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Abstract
Bayesian neural networks with latent variables are
scalable and flexible probabilistic models: they
account for uncertainty in the estimation of the
network weights and, by making use of latent vari-
ables, can capture complex noise patterns in the
data. Using these models we show how to per-
form and utilize a decomposition of uncertainty in
aleatoric and epistemic components for decision
making purposes. This allows us to successfully
identify informative points for active learning of
functions with heteroscedastic and bimodal noise.
Using the decomposition we further define a novel
risk-sensitive criterion for reinforcement learning
to identify policies that balance expected cost,
model-bias and noise aversion.

1. Introduction
Many important problems in machine learning require learn-
ing functions in the presence of noise. For example, in
reinforcement learning (RL), the transition dynamics of a
system is often stochastic. Ideally, a model for these sys-
tems should be able to both express such randomness but
also to account for the uncertainty in its parameters.

Bayesian neural networks (BNN) are probabilistic models
that place the flexibility of neural networks in a Bayesian
framework (Blundell et al., 2015; Gal, 2016). In particular,
recent work has extended BNNs with latent input variables
(BNN+LV) to estimate functions with complex stochasticity
such as bimodality or heteroscedasticity (Depeweg et al.,
2016). This model class can describe complex stochastic
patterns via a distribution over the latent input variables
(aleatoric uncertainty), while, at the same time, account for
model uncertainty via a distribution over weights (epistemic
uncertainty).
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In this work we show how to perform and utilize a decompo-
sition of uncertainty in aleatoric and epistemic components
for decision making purposes. Our contributions are:

• We derive two decompositions that extract epistemic
and aleatoric uncertainties from the predictive distribu-
tion of BNN+LV (Section 3).

• We demonstrate that with this uncertainty decomposi-
tion, the BNN+LV identifies informative regions even
in bimodal and heteroscedastic cases, enabling effi-
cient active learning in the presence of complex noise
(Section 4).
• We derive a novel risk-sensitive criterion for model-

based RL based on the uncertainty decomposition, en-
abling a domain expert to trade-off the risks of relia-
bility, which originates from model bias and the risk
induced by stochasticity (Section 5).

While using uncertainties over transition probabilities to
avoid worst-case behavior has been well-studied in discrete
MDPs (e.g. (Shapiro & Kleywegt, 2002; Nilim & El Ghaoui,
2005; Bagnell et al., 2001), to our knowledge, our work is
the first to consider continuous non-linear functions with
complex noise.

2. Background: BNN+LV
We review a recent family of probabilistic models for multi-
output regression. These models were previously introduced
by Depeweg et al. (2016), we refer to them as Bayesian
Neural Networks with latent variables (BNN+LV).

Given a dataset D = {xn,yn}Nn=1, formed by feature
vectors xn ∈ RD and targets yn ∈ RK , we assume
that yn = f(xn, zn;W) + εn, where f(·, ·;W) is the out-
put of a neural network with weights W and K output
units. The network receives as input the feature vector
xn and the latent variable zn ∼ N (0, γ). We choose rec-
tifiers, ϕ(x) = max(x, 0), as activation functions for the
hidden layers and the identity function, ϕ(x) = x, for the
output layer. The network output is corrupted by the ad-
ditive noise variable εn ∼ N (0,Σ) with diagonal covari-
ance matrix Σ. The role of the latent variable zn is to
capture unobserved stochastic features that can affect the
network’s output in complex ways. Without zn, randomness
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would only be given by the additive Gaussian observation
noise εn, which can only describe limited stochastic patterns.
The network has L layers, with Vl hidden units in layer l,
and W = {Wl}Ll=1 is the collection of Vl × (Vl−1 + 1)
weight matrices. The +1 is introduced here to account for
the additional per-layer biases. We approximate the exact
posterior p(W, z | D) with:
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The parameters mw
ij,l, v

w
ij,l and mz

n, vzn are determined
by minimizing a divergence between p(W, z | D) and the
approximation q. The reader is referred to the work of
Hernández-Lobato et al. (2016); Depeweg et al. (2016) for
more details on this. In our experiments, we tune q using
black-box α-divergence minimization with α = 1.0. While
other values of α are possible, this specific value produced
better uncertainty decompositions in practice: see Section
4 and the supplementary material for results with α = 0.5
and α = 0 (variational Bayes).

BNN+LV can capture complex stochastic patterns, while at
the same time account for model uncertainty. They achieve
this by jointly learning q(z), which describes the values of
the latent variables that were used to generate the training
data, and q(W), which represents uncertainty about model
parameters. The result is a flexible Bayesian approach for
learning conditional distributions with complex stochastic-
ity, e.g. bimodal or heteroscedastic noise.

3. Uncertainty Decomposition in BNN+LV
Let us assume that the targets are one-dimensional, that is,
K = 1. The predictive distribution of a BNN+LV for the
target variable y? associated with the test data point x? is

p(y?|x?) =
∫
p(y?|W,x?, z?)p(z?)q(W) dz? dW . (2)

where p(y?|W,x?, z?) = N (y?|f(x?, z?;W),Σ) is the
likelihood function, p(z?) = N (z?|0, γ) is the prior on the
latent variables and q(W) is the approximate posterior for
W given D. In this expression q(z) is not used since the
integration with respect to z? must be done using the prior
p(z?). The reason for this is that the y? associated with x?
is unknown and consequently, there is no other evidence on
z? than the one coming from p(z?).

In Eq. (2), the randomness or uncertainty on y? has its origin
inW ∼ q(W), z? ∼ p(z?) and ε ∼ N (0, σ2). This means

that there are two types of uncertainties entangled in our
predictons for y?: aleatoric and epistemic (Der Kiureghian
& Ditlevsen, 2009; Kendall & Gal, 2017). The aleatoric
uncertainty originates from the randomness of z? and ε and
cannot be reduced by collecting more data. By contrast, the
epistemic uncertainty originates from the randomness of
W and can be reduced by collecting more data, which will
typically shrink the approximate posterior q(W).

Eq. (2) is the tool to use when making predictions for y?.
However, there are many settings in which, for decision
making purposes, we may be interested in separating the
two forms of uncertainty present in this distribution. We
now describe two decompositions , each one differing in the
metric used to quantify uncertainty: the first one is based on
the entropy, whereas the second one uses the variance.

Let H(·) compute the differential entropy of a probability
distribution. The total uncertainty present in Eq. (2) can
then be quantified as H(y?|x?). Furthermore, assume that
we do not integrateW out in Eq. (2) and, instead, we just
condition on a specific value of this variable. The result
is then p(y?|W,x?) =

∫
p(y?|W,x?, z?)p(z?) dz? with

corresponding uncertainty H(y?|W,x?). The expectation
of this quantity under q(W), that is, Eq(W)[H(y?|W,x?)],
can then be used to quantify the overall uncertainty in Eq. (2)
coming from z? and ε. Therefore, Eq(W)[H(y?|W,x?)],
measures the aleatoric uncertainty. We can then quantify the
epistemic part of the uncertainty in Eq. (2) by computing
the difference between total and aleatoric uncertainties:

H[y?|x?]−Eq(W)[H(y?|W,x?)] = I(y?,W) , (3)

which is the mutual information between y? andW .

Instead of the entropy, we can use the variance as a measure
of uncertainty. Let σ2(·) compute the variance of a proba-
bility distribution. The total uncertainty present in Eq. (2)
is then σ2(y?|x?). This quantity can then be decomposed
using the law of total variance:

σ2(y?|x?) = σ2
q(W)(E[y?|W,x?]) +Eq(W)[σ

2(y?|W,x?)] .

where E[y?|W,x?] and σ2[y?|W,x?] are, respectively, the
mean and variance of y? according to p(y?|W,x?). In
the expression above, σ2

q(W)(E[y?|W,x?]) is the variance
of E[y?|W,x?] when W ∼ q(W). This term ignores
any contribution to the variance of y? from z? and ε and
only considers the effect ofW . Therefore, it corresponds
to the epistemic uncertainty in Eq. (2). By contrast, the
term Eq(W)[σ

2(y?|W,x?)] represents the average value of
σ2(y?|W,x?) when W ∼ q(W). This term ignores any
contribution to the variance of y? fromW and, therefore, it
represents the aleatoric uncertainty in Eq. (2).

In some cases, working with variances can be undesirable
because they have square units. To avoid this problem, we
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can work with the square root of the previous terms. For
example, we can represent the total uncertainty using
σ(y?|x?) ={

σ2
q(W)(E[y?|W,x?]) +Eq(W)[σ

2(y?|W,x?)]
} 1

2 . (4)

4. Active Learning with Complex Noise
Active learning is the problem of iteratively collecting data
so that the final gains in predictive performance are as high
as possible (Settles, 2012). We consider the case of actively
learning arbitrary non-linear functions with complex noise.
To do so, we apply the information-theoretic framework for
active learning described by MacKay (1992), which is based
on the reduction of entropy in the model’s posterior distribu-
tion. Below, we show that this framework naturally results
in the entropy-based uncertainty decomposition from Sec-
tion 3. Next, we demonstrate how this framework, applied
to BNN+LV enables data-efficient learning in the presence
of heteroscedastic and bimodal noise.

Assume a BNN+LV is used to describe a batch of training
data D = {(x1,y1), · · · , (xN ,yN )}. The expected reduc-
tion in posterior entropy forW that would be obtained when
collecting the unknown target y? for the input x? is

H(W|D)−Ey?|x?,D [H(W|D ∪ {x?,y?})] = I(W,y?)

= H(y?|x?)−Eq(W) [H(y?|W,x?)] . (5)

Note that this is the epistemic uncertainty that we introduced
in Section 3, which has arisen naturally in this setting: the
most informative x? for which to collect y? next is the
one for which the epistemic uncertainty in the BNN+LV
predictive distribution is the highest.

The epistemic uncertainty in Eq. (5) can be approximated
using standard entropy estimators, e.g. nearest-neighbor
methods (Kozachenko & Leonenko, 1987; Kraskov et al.,
2004; Gao et al., 2016). For that, we repeatedly sample
W and z? and do forward passes through the BNN+LV to
sample y?. The resulting samples of y? can then be used to
approximate the respective entropies for each x? using the
nearest-neighbor approach:

H(y?|x?)−Eq(W) [H(y?|W,x?)]

≈ Ĥ(y1
?, . . . ,y

L
? )−

1

M

M∑
i=1

[
Ĥ(y1,Wi

? , . . . ,yL,Wi? )
]
. (6)

where Ĥ(·) is a nearest-neighbor entropy estimate given an
empirical sample of points, y1

?, . . . ,y
L
? are sampled from

p(y?|x?) according to Eq. (2),W1, . . . ,WM ∼ q(W) and
y1,Wi
? , . . . ,yL,Wi

? ∼ p(y?|Wi,x?) for i = 1, . . . ,M .

There are alternative ways to estimate the entropy, e.g. with
histograms or using kernel density estimation (KDE) (Beir-
lant et al., 1997). We choose nearest neighbor methods

because they tend to work well in low dimensions, are fast
to compute (compared to KDE) and do not require much
hyperparameter tuning (compared to histograms). However,
we note that for high-dimensional problems, estimating en-
tropy is a difficult problem.

4.1. Experiments

We evaluate the active learning procedure on three problems.
In each of them, we first train a BNN+LV with 2 hidden
layers and 20 units per layer. Afterwards, we approximate
the epistemic uncertainty as outlined in the previous section.
Hyperparameter settings and details for replication can be
found in the supplementary material, which includes results
for three other inference methods: Hamiltonian Monte Carlo
(HMC), black-box α- divergence minimization with α =
0.5 and α = 0 (variational Bayes). These results show that
the decomposition of uncertainty produced by α = 1 and
the gold standard HMC are similar, but for lower values of
α this is not the case. Our main findings are:

The decomposition of uncertainty allows us to identify
informative inputs when the noise is heteroscedastic.
We consider a regression problem with heteroscedastic noise
where y = 7 sin(x) + 3| cos(x/2)|ε with ε ∼ N (0, 1). We
sample 750 values of the input x from a mixture of three
Gaussians with mean parameters {µ1 = −4, µ2 = 0, µ3 =
4}, variance parameters {σ1 = 2

5 , σ2 = 0.9, σ3 = 2
5} and

with each Gaussian component having weight equal to 1/3
in the mixture. Figure 1a shows the data. We have many
points at the borders and in the center, but few in between.

Figure 1 shows the results obtained (see caption for details).
The resulting decomposition of predictive uncertainty is
very accurate: the epistemic uncertainty (Figure 1f), is in-
versely proportional to the density used to sample the data
(Figure 1b). This makes sense, since in this toy problem the
most informative inputs are located in regions where data
is scarce. However, this may not be the case in more com-
plicated settings. Finally, we note that the total predictive
uncertainty (Figure 1d) fails to identify informative regions.

The decomposition of uncertainty allows us to identify
informative inputs when the noise is bimodal. Next we
consider a toy problem given by a regression task with
bimodal data. We define x ∈ [−0.5, 2] and y = 10 sin(x) +
ε with probability 0.5 and y = 10 cos(x) + ε, otherwise,
where ε ∼ N (0, 1) and ε is independent of x. We sample
750 values of x from an exponential distribution with λ = 2.
Figure 2a shows the data. We have many points on the left,
but few on the right.

Figure 2 shows the results obtained (see caption for details).
Figure 2c shows that the BNN+LV has learned the bimodal
structure in the data and Figure 2d shows how the total
predictive uncertainty increases on the right, where data is
scarce. The aleatoric uncertainty (Figure 2e), by contrast,
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(a) (b) (c)

(d) (e) (f)
Figure 1. Uncertainty decomposition on heteroscedastic data. (a): Raw data. (b): Density of x in data. (c): Predictive distribution p(y?|x?).
(d): Estimate of H(y?|x?). (e): Estimate of Eq(W) [H(y?|x?,W)]. (f): Estimate of entropy reduction H(y?|x?)−Eq(W) [H(y?|x?,W)].

(a) (b) (c)

(d) (e) (f)
Figure 2. Uncertainty decomposition on bimodal data. (a): Raw data. (b): Density of x in data. (c): Predictive distribution: p(y?|x?). (d):
Estimate of H(y?|x?). (e): Estimate of Eq(W) [H(y?|x?,W)]. (f): Estimate of entropy reduction H(y?|x?)−Eq(W) [H(y?|x?,W)].

has an almost symmetric form around x = 0.75, taking
lower values at this location. This makes sense since the
data generating process is symmetric around x = 0.75 and
the noise changes from bimodal to unimodal when one gets
closer to x = 0.75. Figure 2f shows an estimate of the
epistemic uncertainty, which as expected increases with x.

The decomposition of uncertainty identifies informative
inputs when noise is both heteroscedastic and bimodal.
We consider data sampled from a 2D stochastic system
called the wet-chicken (Hans & Udluft, 2009; Depeweg
et al., 2016), see the supplementary material for details. The
wet-chicken transition dynamics exhibit complex stochastic
patterns: bimodality, heteroscedasticity and truncation (the
agent cannot move beyond the boundaries of state space:
[0, 5]2). The data are 7, 500 state transitions collected by
random exploration. Figure 3a shows the states visited. For
each transition, the BNN+LV predicts the next state given
the current one and the action applied. Figure 3d shows that
the epistemic uncertainty is highest in the top right corner,

Method
Dataset Ibb-α(W, y?) Hbb-α(y?|x?) GP
Heteroscedastic -1.79±0.03 -1.92±0.03 -2.09±0.02
Bimodal -2.04±0.01 -2.06±0.02 -2.86±0.01
Wet-chicken 1.18±0.16 0.57±0.20 -3.22±0.03

Table 1. Test log-likelihood in active learning experiments after
150 iterations.

while data is most scarce in the bottom right corner. The
reason for this result is that the wet-chicken dynamics bring
the agent back to y = 0 whenever the agent goes beyond
y = 5, but this does not happen for y = 0 where the agent
just bounces back. Therefore, learning the dynamics is more
difficult and requires more data at y = 5 than at y = 0. The
epistemic uncertainty captures this property, but the total
predictive uncertainty (Figure 3b) does not.

Active learning with BBN+LV is improved by using the
uncertainty decomposition. We evaluate the gains ob-
tained by using Eq. (5) with BNN+LV, when collecting
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(a) (b) (c) (d)
Figure 3. Uncertainty decomposition on wet-chicken dynamics. (a): Raw data. (b): Entropy estimate H(st+1|st) of predictive distribution
for each st (using at = {0, 0}). (e): Conditional entropy estimate Eq(W) [H(st+1|st,W)]. (f): Estimated entropy reduction.

data in three toy active learning problems. We refer to this
method as Ibb-α(W, y?) and compare it with two baselines.
The first one also uses a BNN+LV to describe data, but does
not perform a decomposition of predictive uncertainty, that
is, this method uses H(y?|x?) instead of Eq. (5) for active
learning. We call this method Hbb-α(y?|x?). The second
baseline is given by a Gaussian process (GP) model which
collects data according to H(y?|x?) since in this case the
uncertainty decomposition is not necessary because the GP
model does not include latent variables. The GP model
assumes Gaussian noise and is not able to capture complex
stochastic patterns.

The three problems considered correspond to the datasets
from Figures 1, 2 and 3. The general set-up is as follows. We
start with the available data shown in the previous figures.
At each iteration, we select a batch of data points to label
from a pool set which is sampled uniformly at random in
input space. The selected data is then included in the training
set and the log-likelihood is evaluated on a separate test set.
This process is performed for 150 iterations and we repeat
all experiments 5 times.

Table 1 shows the results obtained. Overall, BNN+LV out-
perform GPs in terms of predictive performance. We also
see significant gains of Ibb-α(W, y?) over H(y?|x?) on the
heteroscedastic and wet-chicken tasks, whereas their results
are similar on the bimodal task. The reason for this is that,
in the latter task, the epistemic and the total uncertainty
have a similar behavior as shown in Figures 2d and 2f. Fi-
nally, we note that heteroscedastic GPs (Le et al., 2005) will
likely perform similar to BNN+LV in the heteroscedastic
task from Figure 2, but they will fail in the other two settings
considered (Figures 2 and 3).

5. Risk-sensitive Reinforcement Learning
We propose an extension of the “risk-sensitive criterion” for
safe model-based RL (Garcı́a & Fernández, 2015) to balance
the risks produced by epistemic and aleatoric uncertainties.

We focus on batch RL with continuous state and action
spaces (Lange et al., 2012): we are given a batch of state
transitions D = {(st,at, st+1)} formed by triples contain-

ing the current state st, the action applied at and the next
state st+1. In addition toD, we are also given a cost function
c. The goal is to obtain from D a policy in parametric form
that minimizes c on average under the system dynamics.

In model-based RL, the first step consists in learning a
dynamics model fromD. We assume that the true dynamical
system can be expressed by an unknown neural network
with latent variables:

st = ftrue(st−1,at−1, zt;Wtrue) , zt ∼ N (0, γ) , (7)

whereWtrue denotes the weights of the network and st−1,
at−1 and zt are the inputs to the network. We use BNN+LV
from Section 2 to approximate a posterior q(W, z) using
the batch D (Depeweg et al., 2016).

In model-based policy search we optimize a policy given
by a deterministic neural network with weightsWπ. This
parametric policy returns an action at as a function of st,
that is, at = π(st;Wπ). The policy parameters Wπ can
be tuned by minimizing the expectation of the cost C =∑T
t=1 ct over a finite horizon T with respect to the belief

q(W), where ct = c(st). This expected cost is obtained by
averaging across multiple virtual roll-outs as described next.

Given s0, we sampleW ∼ q and simulate state trajectories
for T steps using the model st+1 = f(st,at, zt;W) + εt+1

with policy at = π(st;Wπ), input noise zt ∼ N (0, γ) and
additive noise εt+1 ∼ N (0,Σ). By averaging across these
roll-outs, we obtain a Monte Carlo approximation of the
expected cost given the initial state s0:

J(Wπ) = E [C] = E
[∑T

t=1 ct
]
, (8)

where, E[·] denotes here an average across virtual roll-outs
starting from s0 and, to simplify our notation, we have made
the dependence on s0 implicit. The policy search algorithm
optimizes the expectation of Eq. (8) when s0 is sampled
uniformly from D, that is, Es0∼D[J(Wπ)]. This quantity
can be easily approximated by Monte Carlo and if model,
policy, and cost function are differentiable, we are able to
tuneWπ by stochastic gradient descent.

The “risk-sensitive criterion” (Garcı́a & Fernández, 2015)
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changes Eq. (8) to attain a balance between expected cost
and risk, where the risk typically penalizes the deviations
of C from E[C] during the virtual roll-outs with initial state
s0. For example, the risk-sensitive objective could be

J(Wπ) = E [C] + βσ(C) , (9)

where σ(C) is the standard deviation of C across virtual
roll-outs starting from s0 and the risk-sensitive parameter
β determines the amount of risk-avoidance (β ≥ 0) or risk-
seeking behavior (β < 0) when optimizingWπ .

Instead of working directly with the risk on the final cost
C, we consider the sum of risks on the individual costs
c1, . . . , cT . The reason for this is that the latter is a more
restrictive criterion since low risk on the ct will imply low
risk on C, but not the other way around. Let σ(ct) denote
the standard deviation of ct over virtual roll-outs starting
from s0. We can then explicitly write σ(ct) in terms of its
aleatoric and epistemic components by using the decompo-
sition of uncertainty from Eq. (4). In particular,

σ(ct) =
{
σ2
q(W)(E[ct|W]) +Eq(W)[σ

2(ct|W)]
} 1

2 , (10)

where E[ct|W] and σ2(ct|W) denote the mean and variance
of ct under virtual roll-outs from s0 performed with policy
Wπ and under the dynamics of a BNN+LV with parameters
W . In a similar manner as in Eq. (4), the operators Eq(W)[·]
and σ2

q(W)(·) in Eq. (10) compute the mean and variance of
their arguments whenW ∼ q(W).

The two terms inside the square root in Eq. (10) have a clear
interpretation. The first one, Eq(W)[σ

2(ct|W)], represents
the risk originating from the sampling of z and ε in the
virtual roll-outs. We call this term the aleatoric risk. The
second term, σ2

q(W)(E[ct|W]), encodes the risk originating
from the sampling ofW in the virtual roll-outs. We call this
term the epistemic risk.

We can now extend the objective in Eq. (8) with a new risk
term that balances the epistemic and aleatoric risks. This
term is obtained by first using risk-sensitive parameters β
and γ to balance the epistemic and aleatoric components
in Eq. (10), and then summing the resulting expression for
t = 1, . . . , T :

σ(γ, β) =
T∑
t=1

{
β2σ2

q(W)(E[ct|W]) + γ2Eq(W)[σ
2(ct|W)]

} 1
2 .

Therefore, our ‘risk-sensitive criterion” uses the function
J(Wπ) = E [C] + σ(γ, β), which can be approximated
via Monte Carlo and optimized using stochastic gradient
descent. The Monte Carlo approximation is generated by
performing M ×N roll-outs with starting state s0 sampled
uniformly fromD. For this,W is sampled from q(W) a total
of M times and then, for each of these samples, N roll-outs
are performed withW fixed and sampling only the latent

variables and the additive Gaussian noise in the BBN+LV.
Let zm,nt and εm,nt be the samples of the latent variables
and the additive Gaussian noise at step t during the n-th
roll-out for them-th sample ofW , which we denote byWm.
Then cm,n(t) = c(s

Wm,{zm,n1 ,...,zm,nt },{εm,n1 ,...,εm,nt },Wπ

t )
denotes the cost obtained at time t in that roll-out. All
these cost values obtained at time t are stored in the M ×N
matrix C(t). The Monte Carlo estimate of J(Wπ) is then

J(Wπ) ≈
T∑
t=1

{
1TC(t)1

MN
+

{
β2σ̂2 [C(t)1/N ] + γ2 1

M

M∑
m=1

σ̂2 [C(t)m,·]

} 1
2 }

, (11)

where 1 denotes a vector with all of its entries equal to 1,
C(t)m,· is a vector with the m-th row of C(t) and σ̂2[x]
returns the empirical variance of the entries in vector x.

By setting β and γ to specific values in Eq. (11), the user can
choose different trade-offs between cost, aleatoric and epis-
temic risk: for γ = 0 the term inside the square root is β2

times σ̂2 [C(t)1/N ] which is a Monte Carlo approximation
of the epistemic risk in Eq. (10). Similarly, for β = 0, inside
the square root we obtain γ2 times 1

M

∑M
m=1 σ̂

2 [C(t)m,·]
which approximates the aleatoric risk. For β = γ the stan-
dard risk criterion σ(ct) is obtained, weighted by β.

5.1. Model-bias and noise aversion

The epistemic risk term in Eq. (10) can be connected with
the concept of model-bias in model-based RL. A policy with
Wπ is optimized on the model but executed on the ground
truth system. The more model and ground truth differ, the
more the policy is ’biased’ by the model (Deisenroth & Ras-
mussen, 2011). Given the initial state s0, we can quantify
this bias with respect to the policy parametersWπ as

b(Wπ) =

T∑
t=1

(Etrue[ct]−E[ct])
2 , (12)

where Etrue[ct] is the expected cost obtained at time t across
roll-outs starting at s0, under the ground truth dynamics
and with policy π(st;Wπ). E[ct] is the same expectation
but under BNN+LV dynamics sampled from q(W) on each
individual roll-out.

Eq. (12) is impossible to compute in practice because we do
not know the ground truth dynamics. However, as indicated
in Eq. (7), we assume that the true dynamic is given by a
neural network with latent variables and weightsWtrue. We
can then rewrite Etrue[ct] as E[ct|Wtrue] and since we do not
knowWtrue, we can further assume thatWtrue ∼ q(W). The
expected model-bias is then

E[b(Wπ)] = Eq(Wtrue)

{
T∑
t=1

(E[ct|Wtrue]−E[ct])
2

}
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=

T∑
t=1

σ2
q(Wtrue)(E[ct|Wtrue]) . (13)

We see that our definition of epistemic risk also represents
an estimate of model-bias in model-based RL. This risk
term will guide the policy to operate in areas of state space
where model-bias is expected to be low.

The aleatoric risk term in Eq. (10) can be connected with
the concept of noise aversion. Let σ2(ct|Wtrue) be the vari-
ance obtained at time t across roll-outs starting at s0, un-
der the ground truth dynamics and with policy π(st;Wπ).
Assuming Wtrue ∼ q(W), the expected variance is then
Eq(Wtrue)[σ

2(ct|Wtrue)]. This term will guide the policy to
operate in areas of state space where the stochasticity of
the cost is low. Assuming a deterministic cost function this
stochasticity is determined by the model’s predictions that
originate from zt and εt.

5.2. Experiments

We investigate the following questions: To what extent does
our new risk criterion reduce model-bias? What trade-offs
do we observe between average cost and model-bias? How
does the decomposition compare to other simple methods?

We consider two model-based RL scenarios. The first one is
given by the industrial benchmark (IB), a publicly available
simulator with properties inspired by real industrial systems
(Hein et al., 2017). The second RL scenario is a modified
version of the HAWC2 wind turbine simulator (Larsen &
Hansen, 2007), which is widely used for the study of wind
turbine dynamics (Larsen et al., 2015).

We are given a batch of data formed by state transitions
generated by a behavior policy πb, for example, from an
already running system. The behavioral policy has limited
randomness and will keep the system dynamics constrained
to a reduced manifold in state space. This means that large
portions of state space will be unexplored and uncertainty
will be high in those regions. The supplementary material
contains full details on the experimental setup and the πb.

We consider the risk-sensitive criterion from Section 5 for
different choices of β and γ, comparing it with 3 baselines.
The first baseline is obtained by setting β = γ = 0. In
this case, the policy optimization ignores any risk. The
second baseline is obtained when β = γ. In this case, the
risk criterion simplifies to βσ(ct), which corresponds to the
traditional risk-sensitive approach in Eq. (9), but applied
to the individual costs c1, . . . , cT . The last baseline uses a
deterministic neural network to model the dynamics and a
nearest neighbor approach to quantify risk: for each state st
generated in a roll-out, we calculate the Euclidean distance
of that state to the nearest one in the training data. The
average value of the distance metric for st across roll-outs
is then an approximation to σ(ct). To reduce computational

cost, we summarize the training data using the centroids
returned by an execution of the k-means clustering method.
We denote this method as the nn-baseline.

Figure 4a shows result on the industrial benchmark. The
y-axis in the plot is the average total cost at horizon T
obtained by the policy in the ground truth system. The x-
axis is the average model-bias in the ground truth system
according to Eq. (12). Each individual curve in the plot is
obtained by fixing γ to a specific value (line color) and then
changing β (circle color). The policy that ignores risk (β =
γ = 0) results in both high model-bias and high cost when
evaluated on the ground truth, which indicates overfitting.
As β increases, the policies put more emphasis on avoiding
model-bias, but at the same time the average cost increases.
The best tradeoff is obtained by the dark red curve with
γ = 0. The risk criterion is then β

∑T
t=1 σq(W)(E[ct|W]).

In this problem, adding aleatoric risk by setting γ > 0
decreases performance. The nn-baseline shows a similar
pattern as the BNN+LV approach, but the trade-off between
model-bias and cost is worse.

Figure 5 shows roll-outs for three different policies and a
fixed initial state s0. Figure 5a shows results for a policy
learned with γ = β = 0. This policy ignores risk, and as a
consequence, the mismatch between predicted performance
on the model and on the ground truth increases after t = 20.
This result illustrates how model-bias can lead to policies
with high costs at test time. Figure 5b shows results for
policy that was trained while penalizing epistemic risk (β =
4, γ = 0). In this case, the average costs under the BNN+LV
model and the ground truth are similar, and the overall
ground truth cost is lower than in Figure 5a. Finally, Figure
5c shows results for a noise averse policy (β = 0, γ = 4).
In this case, the model bias is slightly higher than in the
previous figure, but the stochasticity is lower.

The results for wind turbine simulator can be found in Figure
4b. In this case, the best trade-offs between expected cost
and model-bias are obtained by the policies with γ = 7.5.
These policies are noise averse and will try to avoid noisy
regions in state space. This makes sense because in wind
turbines, high noise regions in state space are those where
the effect of wind turbulence will have a strong impact on
the average cost.

6. Related Work
The distinction between aleatoric and epistemic uncertainty
has been recognized in many fields within machine learning,
often within the context of specific subfields, models, and
objectives. Kendall & Gal (2017) consider a decomposition
of uncertainty in the context of computer vision with het-
eroscedastic Gaussian output noise, while McAllister (2016)
consider a decomposition in GPs for model-based RL.



Decomposition of Uncertainty in Bayesian Deep Learning

100 200 300 400 500
1
T

∑
t(Etrue[ct]− Emodel[ct])2

170

172

174

176

178

180

1 T

∑
t
E
tr
u
e
[c
t]

β = 0

β = 5 γ = 0

γ = 2

γ = 3

γ = β

nn

0

1

2

3

4

5

β

(a)

3100 3200 3300
1
T

∑
t(Etrue[ct]− Emodel[ct])2

912

914

916

918

920

1 T

∑
t
E
tr
u
e
[c
t]

γ = 0

γ = 2.5

γ = 7.5

γ = β

0

2

4

6

8

10

β4000 5000 6000
1
T

∑
t(Etrue[ct]− Emodel[ct])2

925

930

935

940

1 T

∑
t
E
tr
u
e
[c
t
] nn

(b)
Figure 4. RL experiments. (a): results on industrial benchmark. (b): results on wind turbine simulator. Each curve shows average cost
(y-axis) against model-bias (x-axis). Circle color corresponds to different values of β (epistemic risk weight) and curve color indicates
different values of γ (aleatoric risk weight). The purple curve is the baseline γ = β. The black curve is nearest neighbor baseline.

(a) (b) (c)
Figure 5. 100 roll-outs on the industrial benchmark ground truth system (light green), their average cost (dark green), and the average
cost of corresponding roll-outs on the BNN+LV model (blue) for a fixed value of the initial state s0. We show results for three policies
with different epistemic and aleatoric risk trade-offs. Policies are optimized using (a): no risk penalty (β, γ = 0). (b): a penalty on the
epistemic risk only (γ = 0, β = 4). (c): a penalty on the aleatoric risk only (γ = 4, β = 0).

Within reinforcement learning, Bayesian notions of model
uncertainty have a long history (Schmidhuber, 1991b;a;
Dearden et al., 1999; Still & Precup, 2012; Sun et al., 2011;
Maddison et al., 2017). The mentioned works typically
consider the online case, where model uncertainty (a.k.a.
curiosity) is used to guide exploration, e.g. in Houthooft
et al. (2016) the uncertainty of a BNN model is used to guide
exploration assuming deterministic dynamics. In contrast,
we focus on the batch setting with stochastic dynamics.

Model uncertainty is used in safe or risk-sensitive RL (Mi-
hatsch & Neuneier, 2002; Garcı́a & Fernández, 2015). In
safe RL numerous other approaches exists for safe explo-
ration (Joseph et al., 2013; Hans et al., 2008; Garcia &
Fernández, 2012; Berkenkamp et al., 2017). Uncertainties
over transition probabilities have been studied in discrete
MDPs since a long time (Shapiro & Kleywegt, 2002; Nilim
& El Ghaoui, 2005; Bagnell et al., 2001) often with a focus
on worst-case avoidance. Our work extends this to con-
tinuous state and action space using scalable probabilistic
models. Our decomposition enables a practitioner to adjust
the optimization criterion to specific decision making.

Within active learning many approaches exist that follow an
information theoretic approach (MacKay, 1992; Hernández-
Lobato & Adams, 2015; Guo & Greiner, 2007). To our
knowledge, all of these approaches however use determinis-
tic methods (mostly GPs) as model class. Perhaps closest to
our work is BALD (Houlsby et al., 2012), however because
GPs are used, this approach cannot model problems with
complex noise.

7. Conclusion
We have described a decomposition of predictive uncertainty
into its epistemic and aleatoric components when working
with Bayesian neural networks with latent variables. We
have shown how this decomposition of uncertainty can be
used for active learning, where it naturally arises from an
information-theoretic perspective. We have also used the
decomposition to propose a novel risk-sensitive criterion
for model-based reinforcement learning which decomposes
risk into model-bias and noise aversion components. Our
experiments illustrate how the described decomposition of
uncertainty is useful for efficient and risk-sensitive learning.
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