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Abstract
We theoretically prove the Byzantine resilience (Section 1) and con-

vergence (Section 2) of Kardam. Furthermore, we provide additional
experimental results for the EMNIST dataset in Section 3.

1 Analysis of Byzantine Resilience
Definition 1 (Time). The global epoch (denoted by t) represents the global logical
clock of the parameter server (or equivalently the number of model updates). The
local timestamp (denoted by lp) for a given worker p, represents the epoch of
the model that the worker receives from the server and computes the gradient
upon. The difference t− lp can be arbitrarily large due to the asynchrony of the
network.

We make the following assumptions about any honest worker p.

Assumption 1 (Unbiased gradient estimator).

EξpG(xlp , ξp) = ∇Q(xlp)

Assumption 2 (Bounded variance).

Eξp‖G(xlp , ξp)−∇Q(xlp)‖2 ≤ dσ2

Assumptions 1 and 2 are common in the literature [2] and hold if the data
used for computing the gradients is drawn uniformly and independently.

Assumption 3 (Linear growth of r-th moment).

Eξp‖G(x, ξp)‖r ≤ Ar +Br‖x‖r ∀x ∈ R, r = 2, 3, 4

Assumption 3 translates into “the r-th moment of the gradient estimator
grows linearly with the r-th power of the norm of the model” as assumed in [2].

Assumption 4 (Lipschitz gradient).

||∇Q(x1)−∇Q(x2)|| ≤ K||x1 − x2||
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Assumption 5 (Convexity in the horizon). We require that beyond a certain
horizon, ‖x‖ ≥ D, there exist ε > 0 and 0 ≤ β < π/2 such that ‖∇Q(x)‖ ≥ ε > 0

and 〈x,∇Q(x)〉
‖x‖·‖∇Q(x)‖ ≥ cosβ.

Assumption 5 is the same as in [1], which in turn is a slight refinement of a
similar assumption in [2]. It essentially states that, beyond a certain horizon D
in the parameter space, the opposite of the gradient points towards the origin.

Definition 2 (Byzantine resilience). Let Q be any cost function satisfying the
aforementioned assumptions. Let A be any distributed SGD scheme. We say that
A is Byzantine-resilient if the sequence ∇Q(xt) = 0 converges almost surely to
zero, despite the presence of up to f Byzantine workers.

Theorem 1 (Optimal Slowdown). We define the slowdown SL as the ratio
between the number of updates from honest workers that pass the Lipschitz filter
and the total number of updates delivered at the parameter server. We derive the
upper and lower bounds of SL in the following.

n− 2f

n− f
≤ SL ≤ n− f

n

The upper and lower bounds are tight and hold when there are f Byzantine
workers and no Byzantine workers respectively. Therefore Kardam achieves the
optimal bounds with respect to any Byzantine-resilient SGD scheme and n ≈ 3f
workers.

Proof. Any Byzantine-resilient SGD scheme assuming f Byzantine workers will
at most use n−f

n of the total available workers (upper bound). By definition,
the Lipschitz filter accepts the gradients computed by n−f

n of the total workers
with empirical Lipschitzness below K̂t. If every worker is honest, then the
filter accepts gradients from n−f

n of the workers. We thus get the tightness
of the upper bound for the slowdown of Kardam. For the lower bound, the
Byzantine workers can know that putting a gradient proposition above K̂t will
get them filtered out and the parameter server will end up using only the honest
workers available. The optimal attack would therefore be to slowdown the server
by getting tiny-Lipschitz gradients accepted while preventing the model from
actually changing. This way, the Byzantine workers will make the server filter
gradients from a total of f out of the n− f honest workers, leaving only n− 2f
useful workers for the server.

Theorem 2 (Byzantine resilience in asynchrony). Let A be any distributed SGD
scheme. If the maximum successive gradients that A accepts from a single worker
and the maximum delay are both unbounded, then A cannot be Byzantine-resilient
when f ≥ 1.

Proof. Without any restrictions, the parameter server could only accept succes-
sive gradients from the same Byzantine worker (without getting any update from
any honest worker), for example, if the Byzantine worker is faster than any other
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worker (which is true by the definition of a Byzantine worker and by the fact that
delays on (honest) workers are unbounded). This way, the Byzantine worker can
force the parameter server to follow arbitrarily bad directions and never converge.
Hence, without any restriction on the number of gradients from the workers, we
prove the impossibility of asynchronous Byzantine resilience. Readers familiar
with distributed computing literature might note that if asynchrony was possible
for Byzantine SGD without restricting the number of successive gradients from
a single worker, this could be used as an abstraction to solve asynchronous
Byzantine consensus (that is impossible to solve [3]). This provides another
proof (by contradiction) for our theorem.

Theorem 3 (Correct cone and bounded statistical moments). If N > 3f + 1
then for any t ≥ tr (we show that tr ∈ O( 1

K
√
|ξ|

) where |ξ| is the batch-size of

honest workers):
E(‖Kar t‖r) ≤ A′r +B′r‖xt‖r

for any r = 2, 3, 4 and

〈E(Kar t),∇Qt〉 = Ω(1−
√
dσ

‖∇Q(xt)‖
)‖∇Q(xt)‖2

The expectation is on the random samples used for training.

Proof. First of all, it is important to note that a Byzantine worker can lie about
its Lipschitz coefficient without being able to fool the parameter server. The
median Lipschitz coefficient is always bounded between the Lipschitz coefficients
of two correct worker, and it is against that the gradient of the Byzantine worker
would be tested to be filtered out if harmful and accepted if useful.

Lemma 1 (Limit of successive gradients). The frequency filter ensures that any
sequence of length 2f + 1 consequently accepted gradients contains at least f + 1
gradients computed by honest workers.

Proof. Given any sequence of 2f + 1 consequently accepted gradients (L), we
denote by S the set of workers that computed these gradients. The frequency
filter guarantees that any f workers in S computed at most f gradients in L.
At most f workers in S can be Byzantine, thus at least f + 1 gradients in L are
from honest workers.

We start the proof of Theorem 3 by proving that Kardam acts as self-
stabilizing mechanism that guarantees the global confinement of the parameter
vector using the following remark.

Lemma 2 (Global Confinement). Let xt the sequence of parameter models
visited by Kar . There exist a constant D > 0 such that the sequence xt almost
surely verifies ‖xt‖ ≤ D when t 7→ ∞.

Proof. (Global Confinement) Lemma 2 can be proven by using Remark 1 and
the proof of confinement in [2].
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Remark 1. Let r = 2, 3, 4. There exist A′r ≥ 0 and B′r ≥ 0 such that:
(∀t ≥ 0)E‖Kar t(xt, ξ)‖r ≤ A′r +B′r‖xt‖r

Proof. (Remark 1). Note that if Kar t(xt) comes from a honest worker, we have
Kar t(xt, ξ) = G(xt, ξ) therefore, (∀t ≥ 0)E‖Kar t(xt, ξ)‖r ≤ Ar + Br‖xt‖r
since by assumption on the estimator G used by honest workers, we have
(∀x ∈ R)E‖G(x, ξ)‖r ≤ Ar +Br‖x‖r.

Let t > 2f+1 be any epoch at the parameter server. Because of the Lipschitz
filter (passed by Kar t), there exists i ≤ f such that Kar t−i(xt−i) comes
from an honest worker. Therefore, ‖xt−i‖ ≤ ‖xt‖+

∑i
l=1 γ

′
t−lKar t−l(xt−l) ≤

‖xt‖+
∑i
l=1 γt−l ·

min(Kar0,‖Kart−l(xt−l)‖)
‖Kart−l(xt−l)‖ ·Kar t−l(xt−l) ≤ f ·Kar0 + ‖xt‖.

So, for r = 2, 3, 4 there exists Cr such that ‖xt−i‖r ≤ (f ·Kar0)r +Cr‖xt‖r.
According to the Lipschitz criteria:

‖Kar t(xt)‖
≤ Kt(‖xt‖+ ‖xt−1‖) + ‖Kar t−1(xt−1)‖

≤
i∑
l=1

Kt−l+1(‖xt−l+1‖+ ‖xt−l‖) + ‖Kar t−i(xt−i)‖

≤ 2K

i∑
l=0

‖xt−l‖+ ‖Kar t−i(xt−i)‖

≤ 2K

i∑
l=0

i−1∑
s=l

[γ′t−s · ‖Kar t−s(xt−s)‖+ ‖xt−i‖] + ‖Kar t−i(xt−i)‖

≤ 2K

i∑
l=0

i−1∑
s=l

γt−s‖Kar t−s(xt−s)‖ ·
min(Kar0, ‖Kar t−s(xt−s)‖)

‖Kar t−s(xt−s)‖

+ 2fK‖xt−i‖+ ‖Kar t−i(xt−i)‖
≤ Kf(f − 1)Kar0 + 2fK‖xt−i‖+ ‖Kar t−i(xt−i)‖
= D + E‖xt−i‖+ F‖Kar t−i(xt−i)‖

Where K is the global Lipschitz. (We do not need to know the value of K
to implement Kar but we use it for the proofs.) Taking both side of the above
inequality to the power r, we have the following for r = 2 . . . 4 for constants Dr,
Er and Fr:
‖Kar t(xt)‖r ≤ Dr + Er · ‖xt−i‖r + Fr · E‖Kar t−i(xt−i)‖r
As Kar t−i(xt−i) comes from an honest worker, using the Jensen inequality

and the assumption on honest workers. We can take the expected value on ξ.

E‖Kar t(xt)‖r

≤ Dr + Er · ‖xt−i‖r + Fr[Ar +Br‖xt−i‖r]
= Dr + FrAr + ‖xt−i‖r[Er + FrBr]

≤ Dr + FrAr + [(f ·Kar0)r + Cr‖xt‖r] · [Er + FrBr]

= Dr + FrAr + frKarr0[Er + FrBr] + [Er + FrBr] · ‖xt‖r
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We denote by A′r = Dr+FrAr+(f ·Kar0)r ·[Er+FrBr] and B′r = Er+FrBr,
we obtain:

E‖Kar t(xt)‖r ≤ A′r +B′r‖xt‖r

Remark 1 shows that with Kar , all the assumptions of Bottou [2] (Section
5.2) are holding even in the presence of Byzantine workers, and thus, the global
confinement of xt stated in Lemma 2.

Remark 1 have proved the first part of Theorem 3 To continue the proof of
this Theorem, the goal is to find a lower bound on the scalar product between
Kardam and the real gradient of the cost. This is achieved via an upper bound on:
‖EKar t−∇Qt(xt)‖. Let p the worker whose gradient estimation gp was selected
by Kardam to be the update for epoch t at the parameter server. According to
Lemma 1, considering the latest 2f + 1 timestamps, at least f + 1 of updates
came from honest workers. Hence, there exists i < f such that, Kar t−i came
from an honest worker. Hence, EKar t−i = ∇Qt−i. By applying the triangle
inequality twice, we have:

‖Kar t −∇Q(xt)‖ ≤ ‖Kar t −Kar t−i‖
+ ‖Kar t−i −∇Q(xt−i)‖
+ ‖∇Q(xt−i)−∇Q(xt)‖

We know:

‖Kar t−i −Kar t‖ ≤
1∑
k=i

‖Kar t−k −Kar t−k+1‖ ≤ K
i∑

k=1

‖xt−k+1 − xt−k‖

≤ K
i∑

k=1

γt−k‖Kar t−k‖ ≤ i ·K · γt−i · ‖Kar‖max(t,i)

where, ‖Kar‖max(t,i) is the upper-bound on the norm of Kar in the list from t−i
to t− 1. Since i < f , we have ‖Kar t−i−Kar t‖ ≤ fKγt−i‖Kar‖max(t,i). Since
xt is globally confined (Lemma 2), by continuous differentiability of Q, so will be
‖∇Q(xt,i)‖, therefore fK‖Kar‖max(t,i) is bounded, and multiplies γt−i in the
right hand side of the last inequality, and we know from the hypothesis on the
learning rate that limt→∞ γt = 0 (sequence of summable squares, therefore goes
to zero). Since i < f (and obviously, f , as a global variable, is independent of t),
then we also have limt→∞ γt−i = 0. This means that for every ε > 0, eventually,
the left hand-side of the above inequality is bounded by ε‖Kar t−i−∇Q(xt−i)‖,
more precisely, since γt is typically O( 1

t ), this will hold after tr such that
tr = Ω( 1

εK ).
By replacing in Formula 1, we get:
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‖Kar t −∇Q(xt)‖ ≤ (1 + ε)‖Kar t−i −∇Q(xt−i)‖+ ‖∇Q(xt−i)−∇Q(xt)‖

≤ (1 + ε)‖Kar t−i −∇Q(xt−i)‖+

i∑
s=1

Kt−sγt−s‖∇Q(xt−s)‖

≤ (1 + ε)‖Kar t−i −∇Q(xt−i)‖+ f ·K · γt−i · ‖∇Q‖max(t,i).

Where Kt−s is the real local Lipschitz coefficient of the loss function at
epoch t − s. Let j = min(

√
dσ
2 , ‖∇Q(xt)‖ −

√
dσ), C = j

2ε
√
dσ

, ε′ = j
2.C . As

limt→∞ γt = 0 and ‖∇Q‖max(t,i) is bounded, there exist a time after which, the
above quantity can be made bounded as

‖Kar t −∇Q(xt)‖ ≤ (1 + ε)‖Kar t−i −∇Q(xt−i)‖+ ε′.

And hence:

‖E(Kar t)−∇Q(xt)‖ ≤ E(‖Kar t −∇Q(xt)‖)
≤ (1 + ε)E(‖Kar t−i −∇Q(xt−i)‖) + ε′.

since Kar t−i comes from a correct worker, we have:

E(‖Kar t−i −∇Q(xt−i)‖) ≤
√
dσ

Therefore, ‖E(Kar t)−∇Q(xt)‖ ≤ (1 + ε)
√
dσ + ε′. Consequently, Kardam

only selects vectors that live on average in the cone of radius α around the true
gradient, where α is given by:

sin(α) = (1+ε)
√
dσ+ε′

‖∇Q(xt)‖ . (as long as ‖∇Q(xt)‖ > (1 + ε)
√
dσ + ε′, this has a

sense)
Note:

• The
√
d in ‖∇Q(xt)‖ >

√
dσ is not a harsh requirement, we are using

the conventional notation where
√
dσ is the upper bound on the variance,

σ should be seen as the “component-wise” standard deviation, therefore,
the norm of a non-trivial gradient is naturally larger than the vector-wise
standard deviation of its estimator, which is typically

√
dσ.

• As long as the true gradient has a nontrivial meaning (it is larger than the
standard deviation of its correct estimators), α is strictly bounded between
−π2 and π

2 , which means that as long as there is no convergence to null
gradients, Kardam is selecting vectors in the correct cone around the true
gradient. Most importantly, this angle shrinks to zero when the variance is
too small compared to the norm of the gradient, i.e., with large batch-sizes,
Kardam boils down to be an unbiased gradient estimator. However, we
only require the “component-wise” condition.
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(1 + ε)
√
dσ + ε′

α

∇Q(xt)

EKar lp
Figure 1: If

∥∥EKar lp −∇Q(xt)
∥∥ ≤ (1 + ε)

√
dσ + ε′ then 〈EKar lp ,∇Q(xt)〉

is upper bounded by (1− sinα)‖∇Q(xt)‖2 where sinα = (1+ε)
√
dσ+ε′

‖∇Q(xt)‖ .

In fact, as long as ‖∇Q(xt)‖ >
√
d.σ, we can consider small enough ε and

ε′ such that D1 = (1 + 3
4C )

√
dσ

‖∇Q(xt)‖ , D2 = 1
C + C−1

C

√
dσ

‖∇Q(xt)‖ , and sin(α) =

min(D1, D2) < 1. This indeed guarantees that α < π
2 , moreover, it is enough to

take C >> ∇Q(xt)‖√
dσ

and α would satisfy sin(α) ≈
√
dσ

‖∇Q(xt)‖ .
Actually, in a list of L previous selected vectors, more than half of the vectors

are from correct workers. (progress is made: liveness)
Consider a sublist of L from Li to Lj . At the time of adding a worker in Lj ,

the frequency criteria was checked for the new addition to L. The active table
at that time assure that in any new sublist of L, especially Lji ), any f workers
appear at most j−i

2 times. As the number of Byzantine workers is maximum f .
in sublist Lji , the Byzantine workers did less than half of the updates. In other
words, at least half of the updates come from honest workers. This proves the
safety of Kardam.

The Byzantine workers may stop sending updates or send incorrect updates.
In the case where the Byzantine workers stop sending updates, Kardam still
guarantees liveness. The reason is that there are at least 2f + 1 honest workers
who update the model.

2 Convergence Analysis
Definition 3 (Dampening function). We employ a bijective and strictly decreas-
ing dampening function τ 7→ Λ(τ) with Λ(0) = 1.1 Note that every bijective
function is also invertible, i.e., Λ−1(ν) exists for every ν in the range of the Λ
function.

Let Λt be the set of Λ values associated with the gradients at epoch t.

Λt = {Λ(τtl) | [g, l] ∈ Gt}

We partition the set Gt of gradients at epoch t according to their Λ-value as
follows.

Gt =
⊔
λ∈Λt

Gtλ

Gtλ = {[g, l] ∈ Gt | Λ(τtl) = λ}
1If Λ(0) = 1, then there is no decay for gradients computed on the latest version of the

model, i.e., τtl = 0.
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Therefore, the update equation can be reformulated as follows.

xt+1 = xt − γt
∑
λ∈Λt

λ ·
∑

[G(xl;ξ),l]∈Gtλ

G(xl; ξ)

Definition 4 (Adaptive learning rate). Given the Lipschitz constant K, the
total number of epochs T , and the total number of gradients in each epoch as M ,
we define γt as follows.

γt =

√
Q(x1)−Q(x∗)

K · T ·M · d · σ2︸ ︷︷ ︸
γ

· M∑
λ∈Λt λ · |Gtλ|︸ ︷︷ ︸

µt

(1)

where γ is the baseline component of the learning rate and µt is the adaptive
component that depends on the amount of stale updates that the server receives
at epoch t. Moreover, µt incorporates the total staleness at any epoch t based on
the staleness coefficients (λ) associated with all the gradients received in epoch t.

Comments on Q(x∗). x∗ refers to the (not necessarily global) optimum we
are heading to, and on which our adaptive learning rate depends. Assuming
this value is known was made just for the sake of a proof, as is usually done in
proofs for the speed of convergence of SGD (e.g., the references provided by the
reviewer). In practice, one does not need to know Q(x∗) and can assume it to
be lower bounded (Bottou1998). This will produce overshooting (large steps)
in the early phases of Kardam, but will get to small enough step sizes: The
baseline part of our adaptive learning rate contains a term 1/T , where T is the
total number of iterations (also unknown before we run SGD). In practice, it is
replaced by 1/t (t: epoch at the server). This part of our learning rate decreases
with t and will compensate for the overshooting described above (overcoming
the overshooting in at most O(1/Q(x1)) steps).

Remark 2 (Correct cone). As a consequence of passing the filter and of Theo-
rem 3, G satisfies the following.

〈EξG(x; ξ),∇Q(x)〉 > Ω
(

(‖∇Q(xt)‖ −
√
dσ)‖∇Q(xt)‖

)
The theoretical guarantee for the convergence rate of Kardam depends

on Assumptions 2,4 and Remark 2. These assumptions are weaker than the
convergence guarantees in [7, 4]. In particular, due to unbounded delays and
the potential presence of Byzantine workers, we only assume the unbiased
gradient estimator G(·) for honest workers (Assumption 1). We instead employ
(Remark 2) the fact that G(·) and ∇Q(x) make a lower bounded angle together
(and subsequently a lower bounded scalar product) for all the workers. The
classical unbiased assumption is more restrictive as it requires this angle to be
exactly equal to 0, and the scalar product to be equal to ‖∇Q(x)‖ · ‖G(x)‖.
Most importantly, we highlight the fact that those assumption are satisfied by
Kardam, since every gradient used in this section to compute the Kar update
has passed the Lipschitz filter of the previous section.
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Theorem 4 (Convergence guarantee). We provide the convergence guarantee
in terms of the ergodic convergence that is the weighted average of the L2 norm
of all gradients (||∇Q(xt)||2). Using the above-mentioned assumptions, and the
maximum adaptive rate µmax = max{µ1, . . . , µt}, we have the following bound
on the ergodic convergence rate.

1

T

T∑
t=1

E‖∇Q(xt)‖2 ≤ (2 + µmax + γKMχµmax)·γK·dσ2+d·σ2+2DKσ
√
d+K2D2

(2)
under the prerequisite that

∑
λ∈Λt

{
Kγ2

t |Λt|+
∞∑

s=1

∑
ν∈Λt+s

γt+sK
2ν|Gt+s,ν |Λ−1(ν)I(s≤Λ−1(ν))γ

2
t |Λt|

}
λ2 ≤

∑
λ∈Λt

γtλ

|Gtλ|
(3)

where the Iverson indicator function is defined as follows.

I(s≤∆) =

{
1 if s ≤ ∆

0 otherwise.

It is important to note that the prerequisite (Inequality 3) holds for any
decay function Λ (since λ < 1 holds by definition) and for any standard learning
rate schedule such that γt < 1. Various GD approaches [7, 5, 6, 4] provide
convergence guarantees with similar prerequisites.

Proof. We provide the convergence guarantee in terms of ergodic convergence—the
weighted average of the L2 norm of all gradients (||∇Q(xt)||2). For the sake of
clarity in the proofs, if X is a set, we also denote its cardinality by X.

Lemma 3. 1 Assume that, for all epochs 1 ≤ t ≤ T

∑
λ∈Λt

{
Kγ2

t |Λt|+
∞∑
s=1

∑
ν∈Λt+s

γt+sK
2ν|Gt+s,ν |Λ−1(ν)I(s≤Λ−1(ν))γ

2
t |Λt|

}
λ2

≤
∑
λ∈Λt

γtλ

|Gtλ|
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Then, the ergodic convergence rate is bounded as follows.

T∑
t=1

(
γt
∑
λ∈Λt

λGtλ

)
E||∇Q(xt)||2

T∑
t=1

γt
∑
λ∈Λt

λGtλ
≤ 2(Q(x1)−Q(x∗))

T∑
t=1

γt
∑
λ∈Λt

λGtλ

+

(
T∑
t=1

Kγ2
t

∑
λ∈Λt

λ2Gtλ + γtK
2 ∑
λ∈Λt

λGtλ
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
λ′∈Λj

λ′2Gjλ′
)
· d · σ2

T∑
t=1

γt
∑
λ∈Λt

λGtλ

Remark 3. Given a list of vectors u1, . . . , uN , we implicitly use the following
inequality in our proof. ∥∥∥∥∥

N∑
i=1

ui

∥∥∥∥∥
2

≤ N ·
N∑
i=1

‖ui‖2 (3)

Proof. For the sake of concision, for every m = [g, l] ∈ Gtλ, we denote by ξ[t]
the set of ξ values that the server sends during epoch t. Let ξ[t,∗6=m] denote
the set ξ[t] minus the variable ξ corresponding to message m. Additionally,
G[tm] , G(xt−τtl ; ξ) and ∇Q[tm] , ∇Q(xt−τtl).

A second order expansion of Q, followed by the application of the Lipschitz
inequality to ∇Q yields the following.

Q(xt+1)−Q(xt) ≤ 〈∇Q(xt),xt+1 − xt〉+
K

2
‖xt+1 − xt‖2

≤ −γt
∑
Λt

λGtλ〈∇Q(xt),
1

Gtλ

∑
Gtλ

G[tm]〉+
K

2
γ2
t

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

G[tm]

∥∥∥∥∥
2

Taking the expectation and using the correct cone property, we have:

Eξ[t]Q(x(t+1))−Q(xt) ≤ −γt
∑
Λt

λGtλ〈∇Q(xt),
1

Gtλ

∑
Gtλ

∇Q[tm]〉

+
K

2
γ2
t Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

G[tm]

∥∥∥∥∥
2
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Using 〈a, b〉 = ||a||2+||b||2−||a−b||2
2 , we obtain the following inequality.

Eξ[t]Q(xt+1)−Q(xt) ≤ −
γt
2

∑
Λt

λGtλ ‖∇Q(xt)‖2

− γt
2

∑
Λt

λGtλ

∥∥∥∥∥ 1

Gtλ

∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+
Kγ2

t

2
Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

G[tm]

∥∥∥∥∥
2

︸ ︷︷ ︸
S1

+
γt
2

∑
Λt

λGtλ

∥∥∥∥∥∇Q(xt)−
1

Gtλ

∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

︸ ︷︷ ︸
S2

We now define two terms S1 and S2 as follows.

S1 = Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm]) +
∑
Λt

λ
∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

= Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm])

∥∥∥∥∥
2

+ Eξ[m]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+ 2Eξ[t]〈
∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm]),
∑
Λt

λ
∑
Gtλ

∇Q[tm]〉

= Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm])

∥∥∥∥∥
2

+ Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+ 2〈
∑
Λt

λ
∑
Gtλ

(∇Q[tm]−∇Q[tm]),
∑
Λt

λ
∑
Gtλ

∇Q[tm]〉

= Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm])

∥∥∥∥∥
2

︸ ︷︷ ︸
A1

+Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

︸ ︷︷ ︸
A2

Regarding A2, applying Equation 3 yields the following inequality.

A2 ≤ Eξ[t]Λt ·
∑
Λt

λ2‖
∑
Gtλ

∇Q[tm]‖2 ≤ Λt ·
∑
Λt

λ2Eξ[t]‖
∑
Gtλ

∇Q[tm]‖2

Regarding A1, the term ‖. . .‖2 is expressed as a scalar product and expanded

11



as follows.

A1 = Eξ[t]
∑

λ,λ′∈Λt

( ∑
m∈Gtλ,
m′∈Gtλ′

λλ′ · 〈G[tm]−∇Q[tm], G[tm′]−∇Q[tm′]〉
)

= diagonal + off-diagonal

=
∑
λ∈Λt

∑
m∈Gtλ

λ2 · Eξ[t]‖G[tm]−∇Q[tm]‖2 + Eξ[t,m′ 6=m]
(Eξ〈G[tm]−∇Q[tm], G[tm′]−∇Q[tm′]〉)

≤
∑
Λt

λ2Gtλ · d · σ2 + d · σ2 + 2DKσ
√
d+K2D2

The sum over the off-diagonal terms (i.e., (λ,m) 6= (λ′,m′)) is bounded by
d · σ2 + 2DKσ

√
d+K2D2. Moreover, if λ 6= λ′, then m 6= m′ because Gtλ and

Gtλ′ are disjoint sets and thus for any off-diagonal pair (λ,m), (λ,m′) we have
m 6= m′.

Eξ[t]〈G[tm]−∇Q[tm], G[tm′]−∇Q[tm′]〉
= Eξ[t,m′ 6=m]

(Eξ〈G[tm]−∇Q[tm], G[tm′]−∇Q[tm′]〉)
= Eξ[t,m′ 6=m]

〈EξG[tm]−∇Q[tm], G[tm′]−∇Q[tm′]〉
= Eξ[t,m′ 6=m]

(〈EξG[tm], G[tm′]〉 − 〈∇Q[tm], G[tm′]〉 − 〈EξG[tm],∇Q[tm′]〉+ 〈∇Q[tm],∇Q[tm′]〉)
≤ Eξ[t,m′ 6=m]

(‖EξG[tm]‖ · ‖G[tm′]‖+ ‖∇Q[tm]‖ · ‖G[tm′]‖
+ ‖EξG[tm]‖ · ‖∇Q[tm′]‖+ ‖∇Q[tm]‖ · ‖∇Q[tm′]‖)

≤ d · σ2 + 2DKσ
√
d+K2D2

Hence, we obtain the following inequalities for S1 and S2.

S1 ≤
∑
Λt

λ2Gtλ ·d ·σ2 +Λt ·
∑
Λt

λ2Eξ[t]‖
∑
Gtλ

∇Q[tm]‖2 +d ·σ2 +2DKσ
√
d+K2D2

S2 ≤

∥∥∥∥∥ 1

Gtλ

∑
Gtλ

∇Q(xt)−∇Q[tm]

∥∥∥∥∥
2

Recall that, since m = [g, l] ∈ Gtλ, we have ∇Q[tm] = ∇Q(xt−τtl). By

12



applying the Lipschitz inequality, we get:

S2 ≤ K2‖xt − xt−Λ−1(λ)‖2

≤ K2

∥∥∥∥∥∥
t−1∑

j=t−Λ−1(λ)

xj+1 − xj

∥∥∥∥∥∥
2

≤ K2

∥∥∥∥∥∥
t−1∑

j=t−Λ−1(λ)

γj
∑
ν∈Λj

ν
∑
Gjν

G[jm]

∥∥∥∥∥∥
2

≤ K2

∥∥∥∥∥∥
t−1∑

j=t−Λ−1(λ)

γj
∑
ν∈Λj

ν
∑
Gjν

(G[jm]−∇Q[jm])

∥∥∥∥∥∥
2

︸ ︷︷ ︸
S3=‖a‖2

+K2

∥∥∥∥∥∥
t−1∑

j=t−Λ−1(λ)

γj
∑
ν∈Λj

ν
∑
Gjν

∇Q[jm]

∥∥∥∥∥∥
2

︸ ︷︷ ︸
S4=‖b‖2

+2K2〈a, b〉

Hence, we obtain the following inequalities for S3 and S4.

Eξ[j],...S3 ≤
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
Λj

ν2Gjν · d · σ2 (cross-products vanish)

Eξ[j],...S4 ≤ Λ−1(λ)

t−1∑
j=k−Λ−1(λ)

γ2
jΛj

∑
Λj

ν2E

∥∥∥∥∥∥
∑
Gjν

∇Q[jm′]

∥∥∥∥∥∥
2

(by Eq. 3).

Moreover, we have E∗〈a, b〉 = 〈E∗a, b〉 = 0.

ES2 ≤ K2
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
Λj

ν2Gjν · d · σ2

+K2Λ−1(λ)

t−1∑
j=t−Λ−1(λ)

γ2
jΛj

∑
Λj

ν2E

∥∥∥∥∥∥
∑
Gjν

∇Q[jm′]

∥∥∥∥∥∥
2

Eξ[t]Q(xt+1)−Q(xt) ≤ −
γt
2

∑
Λt

λGtλ ‖∇Q(xt)‖2

+
∑
Λt

(
Kγ2

tΛtλ
2

2
− γtλ

2Gtλ

)
E

∥∥∥∥∥∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+

Kγ2
t

2

∑
Λt

λ2Gtλ +
γtK

2

2

∑
Λt

λGtλ
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
Λj

ν2Gjν

 · d · σ2

+
γtK

2

2

∑
Λt

λGtλΛ−1(λ)

t−1∑
j=t−Λ−1(λ)

γ2
jΛj

∑
Λj

ν2E

∥∥∥∥∥∥
∑
jν

∇Q[jm′]

∥∥∥∥∥∥
2

13



Summing for t = 1, . . . , T , we arrive at the following inequality.

EQ(xt+1)−Q(x1) ≤ −
∑
t

1

2

(
γt
∑
Λt

λGtλ

)
‖∇Q(xt)‖2

+
∑
t

Kγ2
t

2

∑
Λt

λ2Gtλ +
γtK

2

2

∑
Λt

λGtλ
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
Λj

ν2Gjν

 · d · σ2

+
∑
t

∑
Λt

(
Kγ2

tΛtλ
2

2
− γtλ

2Gtλ

)
E

∥∥∥∥∥∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+
∑
t

( ∞∑
s=1

∑
Λt+s

γt+sK
2νGt+s,νΛ−1(ν)I(s ≤ Λ−1(ν))

)
γtΛtλ

2

2
E

∥∥∥∥∥∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

The last term comes from the following observation.
T∑
t=1

∑
Λt

∞∑
s=1

Qλt Zt−sI(s ≤ Λ−1(λ)) =

∞∑
s=1

T∑
t=1

∑
Λt

Qλt Zt−sI(s ≤ Λ−1(λ))

=

∞∑
s=1

T−s∑
l=1−s

∑
Λl+s

Qλl+sZlI(s ≤ Λ−1(λ)) =

∞∑
s=1

T∑
t=1

∑
Λt+s

Qλt+sZtI(s ≤ Λ−1(λ))

=

T∑
t=1

 ∞∑
s=1

∑
Λt+s

Qλt+sI(s ≤ Λ−1(λ))

Zt

Since the two last terms sum to a non-positive value, we arrive at the following
inequality.∑
t

1

2

(
γt
∑
Λt

λGtλ

)
‖∇Q(xt)‖2 ≤ Q(x1)−Q(x∗)

+
∑
t

Kγ2
t

2

∑
Λt

λ2Gtλ +
γtK

2

2

∑
Λt

λGtλ
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
Λj

ν2Gjν

 · d · σ2 +O(
1

K ·
√
|ξ|

)

We first recall Definition 4, which introduces the adaptive learning rate
schedule, before we prove Theorem 4 via employing Lemma 3. Due to the choice
of the learning rate (Definition 4), the inequality in Theorem 4 reduces to the
following inequality.

1

T

T∑
t=1

E‖Q(xt)‖2 ≤ S5 + S6 + S7
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First, we obtain the following equality for S5.

S5 =
2(Q(x1)−Q(x∗))∑T
t=1 γt

∑
λ∈Λt λGtλ

=
2γ2KTM · d · σ2

γTM
= 2γK · d · σ2

Regarding S6, we obtain the following inequality.

S6 =

∑T
t=1Kγ

2
t

∑
λ∈Λt λ

2Gtλ∑T
t=1 γt

∑
λ∈Λt λGtλ

· d · σ2 =
Kγ2

∑T
t=1 µ

2
t

∑
λ∈Λt λ

2Gtλ
γTM

· d · σ2

≤
Kγ2

∑T
t=1 µ

2
t

∑
λ∈Λt λGtλ

γTM
· d · σ2 (since λ2 ≤ λ ≤ 1)

≤ Kγ2TMµmax

γTM
· d · σ2 = µmaxγK · d · σ2

Finally, we obtain the following inequality for S7.

S7 =

∑T
t=1 γtK

2
∑
λ∈Λt λGtλ

∑t−1
j=t−Λ−1(λ) γ

2
j

∑
λ′∈Λj λ

′2Mjλ′

γTM
· d · σ2

≤
K2γ3

∑T
t=1 µt

∑
λ∈Λt λGtλ

∑t−1
j=t−Λ−1(λ) µ

2
j

∑
λ′∈Λj λ

′2Mjλ′

γTM
· d · σ2

≤
K2γ3

∑T
t=1

∑
λ∈Λt λGtλMΛ−1(λ)µmax

γTM
· d · σ2

≤
K2γ3

∑T
t=1

∑
λ∈Λt GtλMχµmax

γTM
· d · σ2 ≤ K2γ3TM2χµmax

γTM
· d · σ2

≤ γ2K2Mχµmax · d · σ2

Hence, we prove the ergodic convergence rate.

1

T

T∑
t=1

E‖∇Q(xt)‖2 ≤ (2 + µmax + γKMχµmax) · γK · d · σ2 + d · σ2 + 2DKσ
√
d+K2D2

Theorem 5 (Convergence time complexity). Given a mini-batch size |ξ|, the
number of gradients M the server waits for before updating the model, and the
total number of epochs T , the time complexity for convergence of Kardam is:

O

(
µmax√
T · |ξ| ·M

+
χ · µmax

T
+ d · σ2 + 2DKσ

√
d+K2D2

)

where χ denotes a constant such that for all τtl, the following inequality holds:

τtl · Λ(τtl) ≤ χ (4)
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Theorem 5 highlights the relation between the staleness and the convergence
time complexity. Furthermore, this time complexity is linearly dependent on the
decay bound (χ) and the maximum adaptive rate (µmax).

We now prove Theorem 5 by employing Theorem 4 along with Definition 4.

Proof. Substituting the value of γ from Definition 4 in RHS of Theorem 4, we
get the following.

(2 + µmax + γKMχµmax) · γK · d · σ2 + d · σ2 + 2DKσ
√
d+K2D2

= O

(
µmax√
T · |ξ| ·M

+
χ · µmax

T
+ d · σ2 + 2DKσ

√
d+K2D2

)

Note that σ = O(1/
√
|ξ|) (Assumption 2) and therefore the bound is also

dependent on n.

Remark 4 (Dampening functions comparison). Given two dampening functions
Λ1(τ) = 1

1+τ and Λ2(τ) = exp(−α β
√
τ), and the convergence time complexity

from Theorem 5, Λ2(τ) converges faster than Λ1(τ) when β
e < α ≤ ln(τ+1)

β
√
τ

.

We also empirically highlight this remark by comparing these two functions
in our main paper where DynSGD [4] employs Λ1 and Kardam employs Λ2.

Proof. From Inequality 4, we have the following for Λ1 and Λ2.

χ1 = max
τ

{
τ

τ + 1

}
χ2 = max

τ

{
τ · exp(−α β

√
τ)

}

The maximum value of {τ · exp(−α β
√
τ)} is

(
β
eα

)β
when τ =

(
β
α

)β
. We get

that χ1 ≥ χ2 when the following holds.

τ

τ + 1
≥
( β
eα

)β
Hence, from the above inequality, we get the following.

τ ≥ 1(
eα
β

)β
− 1

Note that since τ > 0, we get
(
eα
β

)β
> 1 which leads to the following lower

bound on α.
α >

β

e
(5)
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Furthermore, for the µmax terms, we compare the values between the two
dampening functions.

µ1 = max
τ

{
M∑

Λt
λ · |Gtλ|

}
= max

τ

{
M∑

τ
1

τ+1 · |Gtλ|

}
µ2 = max

τ

{
M∑

Λt
λ · |Gtλ|

}
= max

τ

{
M∑

τ exp(−α β
√
τ) · |Gtλ|

}
Hence, for µ1 ≥ µ2, we need to show that 1

τ+1 ≤ exp(−α β
√
τ), i.e., τ + 1 ≥

exp(α β
√
τ). The relation holds for any α with the upper bound as follows.

α ≤ ln(τ + 1)
β
√
τ

(6)

From Inequalities 5 and 6, we get the following.

β

e
< α ≤ ln(τ + 1)

β
√
τ

One possible setting is β ≈ 1.85 when 1 ≤ τ ≤ 10, β ≈ 3.1 when 11 ≤ τ ≤ 33,
and β ≈ 4 when 34 ≤ τ ≤ 75. Given these values of β and τ , Λ2(τ) has a smaller
convergence time complexity (Theorem 5) than Λ1(τ). Hence, Λ2(τ) converges
faster than Λ1(τ).

3 Additional Experimental Results.
We also evaluate the performance of Kardam for image classification on the
EMNIST dataset2 consisting 814,255 examples of handwritten characters and
digits (62 classes). We perform min-max scaling normalization as a pre-processing
step resulting in 784 normalized input. We split the dataset into 697,932 training
and 116,323 test examples and employ a base learning rate of 8 ∗ 10−4 alongside
a mini-batch of 100 examples if not stated otherwise.

2https://www.nist.gov/itl/iad/image-group/emnist-dataset
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Figure 2: Impact of staleness for EMNIST.
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