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Abstract
Gibbs sampling is the de facto Markov chain
Monte Carlo method used for inference and learn-
ing on large scale graphical models. For com-
plicated factor graphs with lots of factors, the
performance of Gibbs sampling can be limited
by the computational cost of executing a single
update step of the Markov chain. This cost is pro-
portional to the degree of the graph, the number
of factors adjacent to each variable. In this paper,
we show how this cost can be reduced by using
minibatching: subsampling the factors to form
an estimate of their sum. We introduce several
minibatched variants of Gibbs, show that they can
be made unbiased, prove bounds on their conver-
gence rates, and show that under some conditions
they can result in asymptotic single-update-run-
time speedups over plain Gibbs sampling.

1. Introduction
Gibbs sampling is a Markov chain Monte Carlo method that
is one of the most widespread techniques used with graphi-
cal models (Koller & Friedman, 2009). Gibbs sampling is
an iterative method that repeatedly resamples a variable in
the model from its conditional distribution, a process that is
guaranteed to converge asymptotically to the desired distri-
bution. Since these updates are typically simple and fast to
run, Gibbs sampling can be applied to a variety of problems,
and has been used for inference on large-scale graphical
models in many systems (Newman et al., 2007; Lunn et al.,
2009; McCallum et al., 2009; Smola & Narayanamurthy,
2010; Theis et al., 2012; Zhang & Ré, 2014).

Unfortunately, for large graphical models with many factors,
the computational cost of running an iteration of Gibbs sam-
pling can become prohibitive. Even though Gibbs sampling
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is a graph-local algorithm, in the sense that each update only
needs to reference data associated with a local neighborhood
of the factor graph, as graphs become large and highly con-
nected, even these local neighborhoods can become huge.
To make matters worse, complicated models tend to have
categorical variables with large domains: for example, the
variables can represent US States or ZIP codes, where there
are dozens to thousands of possible choices. The cost of
computing a single iteration of Gibbs sampling is propor-
tional to the product of the size of the local neighborhood
and the size of the domain of the categorical random vari-
ables. More explicitly, if the maximum degree of a variable
in the factor graph is ∆, and each variable can take on D
possible values, then a single Gibbs sampling update takes
O(D∆) time to compute in the worst case.

This effect limits the scalability of Gibbs sampling. What
started as a fast, efficient system can become dramatically
slower over the course of development as models become
more complicated, new factors are added, and new val-
ues are included in the variables’ domains. To address
this, practitioners have developed techniques such as prun-
ing (Rekatsinas et al., 2017) which improve scalability by
making the factor graphs simpler. While this does make
Gibbs sampling faster, it comes at the cost of introducing
bias which reduces fidelity to the original model.

In this paper, we explore a more principled approach to
making Gibbs sampling scalable. Our approach is inspired
by minibatching in stochastic gradient descent, which has
been used with great success to scale up machine learning
training. The main idea is that, when a Gibbs sampling
update depends on a large local graph neighborhood, we
can instead randomly subsample the neighborhood. Suppos-
ing the random sample is representative of the rest of the
neighborhood, we can proceed to perform the update using
just the random sample, rather than the (much larger) entire
neighborhood. In this paper, we study minibatching for
Gibbs Sampling, and we make the following contributions:

• We introduce techniques for minibatching which can
dramatically reduce the cost of running Gibbs sam-
pling, while provably adding no bias to the samples.

• We prove bounds on the convergence rates of our mini-
batch Gibbs algorithms, as measured by the spectral
gap of the Markov chain. We give a recipe for how to
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Table 1. Single-iteration computational complexity bounds of our minibatching algorithms compared with ordinary Gibbs sampling, for
parameter settings which can slow down convergence, as measured by the spectral gap, by no more than a O(1) factor.

Algorithm Compute Cost/Iteration Notes

Gibbs sampling O(D∆)

MIN-Gibbs: Minibatch Gibbs O(DΨ2) with high probability
MGPMH: Minibatch-Gibbs-Proposal Metropolis Hastings O(DL2 + ∆)
DoubleMIN-Gibbs: Doubly Minibatch Gibbs O(DL2 + Ψ2) with high probability

set the algorithms’ parameters so that the spectral gap
of minibatch Gibbs can be bounded to be arbitrarily
close to the spectral gap of the original Gibbs chain.

• For a class of graphs with bounded energy, we show
doing this results in an asymptotic computation cost
of O(D + ∆), a substantial speedup from the cost of
Gibbs sampling which is O(D∆).

1.1. Background and Definitions

First, to make our claims rigorous, we describe our set-
ting by defining a factor graph and the various conditions
and conventions we will be using in the paper. A factor
graph (Koller & Friedman, 2009) with n variables deter-
mines a probability distribution π over a state space Ω. In
general, a state x ∈ Ω is an assignment of a value to each of
the n variables, and each variable has its own domain over
which it can take on values. For simplicity, in this paper we
will assume all variables take on values in the same domain
{1, . . . , D} for some constant D, which would make Ω the
set of functions x : {1, . . . , n} → {1, . . . , D}.1 The prob-
ability distribution π is determined as the product of some
set of factors Φ, such that for any x ∈ Ω,

π(x) ∝ exp
(∑

φ∈Φ φ(x)
)

;

this is sometimes called the Gibbs measure. In this doc-
ument, we use the notation ρ(v) ∝ exp(εv) to mean the
unique distribution that is proportional to exp(εv), that is,

ρ(v) =
exp(εv)∑D
w=1 exp(εw)

.

Equivalently, we can define an energy function ζ, where

ζ(x) =
∑
φ∈Φ φ(x),

and let π(x) ∝ exp(ζ(x)). (Note that this definition
implicitly excludes models with hard constraints or zero-
probability states.) This is called a factor graph because the

1This means that the state space Ω is discrete, and we will
be focusing on discrete-valued models in this paper. Continuous-
valued models could be approximated with our algorithms by
discretizing their domains to any desired level of accuracy.

Algorithm 1 Gibbs sampling
given: initial state x ∈ Ω
loop

sample variable index i uniformly from {1, . . . , n}
for all u in {1, . . . , D} do
x(i)← u
εu ←

∑
γ∈A[i] φ(x)

end for
construct distribution ρ over {1, . . . , D} where

ρ(v) ∝ exp(εv)

sample v from ρ.
x(i)← v
output sample x

end loop

factors φ and variables i have a dependency relation in that
each φ depends only on the values of some of the variables,
but typically not all n. Formally, a factor φ depends on a
variable if changing the value of that variable could change
the value of φ—meaning, if there exists states x and y which
differ only in variable i and for which φ(x) 6= φ(y). Using
this, we define the relation

A = {(i, φ)|factor φ depends on variable i} .
Equivalently, this is a bipartite graph on the variables and
factors; this edge relation, together with the factor function
descriptions, defines a factor graph. Using this, we formally
describe Gibbs sampling, which we write in Algorithm 1.
Note that we use the notation x(i)← u to denote variable i
within state x being reassigned the value u, and following
standard relation notation we let A[i] = {φ|(i, φ) ∈ A} be
the set of factors that depend on variable i.

Next, we describe several conditions on the factor functions
that we will be using throughout this paper. For all that
follows, we will suppose that φ(x) ≥ 0 for all φ and for all
x; this holds without loss of generality (for models with-
out hard constraints) because adding a constant to a factor
function φ does not change the resulting distribution.
Definition 1 (Factor graph conditions). The maximum en-
ergy of a factor φ is the smallest Mφ ∈ R such that,

0 ≤ φ(x) ≤Mφ for all x ∈ Ω.
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The total maximum energy Ψ of a graph is the sum of all
the maximum energies

Ψ =
∑
φ∈ΦMφ.

The local maximum energy L of a graph is the largest sum
of all the maximum energies of factors that depend on a
single variable i,

L = maxi∈{1,...,n}
∑
φ∈A[i]Mφ.

The maximum degree ∆ of a factor graph is the largest
number of factors that are connected to a variable,

∆ = maxi∈{1,...,n} |A[i]| .

For large models with many low-energy factors, the total
maximum energy can be much smaller than the number
of factors, and the local maximum energy can be much
smaller than the maximum degree. We will introduce several
minibatch Gibbs variants in this paper, and their relative
computation costs, in terms of the quantities defined in
Definition 1, are summarized in Table 1.

1.2. Related Work

Several recent papers have explored applying minibatching
to speed up large-scale Markov chain Monte Carlo methods.
Our work is inspired by Li & Wong (2017), which shows
how minibatching can be applied to the Metropolis-Hastings
algorithm (Hastings, 1970). They show that their method,
MINT-MCMC, can outperform existing techniques that use
gradient information, such as stochastic gradient descent
and stochastic gradient Langevin dynamics, on large-scale
Bayesian neural network tasks. This is one among sev-
eral papers that have also showed how to use minibatching
to speed up Metropolis-Hastings under various conditions
(Korattikara et al., 2014; Bardenet et al., 2014; Seita et al.,
2017). More general related approaches include Firefly MC,
which implements a minibatching-like computational pat-
tern using auxiliary variables (Maclaurin & Adams, 2014),
and block-Poisson estimation, which constructs unbiased
log-likelihood estimates using Poisson variables (Quiroz
et al., 2018). Our results are distinct from this line of work
in that we are the first to study minibatch Gibbs sampling
in depth2, and we are the first to address the effect of cate-
gorical random variables with large domains that can limit
computational tractability. Additionally, none of these pa-
pers provides any theoretical bounds on the convergence
rates of their minibatched algorithm compared to the origi-
nal MCMC chain.

2. MIN-Gibbs
2Johndrow et al. (2015) does evaluate a version of a mini-

batched Gibbs sampler on a particular application, but does not
study Gibbs in depth.

Algorithm 2 MIN-Gibbs: Minibatch Gibbs sampling
given: minibatch estimator distributions µx for x ∈ Ω
given: initial state (x, ε) ∈ Ω× R
loop

sample variable index i uniformly from {1, . . . , n}
εx(i) ← ε
for all u in {1, . . . , D} \ {x(i)} do
x(i)← u
sample energy εu from µx

end for
construct distribution ρ over {1, . . . , D} where

ρ(v) ∝ exp(εv)

sample v from ρ.
x(i)← v
ε← εv
output sample (x, ε)

end loop

In this section, we will present our first algorithm for ap-
plying minibatching to Gibbs sampling. As there are many
options when doing minibatching3 we will present our algo-
rithm in terms of a general framework for Gibbs sampling in
which we use an estimate for the energy rather than comput-
ing the energy exactly. Specifically, we imagine the result
of minibatching on some state x ∈ Ω is a random variable
εx such that

εx ≈
∑
φ∈Φ

φ(x).

For example, we could assign εx as

εx =
|Φ|
B

∑
φ∈S

φ(x)

where S is a randomly chosen subset of Φ of size B. More
formally, we let µx be the distribution of εx, and we assume
our algorithm will have access to µx for every state x and
can draw samples from it. For simplicity, we assume µx has
finite support, which is true for any minibatch estimator.

We can now replace the exact sums in the Gibbs sampling
algorithm with our approximations εx. If sampling from
µx is easier than computing this sum, this will result in a
faster algorithm than vanilla Gibbs sampling. There is one
further optimization: rather than re-estimating the energy of
the current state x at each iteration of our algorithm, instead
we can cache its value as it was computed in the previous
step. Doing this results in Algorithm 2, MIN-Gibbs. We call
our algorithm MIN-Gibbs because it was inspired by the
Mini-batch Tempered MCMC (MINT-MCMC) algorithm
presented by Li & Wong (2017) for applying minibatching
to Metropolis-Hastings, another popular MCMC algorithm.

3These options include: what the batch size is, whether the
batch size is fixed or random, whether to do weighted sampling,
whether to sample with replacement, etc.
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MINT-MCMC also used the idea of caching the energy to
form an augmented system with state space Ω× R. Com-
pared with their algorithm, our contributions are that: (1)
we modify the technique to apply to Gibbs sampling; (2) we
show that tempering (which is sampling from a modified dis-
tribution at a higher temperature) and other sources of bias
can be circumvented by using a bias-adjusted minibatching
scheme; and (3) we prove bounds on the convergence rate
of our technique.

Because it uses an energy estimate rather than the true en-
ergy, this algorithm is not equivalent to standard Gibbs
sampling. This raises the question: will it converge to the
same distribution π, and if not, what will it converge to?
This question can be answered by using the property of
reversibility also known as detailed balance.

Definition 2. A Markov chain with transition matrix T is
reversible if for some distribution π̄ and all states x, y ∈ Ω,

π̄(x)T (x, y) = π̄(y)T (y, x).

It is a well known result that if a chain T is reversible, the
distribution π̄ will be a stationary distribution of T , that
is, π̄T = π̄. Thus we can use reversibility to determine
the stationary distribution of a chain, and we do so for
Algorithm 2 in the following theorem.

Theorem 1. The Markov chain described in Algorithm 2 is
reversible and has stationary distribution

π̄(x, ε) ∝ µx(ε) · exp(ε)

and its marginal stationary distribution in x will be

π̄(x) ∝ Eε∼µx [exp(ε)] .

Interestingly, this theorem shows that if we choose our esti-
mation scheme such that for all x ∈ Ω,

Eε∼µx [exp(ε)] = exp(ζ(x)) =
∏
φ∈Φ exp (φ(x)) (1)

then MIN-Gibbs will actually be unbiased: we will have
π(x) = π̄(x). Next, we will show how we can take ad-
vantage of this by constructing estimators that satisfy (1)
using minibatching. Suppose without loss of generality that
each φ is non-negative, φ(x) ≥ 0. Let λ be a desired av-
erage minibatch size, and for each factor φ, let sφ be an
independent Poisson-distributed random variable with mean
λMφ/Ψ. Let S ⊂ Φ denote the set of factors φ for which
sφ > 0. Then for any state x, define the estimator

εx =
∑
φ∈S

sφ log

(
1 +

Ψ

λMφ
φ(x)

)
. (2)

Lemma 1. The estimator εx defined in (2) satisfies the
unbiasedness condition in (1).

Proof. The expected value of the exponential of the estima-
tor defined in (2) is

E [exp(εx)] = E
[
exp

(∑
φ∈S sφ log

(
1 + Ψ

λMφ
φ(x)

))]
.

Since the sφ are independent, this becomes

E [exp(εx)] =
∏
φ∈Φ E

[
exp

(
sφ log

(
1 + Ψ

λMφ
φ(x)

))]
.

Each of these constituent expected values is an evaluation
of the moment generating function of a Poisson random
variable. Applying the known expression for this MGF and
simplifying gives us the expression in (1), which is what we
wanted to prove.

From the result of this lemma, we can see that using this
bias-adjusted estimator with MIN-Gibbs will result in an
unbiased chain with stationary distribution π. However,
the chain being unbiased does not, by itself, mean that this
method will be more effective than standard Gibbs. For
that to be true, it must also be the case that approximat-
ing the energy did not affect the convergence rate of the
algorithm—at least not too much. The convergence times
of Gibbs samplers can vary dramatically, from time linear
in the number of variables to exponential time. As a result,
it is plausible that approximating the energy as we do in
Algorithm 2 could switch us over from a fast-converging
chain to a slow-converging one, and as a result even though
the individual iterations would be computationally faster,
the overall computation would be slow—or worse, would
silently give incorrect answers when the chain fails to con-
verge. Recently, other methods that have been used to speed
up Gibbs sampling, such as running asynchronously (De Sa
et al., 2016) and changing the order in which the variables
are sampled (He et al., 2016), have been shown in some
situations to result in algorithms that converge significantly
slower than plain Gibbs sampling. Because of this, if we
want to use algorithms like MIN-Gibbs with confidence, we
need to show that this will not happen for minibatching.

To show that minibatching does not have a disastrous effect
on convergence, we need to bound the convergence rate of
our algorithms. To measure the convergence rate, we use a
metric called the spectral gap (Levin et al., 2009).

Definition 3. Let T be the transition matrix of a reversible
Markov chain. Since it is reversible, its eigenvalues must all
be real, and they can be ordered as

1 = λ1 ≥ λ2 ≥ · · · ≥ λ|Ω|.

The spectral gap γ is defined as γ = λ1 − λ2.

The spectral gap measures the convergence rate of a Markov
chain in terms of the `2-distance, in that the larger the spec-
tral gap, the faster the chain converges. The spectral gap is
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related to several other metrics of convergence for Markov
chains. For example, it is a standard result that for a lazy
Markov chain (a Markov chain is called lazy if at each itera-
tion, it stays in its current state with probability at least 1/2)
the mixing time of the chain, which measures the number of
steps required to converge to within total-variation distance
ε of the stationary distribution π, is bounded by

tmix(ε) ≤ 1

γ
log

(
1

ε ·minx∈Ω π(x)

)
.

In order to determine the effect of using minibatching on
convergence, we would like to bound the spectral gap of
MIN-Gibbs in terms of the spectral gap of the original Gibbs
sampling chain. In the following theorem, we show that if
the energy estimator εu is always sufficiently close to the
true energy, then we can bound the spectral gap.
Theorem 2. Let γ̄ be the spectral gap of MIN-Gibbs run-
ning with an energy estimator µx that has finite support and
that satisfies, for some constant δ > 0 and every x ∈ Ω,

Pεx∼µx (|εx − ζ(x)| ≤ δ) = 1.

Let γ be the spectral gap of a vanilla Gibbs sampling chain
running using the exact energy. Then,

γ̄ ≥ exp(−6δ) · γ.

That is, the convergence is slowed down by at most a con-
stant factor of exp(−5δ)—which is independent of the size
of the problem. This theorem guarantees that if we can re-
strict our estimates to being within a distance of O(1) of the
exact energy, then the convergence rate will not be slowed
down by more than an O(1) constant factor.

Unfortunately, the estimator presented in (2) is not going to
be always bounded by a constant distance from the exact
energy. Still, since it is the sum of independent terms with
bounded variance, we can bound it with high probability.
Lemma 2. For any constants 0 < δ and 0 < a < 1, if we
assign an expected batch size

λ ≥ max

(
8Ψ2

δ2
log

(
2

a

)
,

2Ψ2

δ

)
,

then the estimator in (2) satisfies P (|εx − ζ(x)| ≥ δ) ≤ a.

This lemma lets us construct minibatch estimators that re-
main arbitrarily close to the true energy with arbitrarily high
probability. Furthermore, we can do this with a minibatch
size independent of the number of variables or factors, de-
pending instead on the total energy. This means that if we
have a very large number of low-energy factors, we can get
significant speedup from MIN-Gibbs with high-probability
theoretical guarantees on the convergence rate. In particular,
since the computational cost of running a single epoch of
MIN-Gibbs is D times the minibatch size, and this lemma
suggests we need to set λ = Ω(Ψ2), it follows that the total
computational cost of MIN-Gibbs will be O(Ψ2D).

Validation of MIN-Gibbs. Having characterized the ef-
fects of minibatching on Gibbs sampling, we present a syn-
thetic scenario where Algorithm 2 can be applied. The Ising
model (Ising, 1925) is a probabilistic model over an N ×N
lattice, with domain x(i) ∈ {−1, 1}. The Ising model has
a physical interpretation in which each x(i) represent the
magnetic spin at each site. The energy of a configuration is
given by:

ζIsing(x) =
∑N
i=1

∑N
j=1 β ·Aij · (x(i)x(j) + 1),

where Aij is called the interaction between variable i and j,
and β is the inverse temperature.4 We chose to use the Ising
model to validate MIN-Gibbs because it is a simple model
that nevertheless has non-trivial statistical behavior.

We chose an Ising model in which each site is fully con-
nected (i.e. ∆ = N2−1), and the strength of interactionAij
between any two sites is determined based on their distance
by a Gaussian kernel. We simulated Algorithm 2 on a graph
with n = N2 = 400 and inverse temperature β = 1. This
β parameter was hand-tuned such that the Gibbs sampler
seemed to mix in about the number of iterations we wanted
to run. To have a fair comparison, the same setup was then
used to evaluate MIN-Gibbs. For this model, L = 2.21 and
Ψ = 416.1.5 We started the algorithm with a unmixed con-
figuration where each site takes on the same state (x(i) = 1
for all i).

As the algorithm ran, we used the output samples to compute
a running average of the marginal distributions of each vari-
able. By symmetry (since negating a state will not change
its probability), the marginal distribution of each variable
in the stationary distribution π should be uniform, so we
can use the distance between the estimated marginals and
the uniform distribution as a proxy to evaluate the conver-
gence of the Markov chain. Figure 1 shows the average
`2-distance error in the estimated marginals compared with
the fully-mixed state. Notice that as the batch size increases,
MIN-Gibbs approaches vanilla Gibbs sampling.

Using local structure. Although MIN-Gibbs has a compu-
tational cost that is independent of the size of the graph, it
still depends on the total maximum energy Ψ. That is, unlike
vanilla Gibbs sampling, which has a computational cost that
depends only on the number of factors local to the variable
that is being sampled, MIN-Gibbs depends on global prop-
erties of the graph. This is because the estimators used by
MIN-Gibbs are approximating the whole energy sum ζ(x),
rather than approximating the sum over just those factors
which depend on the variable that is being resampled. How

4In some settings, the Ising model is used with an additional
bias term (which physically represents a static magnetic field), but
here for simplicity we do not include this term.

5Note that since we chose β large enough that Ψ2 > ∆ for
this model, we do not expect MIN-Gibbs to be faster than Gibbs
sampling for this particular synthetic example.
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Figure 1. Convergence of marginal estimates for MIN-Gibbs com-
pared with vanilla Gibbs sampling.

Algorithm 3 Local Minibatch Gibbs
given: initial state x ∈ Ω× R, minibatch size B
loop

sample variable index i uniformly from {1, . . . , n}
sample minibatch S ⊂ A[i] uniformly s.t. |S| = B
for all u in {1, . . . , D} do
x(i)← u

εu ← |A[i]|
|S|

∑
γ∈S φ(x)

end for
construct distribution ρ over {1, . . . , D} where

ρ(v) ∝ exp(εv)

sample v from ρ.
x(i)← v
output sample x

end loop

can we modify MIN-Gibbs to take advantage of this local
structure?

One straightforward way to do it is to allow the estimators
εx to be dependent, rather than independent. That is, instead
of choosing a unique minibatch every time we estimate the
energy, we choose one fixed minibatch for each iteration.
Once our minibatch is fixed, the conditional distribution
computation will exhibit the same cancellation of irrele-
vant factors that vanilla Gibbs has, and we will be able to
compute the transition probabilities using only local infor-
mation. One side-effect of this is that we can no longer
use the energy-caching technique that MIN-Gibbs uses, as
we will no longer ever be estimating the total energy, but
rather only the local component of the energy (the part that
is dependent on the variable we are re-sampling). This
would result in something like Algorithm 3. (We could
also consider variants of this algorithm that use different
minibatching schemes, such as (2), but here for simplicity
we present the version that uses standard minibatching.)
Note that Algorithm 3 is nearly identical to vanilla Gibbs
sampling, except that it uses a single minibatch to estimate
all the energies in each iteration.

Algorithm 3 will run iterations in time O(BD), which
can be substantially faster than plain Gibbs, which runs in
O(∆D). We evaluate Algorithm 3 empirically, and demon-
strate in Figure 2(a) that it converges, with almost the same
trajectory as plain Gibbs, for various values of the batch
size B. The simulation here is on the same Ising model as
in Algorithm 2, with the same parameters. Unfortunately,
it is unclear if there is anything useful we can say about
its convergence rate or even what it converges to. Unlike
MIN-Gibbs, because of the lack of energy-caching there is
no obvious reversibility argument to be made here, and so
we can not prove bounds on the spectral gap, since those
bounds require reversibility.

3. Minibatch-Gibbs-Proposal MH
We left off in the previous section by presenting Algorithm 3,
which we showed has promising computational cost but
gives us no guarantees on accuracy or convergence rate.
There is a general technique that we can use to transform
such chains into ones that do have accuracy guarantees:
Metropolis-Hastings (Hastings, 1970). This well-known
technique uses updates from an arbitrary Markov chain,
called the proposal distribution, but then chooses whether or
not to reject the update based on the true target distribution π.
This rejection step reshapes the proposal chain into one that
is reversible with stationary distribution π. A natural next
step for us is to use Metropolis-Hastings with Algorithm 3 as
a proposal distribution. Doing this results in Algorithm 4.6

Because Algorithm 4 is based on Metropolis-Hastings, it
is natural for it to be reversible and have π as its stationary
distribution. We prove that this must be the case. We also
prove a bound on the spectral gap of the chain.
Theorem 3. Algorithm 4 is reversible, and it has stationary
distribution π.

Theorem 4. Let γ̄ be the spectral gap of MGPMH, and let
γ be the spectral gap of a vanilla Gibbs sampling chain
running on the same factor graph. Suppose the expected
minibatch size is large enough that L ≤ λ. Then,

γ̄ ≥ exp
(
−L2/λ

)
· γ.

These theorems mean that MGPMH will converge to the
correct stationary distribution π, and will do so with a con-
vergence rate that is at most a factor of exp(L2/λ) slower
than the vanilla Gibbs chain. By making λ ≈ L2, this
difference in convergence rates can be made O(1).

On the other hand, when we look at the computational cost
of an iteration of Algorithm 4, we notice it will be O(∆ +

6Note that Algorithm 4 is not precisely Metropolis-Hastings,
because its acceptance probability differs somewhat from what
Metropolis-Hastings would have as it is dependent on prior ran-
domness (the selected variable i and minibatch weights sφ).
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Figure 2. Convergence of (a) Local Minibatch Gibbs, (b) MGPMH, and (c) DoubleMIN-Gibbs, compared with vanilla Gibbs sampling.

Algorithm 4 MGPMH: Minibatch-Gibbs-Proposal MH
Require: Initial model x ∈ Ω and average batch size λ

loop
Sample i uniformly from {1, . . . , n}.
for all φ in A[i] do

Sample sφ ∼ Poisson
(
λMφ
L

)
end for
S ← {φ|sφ > 0}
for all u in {1, . . . , D} do
εu ←

∑
φ∈S

sφL

λMφ
φ(x)

end for
construct distribution ψ(v) ∝ exp (εv)
sample v from ψ.
construct update candidate y ← x; y(i)← v
compute the update probability

a =
exp

(∑
φ∈A[i] φ(y)

)
exp

(∑
φ∈A[i] φ(x)

) · exp
(
εx(i)

)
exp

(
εy(i)

) .
Update x← y with probability min(a, 1).

end loop

D |S|), since we spendO(∆) time computing the minibatch
coefficients sφ and the acceptance probability a, and we
spend O(D |S|) time computing the energy estimates εu. In
expectation, the minibatch size |S| will be

E [|S|] ≤∑φ sφ =
∑
φ
λMφ

L = λ,

so our average runtime for an iteration will be O(λD + ∆).
If we want a guaranteed O(1)-factor-difference on the spec-
tral gap, we need to set λ = O(L2). Doing this produces
a final computation cost of O(L2D + ∆) for MGPMH.
This can represent a significant speedup over the O(D∆)
complexity of vanilla Gibbs sampling.

Validation of MGPMH. We again turn to a synthetic ex-
ample to validate the theoretical guarantees in Algorithm 4.
We simulate a generalization of the Ising model known as
the Potts model (Potts, 1952) with domain {1, . . . , D}. The

energy of a configuration is the following:

ζPotts =
∑N
i=1

∑N
j=1 β ·Aij · δ(x(i), x(j))

where the the δ function equals one whenever x(i) = x(j)
and zero otherwise. We simulate a graph with n = N2 =
∆ + 1 = 400, β = 4.6, D = 10, and a fully connected con-
figuration Aij that depends on site distance in the same way
as before. This model has L = 5.09 and Ψ = 957.1: note
that L2 � ∆ for this model. We run the simulation for one
million iterations and illustrate the error in the marginals of
MGPMH and that of vanilla Gibbs sampling in Figure 2(b).
We evaluate MGPMH for three average batch sizes λ, writ-
ten in Figure 2(b) as multiples of the local maximum energy
squared (L2). MGPMH approaches vanilla Gibbs sampling
as batch size increases, which validates Theorem 4.

Combining methods. Still, under some conditions, even
MGPMH might be too slow. For example, ∆ could be very
large relative to L2D. In that setting, even though MGPMH
would be faster than Gibbs sampling because it decouples
the dependence on D and ∆, it still might be intractably
slow. Can the decoupling of D and ∆ from MGPMH be
combined with the ∆-independence of MIN-Gibbs?

The most straightforward way to address this question is
to replace the exact energy computation in the acceptance
probability of MGPMH with a second minibatch approxi-
mation, like in MIN-Gibbs. Doing this combines the effects
of MIN-Gibbs, which conceptually replaces ∆ with Ψ2

in the computational cost, and MGPMH, which conceptu-
ally replaces D∆ with DL2 + ∆. We call this algorithm
DoubleMIN-Gibbs because of its doubly minibatched nature.
It turns out DoubleMIN-Gibbs, Algorithm 5, has the same
stationary distribution as MIN-Gibbs, and we can also prove
a similar bound on its spectral gap.

Theorem 5. The Markov chain described in Algorithm 5
is reversible and has the same stationary distribution (and
therefore the same marginal stationary distribution) as MIN-
Gibbs with the same estimator (as described in Theorem 1).

Theorem 6. Let γ̄ be the spectral gap of DoubleMIN-Gibbs
running with an energy estimator µx that has finite support
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Algorithm 5 DoubleMIN-Gibbs: Doubly-Minibatched
Require: Initial state (x, ξx) ∈ Ω×R
Require: Average first batch size λ1

Require: Second minibatch estimators µx for x ∈ Ω
loop

Sample i uniformly from {1, . . . , n}.
for all φ in A[i] do

Sample sφ ∼ Poisson
(
λMφ
L

)
end for
S ← {φ|sφ > 0}
for all u in {1, . . . , D} do
εu ←

∑
φ∈S

sφL

λMφ
φ(x)

end for
construct distribution ψ(v) ∝ exp (εv)
sample v from ψ.
construct update candidate y ← x; y(i)← v
sample ξy ∼ µy
compute the update probability

a = exp
(
ξy − ξx + εx(i) − εy(i)

)
.

Update (x, ξx)← (y, ξy) with probability min(a, 1).
end loop

and that satisfies, for some constant δ > 0 and every x ∈ Ω,

Pξx∼µx (|ξx − ζ(x)| ≤ δ) = 1.

Let γ be the spectral gap of a MGPMH sampling chain
running using the same graph and average batch size. Then,

γ̄ ≥ exp(−4δ) · γ.

Essentially, this theorem tells us the same thing Theorem 2
told us about MIN-Gibbs. As long as we can bound our
estimator to be at most O(1) away from the true energy
ζ(x), convergence is slowed down by only at most a con-
stant factor from MGPMH. By Lemma 2, this happens with
high probability when we use an estimator of the same av-
erage batch size (for the second minibatch) as we used for
MIN-Gibbs: B = O(Ψ2). Of course, this will only ensure
an O(1) difference from MGPMH; to ensure an O(1) differ-
ence from vanilla Gibbs, we also need to invoke Theorem 4,
which tells us we need to use an average batch size ofO(L2)
for the first minibatch. Along with the fact that the first mini-
batch sum needs to be computed D times, this results in an
overall computational complexity of O(L2D + Ψ2).

One potential obstacle to an implementation actually achiev-
ing this asymptotic rate is the sampling of the Poisson ran-
dom variables to select sφ. Naively, since there are up to
∆ potential values of φ, this could take up to O(∆) time
to compute. However, it is known to be possible to sam-
ple a (sparse) vector of Poisson random variables in time
proportional to the sum of their parameters instead of the
length of the vector. To illustrate, suppose we want to
sample x1, . . . , xm independently where xi ∼ Poisson(λi).

To do this fast, first we notice if we let B =
∑m
i=1 xi,

then B will also be Poisson distributed, with parameter
Λ =

∑m
i=1 λi. Conditioned on their sum B, the variables

x1, . . . , xm have a multinomial distribution with trial count
B and event probabilities pi = λi/Λ. It is straightforward to
sample from a multinomial distribution in time proportional
to its trial count (ignoring log factors). Thus, we can sample
x1, . . . , xm by first samplingB ∼ Poisson(λ) and then sam-
pling (x1, . . . , xm) ∼ Multinomial(B, (p1, . . . , pm)), and
this entire process will only take on average O(Λ) time.7

For Algorithm 5, this means we can sample all the sφ in av-
erage time O(λ).8 This is enough to confirm that its overall
computational complexity is in fact O(L2D + Ψ2).

Validation of DoubleMIN-Gibbs. We evaluated the
DoubleMIN-Gibbs algorithm on the same synthetic Potts
model that we used for MGPMH. Figure 2(c) illustrates the
performance of DoubleMIN-Gibbs with a batch size of L2

for the first (MGPMH) minibatch, while the batch size of
the second (MIN-Gibbs) minibatch, which we denote λ2 in
Figure 2(c), is adjusted to multiples of Ψ2. As the second
minibatch size increases, DoubleMIN Gibbs approaches the
trajectory of MGPMH and vanilla Gibbs sampling, which is
what we would expect from the result of Theorem 6.

4. Conclusion
We studied applying minibatching to Gibbs sampling. First,
we introduced MIN-Gibbs, which improves the asymptotic
per-iteration computational cost of Gibbs sampling from
O(D∆) to O(DΨ2) in the setting where the total maxi-
mum energy Ψ2 is small compared to the maximum degree
∆. Second, we introduced MGPMH, which has an asymp-
totic cost of O(DL2 + ∆) and is an improvement in the
setting where L2 � ∆. Finally, we combined the two
techniques to produce DoubleMIN-Gibbs, which achieves a
computational cost of O(DL2 + Ψ2) and further improves
over the other algorithms when L2 ≤ Ψ2 � ∆. We proved
that all these algorithms can be made to be unbiased, and
that these computation costs can be achieved with parameter
settings that are guaranteed to have the same asymptotic
convergence rate as plain Gibbs sampling, up to a constant-
factor slowdown that can be made arbitrarily small. Our
techniques will potentially enable graphical model inference
engines that use Gibbs sampling to scale up to much larger
and more complicated graphs than were previously possi-
ble, and could become a part of a future of highly scalable
probabilistic inference on big data.

7This still requires O(m) time to compute Λ and the probabili-
ties pi, but this can be computed once at the start of Algorithm 5,
thereby not affecting the per-iteration computational complexity.

8This technique can also be used to speed up the other al-
gorithms in this paper, yet it is not necessary to establish their
asymptotic computational complexity.
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A. Proofs
Detailed proof of Lemma 1. The expected value of the exponential of the estimator defined in (2) is

E [exp(εx)] = E

exp

∑
φ∈S

sφ log

(
1 +

Ψ

λMφ
φ(x)

) .
Since the sφ are independent, this becomes

E [exp(εx)] =
∏
φ∈Φ

E

[
exp

(
sφ log

(
1 +

Ψ

λMφ
φ(x)

))]
.

Each of these constituent expected values is an evaluation of the moment generating function of a Poisson random variable.
Applying the known expression for this MGF,

E [exp(εx)] =
∏
φ∈Φ

exp

(
λMφ

Ψ

(
exp

(
log

(
1 +

Ψ

λMφ
φ(x)

))
− 1

))

=
∏
φ∈Φ

exp

(
λMφ

Ψ

(
Ψ

λMφ
φ(x)

))
=
∏
φ∈Φ

exp (φ(x))

= exp(ζ(x)).

This is what we wanted to show.

Proof of Theorem 1. The probability of transitioning from (x, εx(i)) to (y, εy(i)) for two distinct states x and y which differ
only in variable i will be the probability that: we decide to re-sample variable i, we choose this particular value εy(i) when
we sample it at random from µy, and we sample v = y(i) from ρ when we sample the new value of variable i. So the
transition probability will be

T ((x, εx(i)), (y, εy(i))) =
1

n
· µy(εy(i)) ·E

[
exp(εy(i))∑D
w=1 exp(εw)

]

where this expected value is taken over the randomly sampled εw (except when w ∈ {x(i), y(i)} where the value of εw is
already determined). If we multiply both sides by π̄(x, ε) which by definition for some fixed Z is equal to

π̄(x, ε) =
1

Z
µx(ε) · exp(ε)

then we get

π̄(x, ε)T ((x, εx(i)), (y, εy(i)))

=
1

nZ
·E
[
µx(ε) · exp(ε) · µy(εy(i)) · exp(εy(i))∑D

w=1 exp(εw)

]

and this expression is clearly symmetric in x and y, so the chain is reversible and π̄ is indeed its stationary distribution. The
second result, about the marginal distribution in x, follows directly from the definition of expected value.

Proof of Theorem 2. This proof will use the technique of Dirichlet forms (Levin et al., 2009). The Dirichlet form of a
Markov chain with transition matrix T is defined for function argument f : Ω→ R as

E(f) =
1

2

∑
x,y∈Ω

(f(x)− f(y))2π(x)T (x, y).
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Similarly, the variance of the function f under the distribution π is defined as

Varπ (f) =
1

2

∑
x,y∈Ω

(f(x)− f(y))2π(x)π(y);

this is equivalent to the standard definition of variance. It is a standard result (from Levin et al. (2009)) that the spectral gap
can be written as

γ = min
f

E(f)

Varπ (f)
.

Now, consider the Dirichlet form of the MIN-Gibbs chain. Let this form be Ē(f), where for f : Ω× R→ R,

Ē(f) =
1

2

∑
x,y∈Ω

∑
εx∈dom(µx)

∑
εy∈dom(µy)

(f(x, εx)− f(y, εy))2π̄(x, εx)T̄ ((x, εx), (y, εy)).

From the result of Theorem 1, we know that for some Z̄,

π̄(x, ε) =
1

Z̄
µx(ε) · exp(ε).

We also recall from the proof of that theorem that, for x and y which differ only in variable i,

T̄ ((x, εx), (y, εy)) =
1

n
· µy(εy) ·E

[
exp(εy)∑D
w=1 exp(εw)

]
,

where the εw are each sampled independently from µw. Otherwise, the transition probability is zero. As a result, if we let
Q ⊂ Ω× Ω denote the pairs of states which differ only in a single variable, we can rewrite our Dirichlet form as

Ē(f) =
1

2nZ̄

∑
(x,y)∈Q

∑
εx∈dom(µx)

∑
εy∈dom(µy)

(f(x, εx)− f(y, εy))2µx(εx) · exp(εx) · µy(εy) ·E
[

exp(εy)∑D
w=1 exp(εw)

]
.

Now, by the definition of expected value, if we suppose that εx and εy are random variables sampled from µx and µy
respectively, then

Ē(f) =
1

2nZ̄

∑
(x,y)∈Q

E

[
(f(x, εx)− f(y, εy))2 · exp(εx) exp(εy)∑D

w=1 exp(εw)

]
.

Using a similar argument, we can also analyze the original vanilla Gibbs chain. For simplicity, define

ζ(x) =
∑
φ∈Φ

φ(x),

and suppose that for some Z

π(x) =
1

Z
exp(ζ(x)).

Now we can define the Dirichlet form of the original Gibbs chain as E(g), where g : Ω→ R and

E(g) =
1

2nZ

∑
(x,y)∈Q

(g(x)− g(y))2 · exp(ζ(x)) exp(ζ(y))∑D
w=1 exp(ζ(w))

.

Now, we know by the condition of the theorem that

|εx − ζ(x)| ≤ δ.
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As a result, we can bound the Dirichlet form of our MIN-Gibbs chain with

Ē(f) ≥ 1

2nZ̄

∑
(x,y)∈Q

E

[
(f(x, εx)− f(y, εy))2 · exp(ζ(x)− δ) exp(ζ(y)− δ)∑D

w=1 exp(ζ(w) + δ)

]

=
1

2nZ̄

∑
(x,y)∈Q

exp(ζ(x)− δ) exp(ζ(y)− δ)∑D
w=1 exp(ζ(w) + δ)

E
[
(f(x, εx)− f(y, εy))2

]
.

On the other hand, the variance form associated with the MIN-Gibbs chain is

Varπ̄ (f) =
1

2

∑
x,y∈Ω

∑
εx∈dom(µx)

∑
εy∈dom(µy)

(f(x, εx)− f(y, εy))2π̄(x)π̄(y)

=
1

2Z̄2

∑
x,y∈Ω

∑
εx∈dom(µx)

∑
εy∈dom(µy)

(f(x, εx)− f(y, εy))2µx(εx) · exp(εx) · µy(εy) · exp(εy)

≤ 1

2Z̄2

∑
x,y∈Ω

exp(ζ(x) + δ) · exp(ζ(y) + δ) ·E
[
(f(x, εx)− f(y, εy))2

]
.

Now, we need some way to get rid of these expected values. One way to do it is to recall that for positive numbers
a1, a2, . . . , aN and b1, b2, . . . , bN , ∑n

i=1 ai∑n
i=1 bi

≥ min
i

ai
bi

or, in terms of expected value, if a and be are nonnegative functions and Z is a random variable,

E [a(Z)]

E [b(Z)]
=

1

E [b(Z)]
E

[
b(Z)

a(Z)

b(Z)

]
≥ 1

E [b(Z)]
E

[
b(Z) min

z

a(z)

b(z)

]
= min

z

a(z)

b(z)
.

Equivalently, we can say that there exists a fixed z (the z that minimizes the expression on the right) such that

E [a(Z)]

E [b(Z)]
≥ a(z)

b(z)
. (3)

It follows that

γ̄ = min
f

Ē(f)

Varπ̄ (f)

≥ min
f

1
2nZ̄

∑
(x,y)∈Q

exp(ζ(x)−δ) exp(ζ(y)−δ)∑D
w=1 exp(ζ(w)+δ)

E
[
(f(x, εx)− f(y, εy))2

]
1

2Z̄2

∑
x,y∈Ω exp(ζ(x) + δ) · exp(ζ(y) + δ) ·E [(f(x, εx)− f(y, εy))2]

= min
f

E
[

1
2nZ̄

∑
(x,y)∈Q

exp(ζ(x)−δ) exp(ζ(y)−δ)∑D
w=1 exp(ζ(w)+δ)

(f(x, εx)− f(y, εy))2
]

E
[

1
2Z̄2

∑
x,y∈Ω exp(ζ(x) + δ) · exp(ζ(y) + δ) · (f(x, εx)− f(y, εy))2

] ,
where the randomness in this expression is over the random variables εx ∼ µx for each x ∈ Ω. We can think of this as a
ratio of huge sums over all possible assignments of εx for all x, which will be lower bounded by the ratio for some fixed
assignment of εx, as per (3). That is, for some assignment of values to each εx for x ∈ Ω,

γ̄ = min
f

Ē(f)

Varπ̄ (f)

≥ min
f

1
2nZ̄

∑
(x,y)∈Q

exp(ζ(x)−δ) exp(ζ(y)−δ)∑D
w=1 exp(ζ(w)+δ)

(f(x, εx)− f(y, εy))2

1
2Z̄2

∑
x,y∈Ω exp(ζ(x) + δ) · exp(ζ(y) + δ) · (f(x, εx)− f(y, εy))2

.
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If we now define

g(x) = f(x, εx)

then we can simplify this ratio to

γ̄ ≥ min
g

1
2nZ̄

∑
(x,y)∈Q

exp(ζ(x)−δ) exp(ζ(y)−δ)∑D
w=1 exp(ζ(w)+δ)

(g(x)− g(y))2

1
2Z̄2

∑
x,y∈Ω exp(ζ(x) + δ) · exp(ζ(y) + δ) · (g(x)− g(y))2

= exp(−5δ) min
g

1
2n

∑
(x,y)∈Q

exp(ζ(x)) exp(ζ(y))∑D
w=1 exp(ζ(w))

(g(x)− g(y))2

1
2Z̄

∑
x,y∈Ω exp(ζ(x)) · exp(ζ(y)) · (g(x)− g(y))2

.

Now, we notice that these are the same as the expressions for the original chain! In fact,

γ̄ ≥ exp(−5δ)
Z̄

Z
min
g

E(g)

Varπ (g)
.

All that remains is to bound this ratio of the Z and Z̄. We can do this with

Z̄

Z
=

∑
x∈Ω

∑
ε∈dom(µx) µx(ε) exp(ε)∑
x∈Ω exp(ζ(x))

≥
∑
x∈Ω

∑
ε∈dom(µx) µx(ε) exp(ζ(x)− δ)∑

x∈Ω exp(ζ(x))

= exp(−δ)
∑
x∈Ω exp(ζ(x))∑
x∈Ω exp(ζ(x))

= exp(−δ),

and so

γ̄ ≥ exp(−6δ) min
g

E(g)

Varπ (g)

= exp(−5δ)γ.

This is what we wanted to show.

Proof of Lemma 2. The estimator we want to bound is

εx =
∑
φ∈S

sφ log

(
1 +

Ψ

λMφ
φ(x)

)
.

where the parameter of the Poisson-distributed random variable sφ is

E [sφ] =
λMφ

Ψ
.

First, we note that since 0 ≤ φ(x) and the logarithm is concave,

0 ≤ log

(
1 +

Ψ

λMφ
φ(x)

)
≤ Ψ

λMφ
φ(x) ≤ Ψ

λ
.
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Second, note that since the variance of a Poisson random variable is equal to its expected value, the variance of the estimator
is

Var (εx) =
∑
φ∈Φ

Var (sφ)

(
log

(
1 +

Ψ

λMφ
φ(x)

))2

≤ Ψ2

λ2

∑
φ∈Φ

Var (sφ)

=
Ψ2

λ2

∑
φ∈Φ

λMφ

Ψ

=
Ψ2

λ
.

Thus, by the Bernstein inequality, if we can write εx as a sum, then

P (|εx −E [εx]| ≥ t) ≤ 2 exp

(
−

1
2 t

2

Var (εx) + 1
3Ct

)
= 2 exp

(
−

1
2 t

2

Ψ2

λ + 1
3Ct

)

where C is the maximum magnitude of any component of the sum. But, since the Poisson distribution is infinitely divisible,
we can make arbitrarily many components of the sum, so we can push C arbitrarily close to 0. By a continuity argument we
can set it equal to 0, and so

P (|εx −E [εx]| ≥ t) ≤ 2 exp

(
− λt2

2Ψ2

)
.

Next, we need to bound E [εx]. First, note that by Jensen’s inequality,

exp(E [εx]) ≤ E [exp(εx)] = exp(ζ(x)),

so εx is an underestimator of ζ(x) in expectation. We thus need to bound it from below. Since the expected value of sφ is
known, we can write the expected value explicitly as

E [εx] =
∑
φ∈Φ

λMφ

Ψ
log

(
1 +

Ψ

λMφ
φ(x)

)
.

We know for positive z that log(1 + z) ≥ x− x2/2, so

E [εx] ≥
∑
φ∈Φ

λMφ

Ψ

(
Ψ

λMφ
φ(x)−

(
Ψ

λMφ
φ(x)

)2
)

≥
∑
φ∈Φ

λMφ

Ψ

(
Ψ

λMφ
φ(x)− Ψ2

λ2

)
=
∑
φ∈Φ

(
φ(x)− ΨMφ

λ

)

= ζ(x)− Ψ2

λ
.

Thus,

P

(
|εx − ζ(x)| ≥ t+

Ψ2

λ

)
≤ 2 exp

(
− λt2

2Ψ2

)
.
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Now, suppose we want P (|εx − ζ(x)| ≥ δ) ≤ a. If we assign t = δ/2, and require that

λ ≥ 2Ψ2

δ
,

then we just need

a ≥ 2 exp

(
− λδ

2

8Ψ2

)
.

So it suffices to set

λ ≥ 8Ψ2

δ2
log

(
2

a

)
.

This proves the lemma.

Proof of Theorem 3. Statistically, the sampling procedure in Algorithm 4 is equivalent to sampling a variable i, and then
sampling a Poisson random variable sφ for each φ ∈ Φ. Let Ti,s(x, y) denote the probability of transitioning from state x to
y given that we have already chosen to sample variable i with minibatch coefficients s. Then, the overall transition matrix
will be

T (x, y) = E [Ti,s(x, y)]

where this expected value is taken with respect to the random variables i and s. If we look at Ti,s(x, y) for two states that
differ only at variable i, it will be equal to

Ti,s(x, y) = ρ(y(i)) ·min(a, 1),

which is the probability of proposing y times the probability of accepting that proposal. (Otherwise, if x and y differ at a
variable other than i, this transition probability will be Ti,s(x, y) = 0.) We can expand this expression to

Ti,s(x, y) =
exp(εy(i))∑D
w=1 exp(εw)

·min

 exp
(∑

ϕ∈A[i] ϕ(y)
)

exp
(∑

ϕ∈A[i] ϕ(x)
) · exp (εx)

exp (εy)
, 1


=

exp(εy(i))∑D
w=1 exp(εw)

·min

 exp
(∑

ϕ∈Φ ϕ(y)
)

exp
(∑

ϕ∈Φ ϕ(x)
) · exp (εx)

exp (εy)
, 1


=

exp(εy(i))∑D
w=1 exp(εw)

·min

(
exp (ζ(y))

exp (ζ(x))
· exp

(
εx(i)

)
exp

(
εy(i)

) , 1) .
Multiplying this by π(x),

π(x)Ti,s(x, y) =
1

Z
exp(ζ(x)) · exp(εy(i))∑D

w=1 exp(εw)
·min

(
exp (ζ(y))

exp (ζ(x))
· exp

(
εx(i)

)
exp

(
εy(i)

) , 1)
=

1

Z
∑D
w=1 exp(εw)

·min
(
exp (ζ(y)) · exp

(
εx(i)

)
, exp (ζ(x)) · exp

(
εy(i)

))
.

This last expression is clearly symmetric in x and y. So,

π(x)Ti,s(x, y) = π(y)Ti,s(y, x).

But this implies that

π(x)T (x, y) = π(x)E [Ti,s(x, y)]

= E [π(x)Ti,s(x, y)]

= E [π(y)Ti,s(y, x)]

= π(y)E [Ti,s(y, x)]

= π(y)T (y, x),
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so the whole chain is reversible. This is what we wanted to prove.

Proof of Theorem 4. As before, we will accomplish this proof via the technique of Dirichlet forms. First, recall that the
transition probability matrix T of vanilla Gibbs sampling is, for any x and y which differ in only variable i,

T (x, y) =
1

n

exp(ζ(y))∑D
w=1 exp (ζ(yi→w))

,

where here yi→w denotes the state y with variable i assigned to w; that is,

yi→w = (x ∩ y) ∪ {(i, w)}.
Multiplying by π(x),

π(x)T (x, y) =
1

nZ

exp(ζ(x)) exp(ζ(y))∑D
w=1 exp (ζ(yi→w))

,

From the proof of Theorem 3, we have that the transition probability matrix of MGPMH (which we denote with T̄ ) satisfies

π(x)T̄ (x, y) = π(x)Ej,s
[
T̄j,s(x, y)

]
=

1

n
π(x)Es

[
T̄i,s(x, y)

]
=

1

nZ
E

[
min

(
exp (ζ(y)) · exp

(
εx(i)

)
, exp (ζ(x)) · exp

(
εy(i)

))∑D
w=1 exp(εw)

]
.

It follows that

π(x)T̄ (x, y)

π(x)T (x, y)
=

1
nZE

[
min(exp(ζ(y))·exp(εx(i)),exp(ζ(x))·exp(εy(i)))∑D

w=1 exp(εw)

]
1
nZ

exp(ζ(x)) exp(ζ(y))∑D
w=1 exp(ζ(yi→w))

= E

[∑D
w=1 exp (ζ(yi→w))∑D

w=1 exp(εw)
min

(
exp

(
εx(i) − ζ(x)

)
, exp

(
εy(i) − ζ(y)

))]

= E

[∑D
w=1 exp (ζ(yi→w))∑D

w=1 exp(εw)
· 1

max
(
exp

(
ζ(x)− εx(i)

)
, exp

(
ζ(y)− εy(i)

))]

= E

[ ∑D
w=1 exp (ζ(yi→w))∑D

w=1 max
(
exp

(
εw + ζ(x)− εx(i)

)
, exp

(
εw + ζ(y)− εy(i)

))] .
By Jensen’s inequality, since f(z) = 1/z is convex, we can bound this from below by

π(x)T̄ (x, y)

π(x)T (x, y)

≥
∑D
w=1 exp (ζ(yi→w))

E
[∑D

w=1 max
(
exp

(
εw + ζ(x)− εx(i)

)
, exp

(
εw + ζ(y)− εy(i)

))]
=

∑D
w=1 exp (ζ(yi→w))∑D

w=1 exp (ζ(yi→w))E
[
max

(
exp

(
εw − ζ(yi→w) + ζ(x)− εx(i)

)
, exp

(
εw − ζ(yi→w) + ζ(y)− εy(i)

))] .
Next, we notice that if we define z = yi→w for a particular w, we can write

E
[
max

(
exp

(
εw − ζ(yi→w) + ζ(x)− εx(i)

)
, exp

(
εw − ζ(yi→w) + ζ(y)− εy(i)

))]
= E

[
max

(
exp

(
εz(i) − ζ(z) + ζ(x)− εx(i)

)
, exp

(
εz(i) − ζ(z) + ζ(y)− εy(i)

))]
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Recall that the random variables in this expected value are the εw, which are functions of the minibatch coefficients sφ where

εz(i) =
∑
φ∈A[i]

sφL

λMφ
φ(z).

So,

E
[
max

(
exp

(
εz(i) − ζ(z) + ζ(x)− εx(i)

)
, exp

(
εz(i) − ζ(z) + ζ(y)− εy(i)

))]
= E

max

exp

 ∑
φ∈A[i]

sφL

λMφ
φ(z)

− ζ(z) + ζ(x)−

 ∑
φ∈A[i]

sφL

λMφ
φ(x)

 ,

exp

 ∑
φ∈A[i]

sφL

λMφ
φ(z)

− ζ(z) + ζ(y)−

 ∑
φ∈A[i]

sφL

λMφ
φ(y)


= E

max

exp

 ∑
φ∈A[i]

(
sφL

λMφ
− 1

)
(φ(z)− φ(x))

 , exp

 ∑
φ∈A[i]

(
sφL

λMφ
− 1

)
(φ(z)− φ(y))

 .
Since the maximum of two sums is less than the sum of the maximums, it follows that

E
[
max

(
exp

(
εz(i) − ζ(z) + ζ(x)− εx(i)

)
, exp

(
εz(i) − ζ(z) + ζ(y)− εy(i)

))]
= E

exp

max

 ∑
φ∈A[i]

(
sφL

λMφ
− 1

)
(φ(z)− φ(x)),

∑
φ∈A[i]

(
sφL

λMφ
− 1

)
(φ(z)− φ(y))


≤ E

exp

 ∑
φ∈A[i]

max

((
sφL

λMφ
− 1

)
(φ(z)− φ(x)),

(
sφL

λMφ
− 1

)
(φ(z)− φ(y))

)
= E

exp

 ∑
φ∈A[i]

(
sφL

λMφ
− 1

)
max (φ(z)− φ(x), φ(z)− φ(y))


≤ E

exp

 ∑
φ∈A[i]

(
sφL

λMφ
− 1

)
Mφ

 ,
where this last line follows from the fact that φ(z)− φ(x) ≤Mφ. So, by independence of the sφ,

E
[
max

(
exp

(
εz(i) − ζ(z) + ζ(x)− εx(i)

)
, exp

(
εz(i) − ζ(z) + ζ(y)− εy(i)

))]
≤

∏
φ∈A[i]

E

[
exp

((
sφL

λMφ
− 1

)
Mφ

)]

=
∏

φ∈A[i]

exp(−Mφ)E

[
exp

(
sφL

λ

)]
.

This last expression is just the moment generating function of the Poisson random variable, evaluated at t = L
λ . Since sφ

has parameter λMφ

L , it follows from known properties of the Poisson distribution that

E

[
exp

(
sφL

λ

)]
= exp

(
λMφ

L

(
exp

(
L

λ

)
− 1

))
.

Multiplying both sides by exp(−Mφ),

exp(−Mφ)E

[
exp

(
sφL

λ

)]
= exp

(
Mφ

(
λ

L

(
exp

(
L

λ

)
− 1

)
− 1

))
.
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And substituing this back into our previous expression,

E
[
max

(
exp

(
εz(i) − ζ(z) + ζ(x)− εx(i)

)
, exp

(
εz(i) − ζ(z) + ζ(y)− εy(i)

))]
≤

∏
φ∈A[i]

exp

(
Mφ

(
λ

L

(
exp

(
L

λ

)
− 1

)
− 1

))

= exp

 ∑
φ∈A[i]

Mφ

(
λ

L

(
exp

(
L

λ

)
− 1

)
− 1

)
= exp

(
L

(
λ

L

(
exp

(
L

λ

)
− 1

)
− 1

))
= exp

(
λ

(
exp

(
L

λ

)
− 1

)
− L

)
.

As long as z ≤ 1, we know that exp(z)− 1 ≤ z + z2. So, as long as L ≤ λ, it follows that

E
[
max

(
exp

(
εz(i) − ζ(z) + ζ(x)− εx(i)

)
, exp

(
εz(i) − ζ(z) + ζ(y)− εy(i)

))]
≤ exp

(
λ

(
L

λ
+

(
L

λ

)2
)
− L

)

= exp

(
L2

λ

)
.

Substituting this back into our previous expression above, we have that

π(x)T̄ (x, y)

π(x)T (x, y)

≥
∑D
w=1 exp (ζ(yi→w))∑D

w=1 exp (ζ(yi→w))E
[
max

(
exp

(
εw − ζ(yi→w) + ζ(x)− εx(i)

)
, exp

(
εw − ζ(yi→w) + ζ(y)− εy(i)

))]
≥

∑D
w=1 exp (ζ(yi→w))∑D

w=1 exp (ζ(yi→w)) · exp
(
L2

λ

)
= exp

(
−L

2

λ

)
.

Thus, it follows that
π(x)T̄ (x, y)

π(x)T (x, y)
≥ exp

(
−L

2

λ

)
.

Now, we finally use the Dirichlet forms. By definition,

γ̄ = min
f

Ē(f)

Varπ (f)

= min
f

1

Varπ (f)

∑
x,y

π(x)T̄ (x, y)

≥ exp

(
−L

2

λ

)
·min

f

1

Varπ (f)

∑
x,y

π(x)T (x, y)

= exp

(
−L

2

λ

)
·min

f

E(f)

Varπ (f)

= exp

(
−L

2

λ

)
· γ.
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This is what we wanted to prove.

Proof of Theorem 5. The probability of transitioning from (x, ξx) to (y, ξy) for two distinct states x and y which differ only
in variable i will be the probability that: we decide to re-sample variable i, we choose y as our proposal, we sample ξy as
the energy for state y, and we accept the proposed change. We can write this transition probability as

T ((x, ξx), (y, ξy)) =
1

n
E [ψ(y) · µy(ξy) ·min(a, 1)] ,

where here the expected value is taken over the random minibatch coefficients sφ. We can expand this out to

T ((x, ξx), (y, ξy)) =
1

n
E

[
exp(εy(i))∑D
u=1 exp(εu)

· µy(ξy) ·min

(
exp(ξy)

exp(ξx)
· exp

(
εx(i)

)
exp

(
εy(i)

) , 1)] .
If we define stationary distribution

π(x, ξ) =
1

Z
µx(ξ) · exp(ξ),

then

π(x, ξx) · T ((x, ξx), (y, ξy)) =
1

nZ
E

[
µx(ξx) · exp(ξx) · exp(εy(i))∑D

u=1 exp(εu)
· µy(ξy) ·min

(
exp(ξy)

exp(ξx)
· exp

(
εx(i)

)
exp

(
εy(i)

) , 1)]

=
1

nZ
E

[
µx(ξx) · µy(ξy)∑D

u=1 exp(εu)
·min

(
exp(ξy) · exp(εx(i)), exp(ξx) · exp(εy(i))

)]
.

This expression is clearly symmetric in (x, ξx) and (y, ξy), so it follows that the chain is reversible with stationary distribution
π as defined above. This is what we wanted to prove.

Proof of Theorem 6. As with the analysis of MIN-Gibbs, we will prove this result using the technique of Dirichlet forms.
From the result of Theorem 5, we know that for some Z̄, the stationary distribution of DoubleMIN-Gibbs is

π̄(x, ξ) =
1

Z̄
µx(ξ) · exp(ξ).

We also know from that same theorem that the transition probability matrix can be written as

π̄(x, ξx) · T̄ ((x, ξx), (y, ξy)) =
1

nZ̄
E

[
µx(ξx) · µy(ξy)∑D

u=1 exp(εu)
·min

(
exp(ξy) · exp(εx(i)), exp(ξx) · exp(εy(i))

)]
.

It follows from the same analysis as in the proof of Theorem 1 that the Dirichlet form of DoubleMIN-Gibbs is

Ē(f) =
1

2nZ̄

∑
(x,y)∈Q

E

[
(f(x, ξx)− f(y, ξy))

2 · min
(
exp(ξy) · exp(εx(i)), exp(ξx) · exp(εy(i))

)∑D
u=1 exp(εu)

]
,

where Q ⊂ Ω× Ω as before is the set of pairs of stats which differ only in a single variable. Here the expected value is also
taken over random variables ξx and ξy, which we suppose are sampled independently from µx and µy, respectively. By a
similar argument, we can also determine that the MGPMH chain will have Dirichlet form

Ē(g) =
1

2nZ̄

∑
(x,y)∈Q

E

[
(g(x)− g(y))

2 · min
(
exp(ζ(y)) · exp(εx(i)), exp(ζ(x)) · exp(εy(i))

)∑D
u=1 exp(εu)

]
.
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Now, we know by the condition of the theorem that

|ξx − ζ(x)| ≤ δ.

Therefore, we can bound the Dirichlet form of DoubleMIN-Gibbs from below with

Ē(f) ≥ 1

2nZ̄

∑
(x,y)∈Q

E

[
(f(x, ξx)− f(y, ξy))

2 · min
(
exp(ζ(y)− δ) · exp(εx(i)), exp(ζ(x)− δ) · exp(εy(i))

)∑D
u=1 exp(εu)

]

=
exp(−δ)

2nZ̄

∑
(x,y)∈Q

E

[
(f(x, ξx)− f(y, ξy))

2 · min
(
exp(ζ(y)) · exp(εx(i)), exp(ζ(x)) · exp(εy(i))

)∑D
u=1 exp(εu)

]

=
exp(−δ)

2nZ̄

∑
(x,y)∈Q

E
[
(f(x, ξx)− f(y, ξy))

2
]
E

[
min

(
exp(ζ(y)) · exp(εx(i)), exp(ζ(x)) · exp(εy(i))

)∑D
u=1 exp(εu)

]
,

where we can separate out the expected values like this because ξx and ξy are sampled independently from the other random
variables sφ. On the other hand, the variance form associated with the DoubleMIN-Gibbs chain is

Varπ̄ (f) =
1

2Z̄2

∑
x∈Ω

∑
y∈Ω

E
[
(f(x, ξx)− f(y, ξy))

2 · exp(ξx) · exp(ξy)
]

≤ 1

2Z̄2

∑
x∈Ω

∑
y∈Ω

E
[
(f(x, ξx)− f(y, ξy))

2 · exp(ζ(x) + δ) · exp(ζ(y) + δ)
]

=
exp(2δ)

2Z̄2

∑
x∈Ω

∑
y∈Ω

exp(ζ(x)) · exp(ζ(y))E
[
(f(x, ξx)− f(y, ξy))

2
]
.

From here, we can write

γ̄ = min
f

Ē(f)

Varπ̄ (f)

≥ min
f

exp(−δ)
2nZ̄

∑
(x,y)∈QE

[
min(exp(ζ(y))·exp(εx(i)),exp(ζ(x))·exp(εy(i)))∑D

u=1 exp(εu)

]
E
[
(f(x, ξx)− f(y, ξy))

2
]

exp(2δ)
2Z̄2

∑
x∈Ω

∑
y∈Ω exp(ζ(x)) · exp(ζ(y))E

[
(f(x, ξx)− f(y, ξy))

2
]

=
exp(−3δ)Z̄

n
min
f

∑
(x,y)∈QE

[
min(exp(ζ(y))·exp(εx(i)),exp(ζ(x))·exp(εy(i)))∑D

u=1 exp(εu)

]
E
[
(f(x, ξx)− f(y, ξy))

2
]

∑
x∈Ω

∑
y∈Ω exp(ζ(x)) · exp(ζ(y))E

[
(f(x, ξx)− f(y, ξy))

2
] .

As before, using the fact that for positive numbers a1, a2, . . . , aN and b1, b2, . . . , bN ,∑n
i=1 ai∑n
i=1 bi

≥ min
i

ai
bi
.

we can bound this from below for some fixed ξx and ξy (which may still be a function of f ) with

γ̄ ≥ exp(−3δ)Z̄

n
min
f

∑
(x,y)∈QE

[
min(exp(ζ(y))·exp(εx(i)),exp(ζ(x))·exp(εy(i)))∑D

u=1 exp(εu)

]
(f(x, ξx)− f(y, ξy))

2

∑
x∈Ω

∑
y∈Ω exp(ζ(x)) · exp(ζ(y)) (f(x, ξx)− f(y, ξy))

2

≥ exp(−3δ)Z̄

n
min
g

∑
(x,y)∈QE

[
min(exp(ζ(y))·exp(εx(i)),exp(ζ(x))·exp(εy(i)))∑D

u=1 exp(εu)

]
(g(x)− g(y))

2

∑
x∈Ω

∑
y∈Ω exp(ζ(x)) · exp(ζ(y)) (g(x)− g(y))

2 ,
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where this last inequality holds because we can always set

g(x) = f(x, ξx).

Finally, we can rewrite this as

γ̄ ≥ exp(−3δ)Z̄

Z
min
g

1
2nZ

∑
(x,y)∈QE

[
min(exp(ζ(y))·exp(εx(i)),exp(ζ(x))·exp(εy(i)))∑D

u=1 exp(εu)

]
(g(x)− g(y))

2

1
2Z2

∑
x∈Ω

∑
y∈Ω exp(ζ(x)) · exp(ζ(y)) (g(x)− g(y))

2

=
exp(−3δ)Z̄

Z
min
g

E(g)

Varπ (g)

=
exp(−3δ)Z̄

Z
γ.

All that remains is to bound the ratio of the Z and Z̄. But this ratio is the same as it is in the proof of Theorem 2, so we can
conclude that

Z̄

Z
≥ exp(−δ).

So,
γ̄ ≥ exp(−4δ)γ.

This is what we wanted to show.

B. Experiments
In this section, we describe the methodology of our experiments in more detail. Our experiments are run on a synthetic Ising
model with energy

ζIsing(x) =

N∑
i=1

N∑
j=1

β ·Aij · (x(i)x(j) + 1),

and a synthetic Potts model with energy

ζPotts =

N∑
i=1

N∑
j=1

β ·Aij · δ(x(i), x(j)).

As is usually the case with these models, we laid out our variables on a grid, a 20× 20 grid to be precise. This resulted in
n = 400 variables for both models. Our goal here was to construct a dense synthetic model with a nontrivial interaction
matrix (i.e. non-constant Aij). To do this, we assigned Aij (for i 6= j) according to the Gaussian kernel

Aij = exp
(
−γd2

ij

)
where dij is the distance between variables i and j in the 20× 20 grid. Equivalently, if xi ∈ {1, . . . , 20} × {1, . . . , 20} is
the position of variable i in the grid, then

Aij = exp
(
−γ‖xi − xj‖2

)
.

This form may be more easily recognizable as a Gaussian RBF kernel. We chose to set γ = 1.5 for both the Ising and
Potts models. For all experiments, we ran 1000000 = 106 iterations of sampling. For the Ising model, we set the inverse
temperature β = 1.0, and for the Potts model, we set β = 4.6. In both cases, we hand-tuned β so that it was small enough
that the marginal error of vanilla Gibbs sampling would clearly be observed to converge within 106 iterations, but large
enough that its convergence trajectory would be clearly distinct from the trivial convergence trajectory when β = 0. In
other words, we set β so that, for plain Gibbs sampling, we would both observe non-trivial behavior and have a chain that
converged fast enough to efficiently simulate. We then used this value of β to evaluate our algorithms.


