
Mix & Match – Agent Curricula for Reinforcement Learning [Appendix]

Wojciech Marian Czarnecki * 1 Siddhant M. Jayakumar * 1 Max Jaderberg 1 Leonard Hasenclever 1

Yee Whye Teh 1 Simon Osindero 1 Nicolas Heess 1 Razvan Pascanu 1

1 Network architectures
Default network architecture consists of:

• Convolutional layer with 16 8x8 kernels of stride 4

• ReLU

• Convolutional layer with 32 4x4 kernels of stride 2

• ReLU

• Linear layer with 256 neurons

• ReLU

• Concatenation with one hot encoded last action and
last reward

• LSTM core with 256 hidden units

– Linear layer projecting onto policy logits, fol-
lowed by softmax

– Linear layer projecting onto baseline

Depending on the experiment, some elements are shared
and/or replaced as described in the text.

2 PBT (Jaderberg et al., 2017) details
In all experiments PBT controls adaptation of three hyper-
parameters: α, learning rate and entropy cost regularisa-
tion. We use populations of size 10.

The explore operator for learning rate and entropy reg-
ularisation is the permutation operator, which randomly
multiplies the corresponding value by 1.2 or 0.8. For α
it is an adder operator, which randomly adds or substracts
0.05 and truncates result to [0, 1] interval. Exploration is
executed with probability 25% independently each time
worker is ready.

*Equal contribution 1DeepMind, London, UK. Correspon-
dence to: Wojciech M. Czarnecki <lejlot@google.com>, Sid-
dhant M. Jayakumar <sidmj@google.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

The exploit operator copies all the weights and hyper-
parameters from the randomly selected agent if it’s perfor-
mance is significantly better.

Worker is deemed ready to undergo adaptation each 300
episodes.

We use T-Test with p-value threshold of 5% to answer the
question whether given performance is significantly better
than the other, applied to averaged last 30 episodes returns.

Initial distributions of hyperparameters are as follows:

• learning rate: loguniform(1e-5, 1e-3)

• entropy cost: loguniform(1e-4, 1e-2)

• alpha: loguniform(1e-3, 1e-2)

2.1 Single task experiments

The eval function uses πmm rewards.

2.2 Multi task experiments

The eval function uses πmt rewards, which requires a sep-
arate evaluation worker per learner.

3 M&M details
λ for action space experiments is set to 1.0, and for agent
core and multitask to 100.0. In all experiments we allow
backpropagation through both policies, so that teacher is
also regularised towards student (and thus does not diverge
too quickly), which is similar to Distral work.

While in principle we could also transfer knowledge be-
tween value functions, we did not find it especially helpful
empirically, and since it introduces additional weight to be
adjusted, we have not used it in the reported experiments.

4 IMPALA (Espeholt et al., 2018) details
We use 100 CPU actors per one learner. Each learner is
trained with a single K80 GPU card. We use vtrace correc-
tion with truncation as described in the original paper.

Agents are trained with a fixed unroll of 100 steps. Optimi-
sation is performned using RMSProp with decay of 0.99,

M&M– Agent Curricula for RL

Figure 1. Exemplary tasks of interest from DM Lab environment (Beattie et al., 2016). From left: Nav maze static 02 – The task involves
finding apples (+1 reward) and a final goal (+10 reward) in a fixed maze. Every time an agent finds the goal it respawns in a random
location, and all objects respawn too. Explore Object Locations Small – The task is to navigate through a 3D maze and eat all the apples
(each gives +1 reward). Once it is completed, the task restarts. Each new episode differs in terms of apples locations, map layout as well
as visual theme. Lt Horseshoe Color – the task is a game of lasertag, where player tries to tag as many of high skilled built-in bots as
possible, while using pick-up gadgets (which enhance tagging capabilities).

epsilon of 0.1. Discounting factor is set to 0.99, baseline
fitting cost is 0.5, rewards are clipped at 1. Action repeat is
set to 4.

5 Environments
We ran DM Lab using 96 × 72 × 3 RGB observations, at
60 fps.

5.1 Explore Object Locations Small

The task is to find all apples (each giving 1 point) in the pro-
cedurally generated maze, where each episode has different
maze, apples locations as well as visual theme. Collecting
all apples resets environment.

5.2 Nav Maze Static 01/02

Nav Maze Static 01 is a fixed geometry maze with apples
(worth 1 point) and one calabash (worth 10 points, getting
which resets environment). Agent spawns in random loca-
tion, but walls, theme and objects positions are held con-
stant.

The only difference for Nav Maze Static 02 is that it is sig-
nificantly bigger.

5.3 LaserTag Horseshoe Color

Laser tag level against 6 built-in bots in a wide horseshoe
shaped room. There are 5 Orb Gadgets and 2 Disc Gadgets
located in the middle of the room, which can be picked up
and used for more efficient tagging of opponents.

5.4 LaserTag Chasm

Laser tag level in a square room with Beam Gadgets, Shield
Pickups (50 health) and Overshield Pickups (50 armor)
hanging above a tagging floor (chasm) splitting room in

half. Jumping is required to reach the items. Falling into
the chasm causes the agent to lose 1 point. There are 4
built-in bots.

6 Proofs
First let us recall the loss of interest

Lmm(θ) =
1− α
|S|

∑
s∈S

|s|∑
t=1

DKL(π1(·|st)‖π2(·|st)), (1)

where each s ∈ S come from πmm = (1− α)π1 + απ2.

Proposition 1. Lets assume we are given a set of N trajec-
tories from some predefined mix πmm = (1− α)π1 + απ2
for any fixed α ∈ (0, 1) and a big enough neural net-
work with softmax output layer as π2. Then in the limit
as N → ∞, the minimisation of Eq. 1 converges to π1 if
the optimiser used is globally convergent when minimising
cross entropy over a finite dataset.

Proof. ForDN denoting set ofN sampled trajectories over
state space S let as denote by ŜN the set of all states inDN ,
meaning that ŜN = ∪DN . Since π2 is a softmax based
policy, it assigns non-zero probability to all actions in every
state. Consequently also πmm does that as α ∈ (0, 1). Thus
we have

lim
N→∞

ŜN = S.

Due to following the mixture policy, actual dataset D̂N

gathered can consist of multiple replicas of each element in
ŜN , in different proportions that one would achieve when
following π1. Note, note however that if we use optimiser
which is capable of minimising the cross entropy over finite
dataset, it can also minimise loss (1) over D̂N thus in par-
ticular over ŜN which is its strict subset. Since the network

M&M– Agent Curricula for RL

is big enough, it means that it will converge to 0 training
error:

∀s∈ŜN
lim
t→∞

DKL(π1(a|s)‖π2(a|s, θt)) = 0

where θt is the solution of tth iteration of the optimiser
used. Connecting the two above we get that in the limit of
N and t

∀s∈SDKL(π1(a|st)‖π2(a|st, θt)) = 0 ⇐⇒ π1 = π2.

While the global convergence might sound like a very
strong property, it holds for example when both teacher and
student policies are linear. In general for deep networks it
is hypothesised that if they are big enough, and well ini-
tialised, they do converge to arbitrarily small training er-
ror even if trained with a simple gradient descent, thus the
above proposition is not too restrictive for Deep RL.

7 On α based scaling of knowledge transfer
loss

Let as take a closer look at the proposed loss

`mm(θ) = (1− α)DKL(π1(·|s)‖π2(·|s)) =

= (1− α)H(π1(·|s)‖π2(·|s))− (1− α)H(π1(·|s))

and more specifically at 1 − α factor. The intuitive justi-
fication for this quantity is that it leads to DKL gradually
disappearing as M&M agent is switching to the final agent.
However, one can provide another explanation. Let us in-
stead consider divergence between mixed policy and the
target policy (which also has the property of being 0 once
agent switches):

ˆ̀
mm(θ) = DKL(πmm(·|s)‖π2(·|s)) =

= H(πmm(·|s)‖π2(·|s))−H(πmm(·|s)) =

= H((1− α)π1(·|s) + απ2(·|s)‖π2(·|s))−H(πmm(·|s))

= H((1−α)π1(·|s)‖π2(·|s))+αH(π2(·|s)−H(πmm(·|s))

= (1−α)H(π1(·|s)‖π2(·|s))−(H(πmm(·|s))−αH(π2(·|s))

One can notice, that there are two factors of both losses,
one being a cross entropy between π1 and π2 and the other
being a form of entropy regularisers. Furthermore, these
two losses differ only wrt. regularisations:

`mm(θ)− ˆ̀
mm(θ) =

= −(1− α)H(π1(·|s)) + (H(πmm(·|s))− αH(π2(·|s)) =

= H(πmm(·|s))− (αH(π2(·|s) + (1− α)H(π1(·|s)))

but since entropy is concave, this quantitiy is non-negative,
meaning that

`mm(θ) ≥ ˆ̀
mm(θ)

therefore

−(1− α)H(πmm(·|s)) ≥ −(H(πmm(·|s))− αH(π2(·|s))

Thus the proposed scheme is almost equivalent to minimis-
ing KL between mixed policy and π2 but simply with more
severe regularisation factor (and thus it is the upper bound
of the ˆ̀

mm.

Further research and experiments need to be performed to
asses quantitative differences between these costs though.
In preliminary experiments we ran, the difference was hard
to quantify – both methods behaved similarly well.

8 On knowledge transfer loss
Through this paper we focused on using Kulback-Leibler
Divergence for knowledge transfer DKL(p‖q) = H(p, q)−
H(p). For many distillation related methods, it is actually
equivalent to minimising cross entropy (as p is constant), in
M&M case the situation is more complex. When both p and
q are learning DKL provides a two-way effect – from one
perspective q is pulled towards p and on the other p is mode
seeking towards q while at the same time being pushed to-
wards uniform distribution (entropy maximisation). This
has two effects, first, it makes it harder for the teacher to
get too ahead of the student (similarly to (Teh et al., 2017;
Zhang et al., 2017)); second, additional entropy term makes
it expensive to keep using teacher, and so switching is pref-
fered.

Another element which has not been covered in depth
in this paper is possibility of deep distillation. Apart
from matching policies one could include inner activation
matching (Parisotto et al., 2016), which could be beneficial
for deeper models which do not share modules. Further-
more, for speeding up convergence of distillation one could
use Sobolev Training (Czarnecki et al., 2017) and match
both policy and its Jacobian matrix. Since policy matching
was enough for current experiments, none of these meth-
ods has been used in this paper, however for much bigger
models and more complex domains it might be the necesity
as M&M depends on ability to rapidly transfer knowledge
between agents.

References
Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-

wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., Schrittwieser, J., Anderson, K., York, S.,
Cant, M., Cain, A., Bolton, A., Gaffney, S., King, H.,
Hassabis, D., Legg, S., and Petersen, S. Deepmind lab.
CoRR, 2016.

M&M– Agent Curricula for RL

Czarnecki, W. M., Osindero, S., Jaderberg, M., Swirszcz,
G., and Pascanu, R. Sobolev training for neural net-
works. In Advances in Neural Information Processing
Systems, pp. 4281–4290, 2017.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., Legg, S., and Kavukcuoglu, K. Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner
architectures, 2018.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki,
W. M., Donahue, J., Razavi, A., Vinyals, O., Green,
T., Dunning, I., Simonyan, K., Fernando, C., and
Kavukcuoglu, K. Population based training of neural
networks. CoRR, 2017.

Parisotto, E., Ba, L. J., and Salakhutdinov, R. Actor-
mimic: Deep multitask and transfer reinforcement learn-
ing. ICLR, 2016.

Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick,
J., Hadsell, R., Heess, N., and Pascanu, R. Distral: Ro-
bust multitask reinforcement learning. In NIPS. 2017.

Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H.
Deep mutual learning. arXiv preprint arXiv:1706.00384,
2017.

