma 4). The
guarantees themselves are rather complex, and they are best
appreciated in context, so we refer the reader to Theorem 1
and Lemma 4 for their statement. Lastly, Section 6 explores
a case study application where we show our approach can
be used to produce ensembles of machine learning models.
We demonstrate that our approach improves on previous
state-of-the-art results and moreover the groupings achieve
the aforementioned desired properties.

1.1. Contributions and Objectives

Our starting point is a recently introduced objective (Wei
et al., 2015) that takes a convex combination of a robust
and an average objective and finds a grouping 7 that scores
highly w.r.t.:

Fa(m) = M min £i(AF) +— Z fi(AD), ()

where the ;s are non-negative coefficients and the f;s may
be distinct submodular functions. Our first contribution is

that, unlike Wei et al. (2015), which only handles partitions,
we also handle coverings and packings. Our second con-
tribution is the inclusion of more general block-specific
constraints, expressed as intersections of matroids on an
expanded ground set. For example, we may wish for blocks
to not exceed a certain size, or for each block to correspond
to a sub-tree of some graph (Section 3).

Our third contribution, and the most significant, is the
introduction of cross-block interaction terms, enabling us to
avoid groupings containing pairs of blocks that jointly score
poorly. Our final objective is:
F(m) =F,(m)+ A3 min

i,j€[m],i<j

1
+ )\4m Z F; (A7, A7)
2

i,j€[m],i<j

Fi (A7, AT) (@)

While there are four A;s in this objective, typically only
two—one for scoring individual blocks, and the other for
pairwise interactions—will be nonzero. We interpret the
extra cross-block terms F; ; as rewarding inter-block di-
versity. For example, we could cause our objective func-
tion to prefer blocks with large pairwise symmetric dif-
ferences by taking F; ; (AT, A7) = |A?AA;T|. Alterna-
tively, in the partitioning or packlng setting, we could define
Fi (AT, AT) = f(AT U AT), in which case if there are
two blocks AT, AT with either f(AT U A7) =~ f(AT) or
f(AT U AT) =~ f(A7), then, under an interpretation of f as
a diversity measure, the two blocks would be redundant, a
situation we would prefer to avoid. We study several possi-
ble cross-block interactions, based on unions, intersections
and symmetric differences, and {sub,super}modular func-
tions thereof, and show that cross-block diversity preserves
submodularity in an expanded ground set under various
set-to-set mappings (Section 4).

Finally, we offer an approach that reduces the above problem
to either non-monotone (without robust terms, i.e. Ay = 0
and A3 = 0) or iterative monotone (with one robust term, i.e.
only one of A\ or A3 is nonzero) submodular maximization
subject to multiple matroid constraints (Section 5).

1.2. Applications

There are several applications in machine learning and data
science that fit naturally into this setting, two of which we
outline here.

Constructing ensembles of machine learning models:
Let V index a set of features, with subsets of V' correspond-
ing to subsets of features on which a model will be trained.
The classical feature selection problem would be to choose
a single set of features that result in a good model. We're
interested instead in the problem of finding an ensemble of
models, each trained on a different subset of features, that
together achieve good performance (Canini et al., 2016).
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This can be done by grouping V into A7, A7,... AT,
from which we form an ensemble of m models, the results
of which are aggregated together e.g. by averaging, vot-
ing, or taking the minimum. Given a submodular function
f 'V — Ry measuring the “quality” of a single feature
subset, one natural goal would be to choose each AT to be
individually high-quality, according to f. However, since
the ensemble outputs are being aggregated, it would be
purposeless to have redundant models—many results (e.g.
Kittler et al., 1998) suggest that when aggregating models,
it is best for them to be as diverse as possible (so that the er-
rors they make are independent, thereby improving accuracy
and reducing variance). This motivates us to seek blocks
that are as different from each other as possible. Individ-
ual model quality combined with diversity is exactly what
maximizing Eq. (2) encourages. Our case study (Section 6)
was performed in this setting and supports the benefits of
aggregating diverse models.

Multiple mutually diverse summaries: Data summariza-
tion involves finding a small but representative subset of a
large set. There are some cases where it is useful to have
multiple mutually diverse summaries, each of which is rep-
resentative of the whole. For example, in parallel machine
learning, where training data might need to be partitioned
onto multiple machines distributed across a network, it can
be useful to ensure that each subset is representative (so
that local computations are accurate) but also diverse (since
if two subsets are redundant, than so will the work that
each processor performs). As another example, consider the
problem of document summarization. It can be useful to
produce multiple representative but distinct summaries of
a collection of documents, as this ensures all concepts are
covered but different perspectives are preserved.

2. Previous Work

Special cases of our problem have previously been studied.
For example, maximizing Eq. (1) with 1 = A\ =1 — Ay
over the space of all otherwise unconstrained partitions cor-
responds to the submodular fair allocation (SFA) problem.
It is possible to achieve a O(1/(y/m log® m)) approxima-
tion (Asadpour & Saberi, 2010) via iteratively rounding
an LP solution when the f;’s are all modular, although
the problem is NP-hard to 1/2 + € approximate for any
€ > 0 (Golovin, 2005). For submodular f;’s, (Golovin,
2005) also gives a matching-based algorithm with a fac-
tor 1/(n — m + 1) approximation. A binary search algo-
rithm (Khot & Ponnuswami, 2007) has a better factor of
1/(2m — 1) that is independent of n. A less practical ap-
proach uses an ellipsoid approximation (Goemans et al.,
2009) of each submodular function and reduces SFA to
its modular version yielding an approximation factor of
1/(y/nm'/*lognlog®? m). (Wei et al., 2015) shows that
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Figure 1. Illustration of the mapping from the original ground set
V to the expanded ground set V*. A subset S C V* is shown
as red dots. The resulting blocks are shown at the bottom—e.g.
vz € AT, {vi,v;} C AZ, vn € A, etc.

a greedy algorithm has a 1/m approximation when all f;’s
are the same. Fair allocation problems are also studied
with sometimes non-submodular objectives (Ghodsi et al.,
2017). Maximizing Eq. (1) with 0 = A; = 1 — Ay over
the space of all partitions corresponds to the submodular
welfare problem (SW), which can be reduced to submodular
maximization on an expanded ground set under a partition
matroid constraint (Vondrak, 2008) using a greedy algo-
rithm, an approach having a 1/2 guarantee (Fisher et al.,
1978). The multi-linear extension of a submodular function
can be used in a continuous greedy approach that solves
SW with a (1 — 1/e) tight approximation factor (Vondrak,
2008). When A\; > 0, Ay > 0, (Wei et al., 2015) offers two
approaches. The first takes the best of the two solutions
computedunder \y =1 =1—-Jdsand \; =0=1-— )Xy
to provide a max(%, A23) guarantee, where « is the
approximation factor for the SFA problem and § the factor
for the SW problem. A second binary-search approach, the
inspiration for Algorithm 1, finds a partition whose block
objective value is at least max(%m, A2a)(OPT — ¢) for
an «— ¢ fraction of the blocks, where « is the approximation
factor of a SW solver and 0 < § < a.

The novelty of our optimization problem is that: (i) we
may form not only partitions but also (k, m)-coverings and
packings; (ii) we utilize a set of m matroids to define the
feasibility of the individual blocks in a grouping; and (iii)
we explicitly incorporate cross-block interaction terms.
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3. Approach

As with the strategy for the submodular welfare prob-
lem (Vondrak, 2008), our approach to maximizing Eq. (2)
starts by defining an expanded ground set V* (Figure 1),
consisting of m disjoint unions of the original ground set V,
i.e., the product set, defined as:

m
VX A& H-JV(” = H—J R®W = {(v,i) :v € V,ie[m]}
i=1 veV

where |V*| = nm and where W is the disjoint union oper-
ator. V> can be viewed as indexing into a n X m matrix
with V() (isomorphic to V) being the i™ column, and R(*)
(isomorphic to [m]) being the v™ row.

We also define a mapping from subsets S C V> to the
original ground set, and another mapping that selects the
original ground set elements corresponding to those in the
ith column as follows:

abs (S) 2{v € V : 3i € [m] with (v,i) € S}
col (S,) = abs (S N V(i))

Given S C V*, a grouping 7 is obtained by setting AT =
col (S,1) for all i € [m).

Using these mappings, we will ultimately (Eq. (5)) define
a new objective F'* : 2" — Ron the expanded ground
set that produces the valuation of a set S C V* indirectly,
via submodular functions defined on the original ground set,
using col (.9, %) to map subsets of V* to subsets of V.

3.1. Partitionings, Packings, and Coverings

During optimization, we will take the feasible set 7~ C
2V” to be the intersection of the independent sets of zero
or more matroids over V*. Such matroid independence
constraints can be used to ensure that any feasible solution
maps back to a partitioning, packing, or covering over V.
When we wish for a partition, we can maximize F'* subject
to a partition matroid on V* whose independent sets are
defined based on the “rows”. That is, the independent sets
are defined as follows:

Ik:{SQVX Vo eV, |snR®

<k} ®

where k = (ky,, ky,, ..., kv, ) and Vo, k, = 1. In words,
at most one “copy” of each element of the original ground
set may be present. To express (k, m)-covering constraints
on V, we allow Vv, k, > 1. A covering and partition is
obtained when maximizing a monotone /', since any can-
didate solution that is not yet a covering or partition can be
made so by adding elements until all constraints are met
with equality.

Likewise, a packing constraint can be expressed using a
£-uniform matroid with independent sets:

Iy ={SCV*:|S| </} 4)

If we set F* = Z, N Iy, where k = 1 is the vector of all 1s,
this expresses a packing constraint, and is the intersection
of two matroids defined on V*. In fact, the intersection of
a matroid and a ¢-uniform matroid is still a single matroid,
called its ¢-truncation (Schrijver, 2003), and hence Z, N Zy
constitutes only a single matroid.

3.2. Block Constraints

Having discussed how matroid constraints on the rows of
V* can be used to express the partitioning, packing and cov-
ering problems, we now turn our attention to how matroid
constraints on the columns can be used to represent more
general constraints on the blocks. Imagine that each block is
required to satisfy its own matroid independence constraint:
we are given m matroids {(V,Z;) }ie[m) With independent
sets Z; for i € [m], where each matroid is defined over
the original ground set V. Using the expanded ground set
and taking S C V*, we have that AT € Z, if and only if
col (S,1) € Z;.

Given a size-m set of matroids {M;},c(,, where
M; = (V,I;), the matroid union theorem (Schri-
jver, 2003, Thm. 42.1a) states that a new matroid
can be defined on V* with independent sets Z, =
{LHWwlhhW...WI, :I; €T, Vi€ [m]}. Despite there be-
ing a matroid for each block, the disjoint union of these
matroids is a single matroid on V*.

One of the simplest examples of such constraints, and the
one that we use in our case study (Section 6), simply places
an upper bound on the number of elements within each
block. The resulting matroid is a column-based analogue of

Eq. 3).

4. Cross-block Interaction

In order to define the expanded objective F'* in terms of
submodular functions on the original ground set V', we will
define set functions via mappings from subsets of an ex-
panded ground set to subsets of the original ground set. The
next result shows that in some cases, composition and set-
to-set mappings preserve submodularity or supermodularity.

Lemma 1. Ler V'V be two ground sets and define a set-to-
set mapping function G : V' 5 9V Also, let f:2V =Ry
be monotone non-decreasing and submodular, and let g :
2V — R, be monotone non-decreasing and supermodular.
Then:

1. If G is monotone non-decreasing (i.e. G(S) C G(T)
whenever S C T), then f o G and g o G are both
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monotone non-decreasing."

2. IfVS, T CV',G(SUT) = G(S) UG(T)/and G(Sn
T) € G(S)NG(T), then f o G : 2V — Ry is
submodular.

3. IVS, TCV,GSUT) D G(S)UG(T) and G(SN
T) = G(S) N G(T), then go G : 2V — Ry is
supermodular.

Proof. In Appendix C. O
The objective defined in Eq. (2) involves cross block in-
teraction terms via I j(AT, AT) for all i,j € [m]. The
ground set expansion defined in Section 3, combined with
the above lemma, surprisingly allows many such interaction
terms to be handled in a way that preserves submodular-
ity. To this end, we define three additional set-to-set (i.e.
2V 5 2V) mappings corresponding to union, intersection,
or symmetric difference of the ith and jth mapped subsets:

G (8) £ col (S,4) Ocol (S, 5)

where [J = U, N or A. The following lemma, which largely
follows from Lemma 1, shows that these can be used in a
way that preserves sub/supermodularity:

Lemma 2. Let f : 2V — R be monotone non-decreasing
submodular, m : 2V — R be non-negative modular, and
g : 2V = R be monotone non-decreasing supermodular.
Then f o ij : 2V 5 R is monotone non-decreasing sub-
7 . 2V><

modular, g o G?j — R is monotone non-decreasing

X . .
supermodular, and m o GiAj : 2Y7 = R is non-negative
submodular.

Proof. In Appendix C. O

If one wishes to reduce the number of common elements
in pairs of blocks, a useful cross-block interaction term
is |V] — |G2j (S)|. Because the cardinality function is
non-decreasing and modular, ng (S )| is non-decreasing
supermodular by Lemma 2. A submodular function (in-
cluding the constant |[V'|) minus a supermodular function
is submodular, and thus, the above interaction function is
submodular and non-increasing.

In the partitioning and packing settings, if we have a non-
decreasing submodular function f that measures the diver-
sity of a set, one could use f (ij (5)), which is both sub-
modular and non-decreasing, as the cross-block interaction
term, to encourage pairwise diversity. If one wants blocks to
have large pairwise differences, then a natural cross-block
interaction term is |ij (S)]. This function is again sub-
modular, but is non-monotone (it is neither non-increasing
nor non-decreasing).

'Note that “o” denotes function composition.

4.1. Submodular Approximation of f o Gﬁ y

Unfortunately, f o ij is not necessarily submodular, even
for a submodular f, and has no obvious difference repre-
sentation (Iyer & Bilmes, 2012). However, we can derive
(non-monotone) submodular bounds based on the curvature.
A normalized monotone submodular function f : 2 — R
has curvature ¢ if f(v|S) > (1 — ¢)f(v) forall S C V
and V > v ¢ S, where f(v|S) = f(S U {v}) — f(S5)
is the gain. Curvature is easily computed in O(n) time
since ¢ = 1 — min,ey f(v|V \ v)/f(v), where ¢ € [0, 1].
Modular functions have ¢ = 0, fully curved functions have
¢ = 1, and submodular function classes can be restricted to
those having a particular c, since many useful submodular
functions have non-extreme curvature, e.g. sums of non-
asymptoting concave functions composed with non-negative
modular functions (Stobbe & Krause, 2010).

Given a set X C V, a normalized monotone submodu-
lar function f with curvature ¢, and any ordering ¢ =
(01,02,...,04) of Vsuchthat X = {01,02,...,0/x}.a
modular subgradient mjf of f can be obtained (Fujishige,
2005) where mf (X) = f(X), VY, mjf(Y) < f(Y), and
where mff(ai) = f(oilo1,09,...,0;—1). Since f is mono-
tone, the subgradient is non-negative. Also, for any Y, sub-
modularity ensures that mf (v) > (1 — ¢)f(v) and hence
fy) > mf(Y) > (1—¢)f(Y) for any X,Y, where the
second inequality follows since f is normalized submodular.
This enables us to obtain a non-monotone submodular lower
bound via fonj(S) > meij(S’) > (l—c)fOGiA’j(S)
for any X € V that approximates the original problem:

Lemma 3. Given any algorithm that produces a solu-
tion S having the property that F(S) + m;{ o ij(S) >

amaxge Fx (F(S) + mff o G’fj(S)) for a > 0, then S
also has the property that F(S) + f o ij(g) > a(l -
€) Mmaxge Fx (F(S) +fo ij(S)) = a1l — ¢)OPT.

Proof. In Appendix C. O

5. Algorithms and Optimization

Eq. (2) can now be written in terms of the expanded ground
setas F* : 2V 5 R:

F*(S) = ®)
. . A2 .
A1 min fi(col (S,4)) + o Z fi (col(S,17))
1€[m]
A
bi€ml i<y (2) i,j€[m],i<j

Our approach in maximizing Eq. (2) subject to grouping
constraints is to optimize Eq. (5) subject to the intersection
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Algorithm 1 Adaptation of the GeneralGreedSAT algorithm of Wei et al. (2015) to handle matroid constraints, cross-
block interactions, and coverings/packings as well as partitions. The functions f{*,..., fX : 2V — R are monotone

non-decreasing, non-negative and submodular, 7;x is a uniform upper bound on the f7s,each Iy, ..., T, C 2V" is the
set of independent sets of a matroid on V*, and CALLBACK is a helper function that returns an «-approximation to the

o x
submodular maximization problem argmaxgce 7, F

(S) in polynomial time.

Bisection (e, V<, m, f,...
Define F* (S) = (ZZL min {Cv I (S)}) /m
Initialize ¢min = 0, Cmax = Nfx, S =
While cpax — Cmin > €

A N A W=

Return S

S mp<o kI, ..., I, CALLBACK, a):

Let ¢ = (Cmax — Cmin) /2 and S. = CALLBACK (V*, FX k,Zy,...,Ty)
If FX (S.) < ac, then let cipax = ¢, else let ¢pin = cand S = S,

of multiple matroid constraints defined on the expanded
ground set. The matroid constraints ensure that the solution
can be transformed back to the original ground set, while
preserving the approximation ratio. The algorithm used
depends both on which terms are present (i.e. have nonzero
associated As), and whether the submodular functions are
monotone.

When the overall objective is non-monotone submodular
(so A1 = 0 and A3 = 0), the problem of maximizing Eq. (5)
becomes one of non-monotone submodular maximization
subject to matroid constraints. One can use algorithms such
as Lee et al. (2010); Ward (2012), or the more recent, faster,
and scalable approach given in Feldman et al. (2017). When
using fo ij (S) as anon-submodular block pair reward for
non-robust coverings, a modular approximation adjusts any
guarantees by 1 — ¢ (Lemma 3). The non-robust packing
or partitioning problem reduces to monotone submodular
maximization subject to two matroid constraints, for which
there are a variety of good solutions. For example, the
efficient greedy algorithm (Nemhauser & Wolsey, 1978)
solves this problem with a 1/3 guarantee while more recent
but also more complicated approaches, such as Ward (2012),
can solve this with an approximation ratio of (k 4+ 3)/2 + €
for ¢ matroids (here k& = 2).

When all of the involved submodular functions are mono-
tone non-decreasing, a single robust term can be handled
(one of \; or A3 may be nonzero). Here, we are inspired
by an approach originally used for robust submodular opti-
mization (Krause et al., 2008) where the goal is to find the
max of the min over a set of submodular functions subject
to a cardinality constraint. In Wei et al. (2015), this was
extended to apply to a mixed robust/average objective over
partitions. It turns out that essentially the same idea—this
is Algorithm 1—applies to the more general case of cov-
erings and packings, as well as when there are matroids
constraining each block individually, and also when the
blocks’ scores interact.

In brief, this algorithm proceeds by iteratively optimizing
inner submodular optimization problems using a provided
CALLBACK function, which is assumed to run in polyno-
mial time, and return an a-approximation. The final algo-
rithm achieves a nearly constant-factor approximation for
a constant fraction of the blocks. As the fraction of the
blocks shrinks, the guarantee for those blocks grows, and
the guarantee holds simultaneously for a range over the
fractions.

Theorem 1. A call to Algorithm 1 will perform
[logy (117/€)] calls to CALLBACK, each of which will per-
Sform polynomially many evaluations of F.*, each of which
evaluates all m f;*s once.

The resulting set S will satisfy the constraints, and for any
~v € (0, ) there will exist at least [m (o —7) /(1 —~)]
indices i € [m] for which ) (S) > ~ (OPT — €), where
OPT = maxgene 7, 17" (S) is the optimum.

Proof. The proof technique follows that of Wei et al. (2015,
Theorem 11), but we include it in Appendix C for complete-
ness, and to show that it applies to our more general case
(i.e., covers, packings, block-specific matroid constraints,
and cross-block interactions). O

This algorithm depends on a CALLBACK that deterministi-
cally returns an o-approximation to an inner submodular
optimization problem. However, many submodular max-
imization algorithms are randomized, and have approxi-
mation guarantees that hold only in expectation. With a
bit of extra work, such an algorithm can be used as well.
First, we must convert the in-expectation guarantee into a
high-probability guarantee using the following lemma that
requires only an approximation bound:

Lemma 4. Let A be a randomized algorithm for submod-
ular maximization that has an o-approximation guarantee
in expectation, i.e. for which E[f (S)] > af (S*), where f
is the submodular function we wish to maximize, S is the
result of algorithm A, and S* is the maximizer of f. For
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parameters (3,0 € (0,1), suppose that we run algorithm A
k times, where k = [(ln 3)/ (ln 11:aaﬂ>—‘, vielding results
S1, 82, ..., S Take S = argmaxg, ;ciy f (i) to be the
best of these results. Then S will have an approximation
ratio of a3, i.e. f(S) > aBf (S*), with probability 1 — 4.

Proof. In Appendix C. O

As was shown in Theorem 1, CALLBACK will be called
at most [log, (17 /€)] times, so it follows from the union
bound that if we use the procedure of Lemma 4, then, with
probability 1 — ¢ [log, (¢ /€)], every call to CALLBACK
will return an af-approximation, and the result of Theo-
rem 1 will hold (with a3 substituted for «).

The ability to handle a mixed robust/average objective, how-
ever, comes at a cost. Because Theorem 1 only applies
when all of the involved submodular functions are mono-
tone non-decreasing, we cannot use the intersection and
symmetric-difference-based cross-block interaction terms—
only the union-based terms are possible. Non-monotone
interaction terms can only be used with a non-robust objec-
tive. Finding an algorithm that can handle both robustness
and non-monotone interactions is therefore an interesting
open problem that we leave to future work.

6. Case Study

We validate our proposed approach with a case study in
the setting of Canini et al. (2016), in which the task is to
construct an ensemble-of-lattices machine learning model.
Each lattice model (Gupta et al., 2016) in the ensemble is
defined on a subset of the features—intuitively, two features
interact non-linearly if they are included in the same lattice,
and interact only linearly if they are not—so our primary
goal is to choose subsets of features that interact well with
each other, with our secondary goal being to reduce redun-
dancy in pairs of subsets. Notice that this is not a feature
selection problem—typically, every feature will be included
in at least one lattice—the task is to determine which fea-
tures should interact non-linearly. For more details, please
see Appendix A.

Our goals are to demonstrate that (i) we can successfully
find good approximate maximizers of the proposed objective
function, and (ii) the inclusion of pairwise diversity terms
results in improved diversity.

We compare to two baselines, the “Crystals” and “Random
Tiny Lattice (RTL)” algorithms of Canini et al. (2016). The
first of these—the current state-of-the-art—is essentially a
heuristic for choosing diverse ensembles, while the second
simply chooses each lattice’s features uniformly at random.

The dataset contains 463 154 samples with 29 informative

features plus a binary label indicating whether a particular
visual element should be displayed on a web page. The
dataset was randomly partitioned into training, validation
and testing subsets containing 80%, 10% and 10% of the
data, respectively (the validation set was only used for hyper-
parameter optimization of the baseline Crystals algorithm).

6.1. Choice of f

Our ground set V' consists of the n = 29 features. We began
by finding a submodular function f : 2" — R, for which
f (S) represents roughly how well a single lattice model on
the features in S would perform. To this end, we chose f
to have the form f (S) = 5+ >_ 4. 4 @a\/|AN S|, where
A consists of all 1- and 2-element subsets of V. Observe
that y/|A N S| is submodular, non-negative, and monotone
non-decreasing, so if 8 and a4 are non-negative, then f
will likewise be submodular, non-negative, and monotone.

Based on 9 191 random subsets of sizes between two and
ten, we learned the 3 and a4 parameters to minimize the
squared error between f (.S) and the training accuracy of a
lattice model trained on the features contained in S. The
result is the f that we use throughout.

6.2. Covering

Our goal here is essentially identical to Canini et al. (2016)—
we seek to choose m = 8 lattices, each containing up to 8
features (via a matroid constraint), by finding the S C V*

maximizing:

OFICHETIER S DI CHE IO

i€[m)] i,JE[m]Ni#£]

The 8 lattices together should have good performance (the
first term), and the feature subsets should be relatively pair-
wise distinct, i.e. have large symmetric differences (this
is the second term). We henceforth refer to the first (intra-
block diversity) term, representing the individual quality of
the lattices, as the “quality” term, and the second (not includ-
ing the \4-scaling), representing the inter-block diversity,
as the “diversity” term.

We optimized Eq. (6) for various choices of A4 using the
randomized algorithm of Feldman et al. (2017) combined
with the procedure of Lemma 4, with 5 = 0.5 and § =
0.1. Each optimization took between 2 and 30 seconds
on a Xeon E5-2690. The results are shown in Figure 2.
The left-hand plot shows that, as the trade-off parameter
A4 increases, the relative magnitude of the quality term
decreases, and of the diversity term increases, as expected.
The right-hand plot shows that, when the A4 parameter
is sufficiently large, the diversity term is “balanced” with
the quality term (or is larger), and the ensembles found
by our approach outperform those of both the state-of-the-
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Figure 2. (Left) The magnitudes of the “quality” and “diversity” terms of Eq. (6) as functions of the trade-off parameter A4, averaged
over ten independent runs. (Right) The testing accuracies of our proposed approach, as well as the “Crystals” and “Random Tiny Lattices”
(RTL) algorithms of Canini et al. (2016), again as functions of A4. The plotted results of our algorithm are averaged over ten independent
runs, with the larger point being that for which the validation accuracy was maximized. For the RTL results, we trained 1000 random
models. The lower and upper bounds of the plot are the worst and best testing accuracies (respectively) over all models, and the dotted
horizontal lines are the testing accuracies of the RTL model at the 10th, 20th, . . ., 90th percentiles.

art Crystals algorithm (which uses heuristics to encourage
diversity) and the 90th percentile of RTLs, albeit by a small
amount. More importantly, the leftmost points in the right-
hand plot of Figure 2, in which the diversity portion of the
objective is essentially zero, have significantly worse testing
accuracies than those with larger \4s. This indicates that the
use of pairwise diversity terms may be broadly beneficial to
submodular grouping problems.

6.3. Partitioning and Packing

Appendix B contains additional case studies exploring the
efficacy of the mixed robust/average objective for partition-
ing and packing, where the task is to maximize:

> Flcol (S,4)) + As F(G9) O

i€[m]

min

i, E[m]nij
Unlike in Eq. (6), the “diversity” term is a minimum over
monotone non-decreasing submodular functions, instead
of a sum over non-monotone submodular functions. The
results demonstrate that Algorithm 1 is effective at optimiz-
ing this objective, but also reveal that, for this problem and
data set, the above diversity term is not helpful—and can be
harmful if the quality term is overpowered. The lesson is
that cross-block diversity is not a magic bullet—it must be
chosen appropriately for the problem.

6.4. Discussion

We have introduced a new class of submodular optimization
problems involving grouping ground elements together into
multiple sets and the first, as far as we know, to involve

block-block interaction terms as well as general (matroid
intersection) block constraints.

Another potential application of our method is sensitivity
analysis of machine learning systems (i.e., does an ML
model vary greatly when trained on different representative
but mutually diverse subsets of the training data?) and also
a form of robustness analysis (i.e., how does an ML system
perform when tested on different representative but mutually
diverse subsets of test data?). These are important questions,
considering for example the recent interest in adversarial
examples in ML.

Also, since convex combinations of submodular compo-
nents preserve submodularity, it might also in the future
be interesting to consider some form of Pareto frontier of
solution sets for different convex mixtures.
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