
Supplementary

Code for the experiments in this paper can be found at:
https://github.com/chriscremer/Inference-Suboptimality and
https://github.com/lxuechen/inference-suboptimality.

7. Model Architectures and Training
Hyperparameters

7.0.1. 2D VISUALIZATION

The VAE model of Fig. 2 uses a decoder p(x|z) with ar-
chitecture: 2 � 100 � 784, and an encoder q(z|x) with
architecture: 784� 100� 4. We use tanh activations and a
batch size of 50. The model is trained for 3000 epochs with
a learning rate of 10�4 using the ADAM optimizer (Kingma
& Ba, 2014).

7.0.2. MNIST & FASHION-MNIST

Both MNIST and Fashion-MNIST consist of a training and
test set with 60000 and 10000 datapoints respectively, where
each datapoint is a 28x28 grey-scale image. We rescale the
original images so that pixel values are within the range
[0, 1]. For MNIST, We use the statically binarized version
described by (Larochelle & Bengio, 2008). We also binarize
Fashion-MINST statically. For both datasets, we adopt the
Bernoulli likelihood for the generator.

The VAE models for MNIST and Fashion-MNIST exper-
iments have the same architecture. The encoder has two
hidden layers with 200 units each. The activation function is
chosen to be the exponential linear unit (ELU, Clevert et al.
(2015)), as we observe improved performance compared to
tanh. The latent space has 50 dimensions. The generator
is the reverse of the encoder. We follow the same learning
rate schedule and train for the same amount of epochs as
described by (Burda et al., 2016). All models are trained
with the a batch-size of 100 with ADAM.

In the large encoder setting, we change the number of hidden
units for the inference network to be 500, instead of 200.
The warm-up models are trained with a linear schedule over
the first 400 epochs according to Section 5.6.

The auxiliary variable of requires a couple distributions:
q(v0|z0) and r(vT |zT). These distributions are both factor-
ized Gaussians which are parameterized by MLP’s with two
hidden layers, 100 units each, with ELU activations.

The flow transformation q(zt+1, vt+1|zt, vt) involves func-
tions �1, �2, µ1, and µ2 from Eqn. 9 and 10. These also

have two hidden layers with 100 units each and ELU units.

7.0.3. 3-BIT CIFAR

CIFAR-10 consists of a training and test dataset with 50000
and 10000 datapoints respectively, where each datapoint is
a 32⇥ 32 RGB image. We rescale individual pixel values
to be in the range [0, 1]. We then statically binarize the
scaled pixel values by setting individual pixel values of
channels to 1 if the rescaled value is greater than 0.5 and
0 otherwise. In this manner, we can model the observation
with a factorized Bernoulli likelihood. We call this binarized
CIFAR-10 dataset as 3-BIT CIFAR, since 3 bits are required
to encode each pixel, where 1 bit is needed for each of the
channels. We acknowledge that such binarization scheme
may reduce the complexity of the original problem, since
originally 24 bits were required to encode a single pixel.
Nevertheless, the 3-bit CIFAR dataset is still much more
challenging compared MNIST and Fashion. This is because
784 bits are required to encode one MNIST/Fashion image,
whereas for one 3-bit CIFAR image, 3072 bits are required.
Most notably, we were able to validate our AIS estimates
using BDMC with the simplified dataset. This, however,
was not achievable in any reasonable amount of time with
the original CIFAR-10 dataset.

For the latent variable, we use a 50-dimensional factorized
Gaussian for q(z|x). For all neural networks, ELU is cho-
sen to be the activation function. The inference network
consists of three 4 by 4 convolution layers with stride 2,
batch-norm, and 64, 128, 256 channels respectively. Then a
fully-connected layer outputs the 50-dimensional mean and
log-variance of the latent variable. Similarly, the generator
consists of a fully-connected layer outputting 256 by 2 by 2
tensors. Then three deconvolutional layers each with 4 by
4 filters, stride 2, batch-norm, and 128, 64, and 3 channels
respectively. For the model with expressive inference, we
use three normalizing flow steps, where the parametric func-
tions in the flow and auxiliary variable distribution also take
in a hidden layer of the encoder.

We use a learning rate of 10�3. Warm-up is applied with
a linear schedule over the first 50 epochs. All models are
trained with a batch-size of 100 with ADAM. Early-stopping
is applied based on the performance computed with the
IWAE bound (k=1000) on the held-out set of 5000 examples
from the original training set.

Inference Suboptimality in Variational Autoencoders

7.1. Inference Generalization

These models are trained with batch size 50 and latent di-
mension size of 20. The rest of the hyperparameters are
equivalent to Section 7.0.2.

Architecture of qFlow: The flow transformation involves
functions �1, �2, µ1, and µ2 from Eqn. 9 and 10. Each
function is an MLP with a 50 unit hidden layer and ELU
activations. We apply this flow transformation twice.

Fig. 4 are the plots for the qAF model. The transformations
are the same as qFlow, but rather than partitioning the latent
variable, we introduce an auxiliary variable. The auxiliary
variable also requires a reverse model r(v|z) which is a
factorized Gaussian parameterized by an MLP with a 50
unit hidden layer and ELU activations.

Comparing AF in Fig. 4 to Flow in Fig. 3, we see that the
AF has a larger approximation gap. This increase is likely
due to the KL (q(v|z, x)kr(v|x, z)) term of the auxiliary
variable lower bound from 2.2.2. This motivates also using
expressive approximations for the reverse model r(v|z).

Figure 4. Gaps over epochs of the AF (auxiliary flow) model.

7.2. Influence of Flows On Amortization Gap
Experiment

The aim of this experiment is to show that the parameters
used for increasing the expressiveness of the approxima-
tion also contribute to reducing the amortization error. To
show this, we train a VAE on MNIST, discard the encoder,
then retrain two encoders on the fixed decoder: one with a
factorized Gaussian distribution and the other with a param-
eterized ’flow’ distribution. We use fixed decoder so that
the true posterior is constant for both encoders. See 5.3 for
the results and below for the architecture details.

The architecture of the decoder is: DZ � 200� 200�DX .
The architecture of the encoder used to train the decoder
is DX � 200� 200� 2DZ . The approximate distribution
q(z|x) is a factorized Gaussian.

Next, we describe the encoders which were trained on the
fixed trained decoder. In order to highlight a large amorti-
zation gap, we employed a very small encoder architecture:
DX � 2DZ . This encoder has no hidden layers, which

greatly impoverishes its ability and results in a large amorti-
zation gap.

We compare two approximate distributions q(z|x). Firstly,
we experiment with the typical fully factorized Gaussian
(FFG). The second is what we call a flow distribution.
Specifically, we use the transformations of (Dinh et al.,
2017). We also include an auxiliary variable so we don’t
need to select how to divide the latent space for the trans-
formations. The approximate distribution over the la-
tent z and auxiliary variable v factorizes as: q(z, v|x) =
q(z|x)q(v). The q(v) distribution is simply a N(0,1) dis-
tribution. Since we’re using a auxiliary variable, we also
require the r(v|z) distribution which we parameterize as
r(v|z): [DZ] � 50 � 50 � 2DZ . The flow transformation
is the same as in Section 3.2, which we apply twice.

7.3. Computation of the Determinant for Flow

The overall mapping f that performs (z, v) 7! (z0, v0) is
the composition of two sheer mappings f1 and f2 that re-
spectively perform (z, v) 7! (z, v0) and (z, v0) 7! (z0, v0).
Since the Jacobian of either one of the sheer mappings is
diagonal, the determinant of the composed transformation’s
Jacobian Df can be easily computed:

det(Df) = det(Df1)det(Df2)

=
⇣ nY

i=1

�1(z)i
⌘⇣ nY

j=1

�2(v
0)j

⌘
.

7.4. Annealed Importance Sampling

Annealed importance sampling (AIS, Neal (2001); Jarzyn-
ski (1997)) is a means of computing a lower bound to
the marginal log-likelihood. Similarly to the importance
weighted bound, AIS must sample a proposal distribution
f1(z) and compute the density of these samples, however,
AIS then transforms the samples through a sequence of
reversible transitions Tt(z0|z). The transitions anneal the
proposal distribution to the desired distribution fT (z).

Specifically, AIS samples an initial state z1 ⇠ f1(z) and
sets an initial weight w1 = 1. For the following annealing
steps, zt is sampled from Tt(z0|z) and the weight is updated
according to:

wt = wt�1
ft(zt�1)

ft�1(zt�1)
.

This procedure produces weight wT such that E [wT] =
ZT /Z1, where ZT and Z1 are the normalizing constants of
fT (z) and f1(z) respectively. This pertains to estimating the
marginal likelihood when the target distribution is p(x, z)
when we integrate with respect to z.

Typically, the intermediate distributions are simply defined
to be geometric averages: ft(z) = f1(z)1��tfT (z)�t ,

Inference Suboptimality in Variational Autoencoders

where �t is monotonically increasing with �1 = 0 and �T = 1.
When f1(z) = p(z) and fT (z) = p(x, z), the intermediate
distributions are: fi(x) = p(z)p(x|z)�i .

Model evaluation with AIS appears early on in the setting
of deep belief networks (Salakhutdinov & Murray, 2008).
AIS for decoder-based models was also used by Wu et al.
(2017).

7.5. Extra MNIST Inference Gaps

To demonstrate that a very small inference gap can be
achieved, even with a limited approximation such as a fac-
torized Gaussian, we train the model on a small dataset. In
this experiment, our training set consists of 1000 datapoints
randomly chosen from the original MNIST training set. The
training curves on this small datatset are shown in Fig. 5.
Even with a factorized Gaussian distribution, the inference
gap is very small: the AIS and IWAE bounds are overlap-
ping and the VAE is just slightly below. Yet, the model is
overfitting as seen by the decreasing test set bounds.

Figure 5. Training curves for a FFG and a Flow inference model on
MNIST. AIS provides the tightest lower bound and is independent
of encoder overfitting. There is little difference between FFG and
Flow models trained on the 1000 datapoints since inference is
nearly equivalent.

