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Figure 1. Sampling graph for arc going from node nj to node ni (i 6= j). Grey nodes denote random variables. Notations in part borrowed
from (Maddison et al., 2016). λc is a constant that does not depend on the arc.

II. Supplementary material on proofs and algorithms
II.1. Proof of Theorem 1

Denote for short G
def
= I − B. The proof is split in three cases, (I) λc > 0 and αij > 0,∀i 6= j, (II) λc = 0 and

αij > 0,∀i 6= j, and finally (III) λc = 0 and ∃i 6= j, αij = 0.
(Case I: λc > 0, αij > 0,∀i 6= j) The coordinates gij take on constant values gii = 1 on the diagonal (∀i ∈ [N ]), and
random values Gij outside the diagonal (i 6= j). The density of Gij equals q(Aij) · q(Wij), where q(Wij)

def
= N(µij , σ

2
ij)

and q(Aij)
def
= σαij ,λc

(U) with

σα,λc
(U)

def
=

1

1 + exp
(
− logα+logU−log(1−U)

λc

) , (1)

and U ∼ U(0, 1) is uniform on interval (0, 1) (Maddison et al., 2016). The proof that G is invertible adapts a standard
argument (Tao, 2008, for example). For any1 N ≥ 2, denote g1, g2, ..., gN the columns of G, that is, G = [g1|g2|...|gN ].
Each of them can be thought of as a random vector where one coordinate takes value 1 with probability 1, an this coordinate
is different for all vectors. G is non invertible iff g1, g2, ..., gN is linearly dependent. Remark that none of the gjs can be the
null vector, so if G is not invertible, then

∃j > 1 : gj ∈ span(g1, g2, ..., gj−1) . (2)

As a consequence,

Pr(det(G) = 0) ≤
∑
j

Pr(gj ∈ span(g1, g2, ..., gj−1)) , (3)

1Whenever N = 1, G def
= [1] is always invertible.
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where the distribution is the product distribution over the columns of G. Fix any g1, g2, ..., gj−1 belonging to the respective
supports of the columns, and let

qj
def
= Pr(gj ∈ span(g1, g2, ..., gj−1)|g1, g2, ..., gj−1) . (4)

Because the uniform and normal distributions are both absolutely continuous with respect to Lebesgue measure and
σα,λc(x) ≤ 1 � ∞ (it is also Lipschitz) for any α > 0, λc 6= 0, U ∈ (0, 1), so is the density of Gij for any i 6= j, and
thereby the density of gj for any j ≥ 1. Along with the fact that span(g1, g2, ..., gj−1) has strictly positive codimension for
any j ≤ N , it comes

qj = 0,∀j ≥ 2,∀g1, g2, ..., gj−1 fixed . (5)

Integrating over the choices of g1, g2, ..., gj−1, we get Pr(gj ∈ span(g1, g2, ..., gj−1)) = 0,∀j ≤ N and so Pr(det(G) =
0) = 0 from ineq. (3). As a consequence, I−B is non-singular with probability one, as claimed.
(Case II: λc = 0, αij > 0,∀i 6= j) this boils down to choosing a Bernoulli B(pij) distribution over Aij , corresponding to
the limit case λc → 0 with (Maddison et al., 2016):

pij =
αij

1 + αij
. (6)

In this case, the distribution of gj is not absolutely continuous but a trick allows to truncate the distribution on a subset over
which it is absolutely continuous, and therefore reduce to Case I to handle it.
The only atom eventually having non-zero probability is the canonical basis vector 1j , which has probability

∏
i 6=j(1− pij)

to be sampled. We now perform a sequence of recursive row-column (row followed by column or the reverse) permutations,
starting on G, which by definition do not change its invertibility status but only the sign of its determinant. The first
row-column permutation is carried out in such a way that the first column of the new matrix, Π1(G), is the first canonical
basis vector, 11. We then repeat this operation to have the second canonical basis vector in the second column, and so on
until until it cannot be done anymore to make appear on the left block a new canonical basis vector. Assuming we have done
N − k sequences, we obtain from G the final matrix Π1(G) with:

Π1(G) =

[
IN−k | A(N−k)×k

0k×(N−k) | Ĝ1,k

]
. (7)

Here, Ĝ1,k ∈ Rk×k. Now, we are going to carry out Π1 again, but on the lower-right block, Ĝ1,k. Removing dimension-
dependent indexes, we obtain matrix

Π2(G) =

[
I | A

0 | Π1(Ĝ1)

]
(8)

=

 I | A1

0 |
[

I | A2

0 | Ĝ2

]  . (9)

We then keep on doing the same transformation on block Ĝ2 until it is not possible anymore. When it is not possible
anymore, we know that the current submatrix, say Ĝn, does not contain any canonical basis vector as column, as depicted in
Figure 2.

Lemma A |det(G)| = |det(Ĝn)|,∀n ≥ 1.

Proof: We proceed by induction. The key observation is the following standard linear algebra identity. Denoting with a
single index the order of a general square matrix, like Ap, we have for any Ap non-singular,[

Ap | B
C | Dq

] [
Ip | −A−1

p B
0 | Iq

]
︸ ︷︷ ︸

def
=E

=

[
Ip | 0

CA−1
p | Iq

]
︸ ︷︷ ︸

def
=F

[
Ap | 0
0 | D−CA−1

p B

]
, (10)
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Figure 2. Final matrix Πn(G) obtained after recursively applying Π1(.) to the lower-right block. Here, white blocks mean all-zero, plain
dark lines mean all-one, and gray is unspecified.

for any p > 0, q > 0, p+q = n,B ∈ Rp×q,C ∈ Rq×p,D ∈ Rq×q . Taking determinants, we note that det(E) = det(F) =
1 because they are triangular with unit diagonal, and so

det

([
Ap | B
C | Dq

])
= det

([
Ap | 0
0 | D−CA−1

p B

])
(11)

= det(Ap) · det(D−CA−1
p B) , (12)

because the right hand-side in eq. (11) is block diagonal. Matching the left hand-side of eq. (11) with eq. (7), so putting
Ap = I and C = 0, we obtain det(Π1(G)) = det(Ĝ1 − 0IN−kAp) = det(Ĝ1), and therefore |det(G)| = |det(Ĝ1)|.
We then just recursively use eq. (10) on the lower-right block (Ĝj , for j = 1, 2, ..., n − 1) and get the statement of the
Lemma. (End of the proof of Lemma A).
So, G is invertible iff Ĝn is invertible and:

Pr(det(G) = 0) ≤ Pr(det(Π1(G)) = 0)

= Pr(det(Ĝ1) = 0)

≤ Pr(∃k ∈ {2, 3, ..., N} : det(Ĝk) = 0|Ĝk ∈ Rk×k ∧ P(Ĝk))

≤
N∑
k=2

Pr(det(Ĝk) = 0|Ĝk ∈ Rk×k ∧ P(Ĝk)) , (13)

where P(G) is the property that no column of G is a canonical basis vector. Notice the change: no column in Ĝk is allowed
to be a canonical basis vector, and therefore the support for the density of the columns of Ĝk is such that its distribution
is now absolutely continuous. We are thus left with the same case as in Case I, which yields Pr(det(Ĝk) = 0|Ĝk ∈
Rk×k ∧ P(Ĝk)) = 0,∀k ∈ {2, 3, ..., N}, and brings Pr(det(G) = 0) = 0 as well.
(Case III: λc ≥ 0, αij = 0 for some i 6= j) Remark that limα→0 σα,λc

(x) = 0 if λc > 0, and if λc = 0, this boils down
from Case II (eq. (6)) to choosing a Bernoulli B(0) distribution over Aij , so both cases coincide with Aij being chosen as
B(0), implying Gij = 0. We are left with the same transformation as in Case II — the main difference being that some Gij
is surely zero, but it changes nothing to the reasoning done in case II. Therefore, Pr(det(G) = 0) = 0 again.
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II.2. Proof of Theorem 2

It comes from Theorem 1 that G−1 can always be computed with probability one with respect to the random sampling of
B, and there is no constraint on the parameterization of the concrete distribution for invertibility (Maddison et al., 2016).
Interestingly perhaps, the story would be completely different for the invertibility of B, as the argument for cases (II) and
(III) break down because with positive probability that would be easy to lower-bound, B would in fact be not invertible.

The important consequence of Theorem 1 (main file) relies on the computation of the log likelihood, which we recall:

log p(y|W,A) = −1

2
log |Σy| −

1

2
yTΣ−1

y y + C . (14)

We now prove Theorem 2. We recall the main matrix component of eq. (14):

Σy = ((I−B)>(I−B))−1 ⊗Kt + σ2
f (I−B)−1B((I−B)−1B)> ⊗ΣI + σ2

yI . (15)

We observe that the following two matrices are positive semi-definite2: (I−B)−1B((I−B)−1B)>, Kt, while ΣI, I, ((I−
B)>(I−B))−1 are positive definite (with probability 1 for that last one, see Section II.1). Hence, a sufficient condition for
the combination in Σy to be positive definite is σ2

y > 0, as claimed. This brings the finiteness of | log p(y|W,A)| with
probability one, the fact that |Lell| � ∞, and the statement of Theorem 2.

II.3. Proof of Theorem 4

We split the proof in two main parts, the first of which focuses on a simplified version of the model in which the Bernoulli
parameter (A) is sampled according to a Dirac — e.g. in the context of inference, from the prior standpoint, it is maximally
informed. The results might be useful outside our framework, if p is sampled from a distribution different from the ones we
use.

We state the main notations involved in the Theorem. We define the total (squared) expected input (resp. output) to node i as
µ+
i.

def
=
∑
j µ

2
ij (resp. µ+

.i
def
=
∑
j µ

2
ji), and the total input (resp. output) variance as σ+

i.
def
=
∑
j σ

2
ij (resp. σ+

.i
def
=
∑
j σ

2
ji). We

also define averages, µ+
i.

def
= µ+

i./N , σ+
i.

def
= σ+

i. /N (same for outputs), and biased weighted proportions, p̃µi.
def
=
∑
j pijµ

2
ij/µ

+
i. ,

p̃σi.
def
=
∑
j pijσ

2
ij/σ

+
i. (again, same for outputs).

Now, we define two functions U,E : {1, 2, ..., 2N} → R+ as:

U(i)
def
=

{
2p̃µi.µ

+
i. + 2p̃σi.σ

+
i. (i ≤ N)

2p̃µ.jµ
+
.j + 2p̃σ.jσ

+
.j : j

def
= i−N (i > N)

,

E(i)
def
=

{
φ(p̃µi.) · µ+

i. + σ+
i. (i ≤ N)

φ(p̃µ.j) · µ+
.j + σ+

.j : j
def
= i−N (i > N)

,

where φ(z)
def
= 2
√
z(1− z) is Matsushita’s entropy. For any diagonalizable matrix M, we let λ(M) denote its eigenspectrum,

and λ↑(M)
def
= maxλ(M), λ↓(M)

def
= minλ(M). Our simplified version of Theorem 4, which we first prove, is the following

one.

Theorem B Assume Aij ∼ B(ρij) with ρij ∼ Dirac(pij), and Wij ∼ N(µij , σ
2
ij), pij , µij , σij being fixed for any i, j.

Fix any constants c > 0 and 0 < γ < 1 and let

λ◦
def
=
λ↓(Kt)

2
+ σ2

y , λ•
def
= 2λ↑(Kt) + σ2

f + σ2
y . (16)

Suppose that:

max
i
U(i) ∈

[
maxiE(i)

Nγ
,

1

100N2

]
. (17)

2As remarked above, depending on the choices of parameters λc and α.., the null space of B is indeed not always reduced to the null
vector. Therefore, (I−B)−1B((I−B)−1B)> may be not positive definite with strictly positive probability.
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If N is larger than some constant depending on c and γ, then with probability ≥ 1− (1/N c) over the sampling of W and
A, the following holds true:

λ(Σy) ⊂ [λ◦, λ•] . (18)

II.3.1. HELPER TAIL BOUNDS AND PROPERTIES FOR ARCS, ROW AND COLUMNS IN MATRIX A�W

To obtain concentration bounds on log p(y|W,A), we need to map the arc signal onto the real line, including e.g. when
p = 0 (in which case there cannot exist an arc between the two corresponding nodes, so there is no observable "weight" per
se). We follow the convention for the Hawkes model of Linderman & Adams (2014), and associate to these "no signal"
events the real zero, which makes sense since for example it matches the Dirac case when µ, σ → 0 — which corresponds
to an arc with weight always zero —. Define for short

H
def
= (I−B)>(I−B) , (19)

H′
def
= (I−B)(I−B)> , (20)

J
def
= BB> , (21)

so that

Σy = H−1 ⊗Kt + σ2
f (I−B)−1J(I−B)−> ⊗ΣI + σ2

yI . (22)

We remark that the eigenspectrum of (I − B)−1J(I − B)−> is the same as for JH′−1: if u is an eigenvector of (I −
B)−1J(I − B)−>, then (I − B)−1J(I − B)−>u = λu is equivalent to J(I − B)−>u = λ(I − B)u, equivalent to
J(I − B)−>(I − B)−1v = λv (letting v def

= (I − B)u), finally equivalent to JH′−1v = λv. Therefore, bounding the
eigenspectra of H,H′,J, plus adequate assumptions on that of Kt, shall lead to bounding the eigenspectra of Σy , but to get
all these bounds, we essentially need properties and concentration inequalities for the coordinates of B and their row- or
column- sums. This is what we establish in this Section.

We first derive a tail bound for arc weight, removing indexes for clarity, and assuming q(W )
def
= N(µ, σ2) and q(A)

def
= B(p)

(see Figure 1). Let W denote the random variable taking the arc weight. We recall that random variable X is (k,β)-sub-
Gaussian (k,β > 0) iff (Vu, 2014):

EX[exp(λ(X− E[X])) ≤ k · exp

(
β2λ2

2

)
,∀λ ∈ R . (23)

Theorem C Let W ∼ q(W ) · q(A). The following holds true:

EW[exp(λ(W − E[W])) = (1− p) · exp(−pµλ) + p · exp

(
µ(1− p)λ +

σ2λ2

2

)
,∀λ ∈ R . (24)

Furthermore, W is (1,β)-sub-Gaussian with β satisfying:

• β2 = pσ2 if p ∈ {0, 1},
• β2 = 2

√
p(1− p)µ2 + σ2 if p ∈ (0, 1).

Proof: Denote for short two random variables N ∼ N(µ, σ2) and B ∼ B(p). We trivially have E[W] = pµ and:

EW[exp(λ(W − E[W])) = EW[exp((W − pµ)λ)]

= (1− p) · EN[exp(−pµλ)] + p · EN[exp((N− pµ)λ)]

= (1− p) · exp(−pµλ) + p · EN[exp((N− pµ)λ)]

= (1− p) · exp(−pµλ) + p · exp(−pµλ) · EN[exp(Nλ)]

= (1− p) · exp(−pµλ) + p · exp(−pµλ) · exp

(
µλ +

σ2λ2

2

)
(25)

= (1− p) · exp(−pµλ) + p · exp

(
µ(1− p)λ +

σ2λ2

2

)
, (26)
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for any λ ∈ R, as claimed for eq. (24). Eq. (25) comes from the moment generating function for Gaussian N. Now, it is
clear that

• W is sub-Gaussian with parameter β = σ in the following two cases: (i) p = 1, (ii) µ = 0. For this latter case, we have
indeed EW[exp(λ(W− E[W])) = (1− p) + p · exp(σ2λ2/2) ≤ ((1− p) + p) · exp(σ2λ2/2) = exp(σ2λ2/2) (using
Jensen’s inequality on z 7→ exp(z)). Furthermore, sub-Gaussian parameter σ cannot be improved in both cases.

• the trivial case p = 0 leads to sub-Gaussianity for any β ≥ 0.

Otherwise (assuming thus 0 < p < 1 and µ 6= 0), we can immediately rule out the case β ≤ σ (for any k > 0), by noticing
that, for β = σ, we have p · exp(µ(1− p)λ) = k for

λ =
1

(1− p)µ log
k

p
(�∞) , (27)

and so, for this value of λ, EW[exp(λ(W−E[W])) > p · exp
(
µ(1− p)λ + (β2λ2)/2

)
= k exp(β2λ2/2). In the following,

we therefore consider 0 < p < 1, µ 6= 0 and β > σ.

Lemma D ∀p ∈ [0, 1],∀x > 0, we have

p(x− 1) + 1 ≤ xp exp(φu(p) · log2 x) , (28)

where φu(p)
def
=
√
p(1− p) is (unnormalized) Matsushita’s entropy.

Remark: ineq. (28) is probably close to be optimal analytically. Replacing φu(p) by a dominated entropy like Gini’s
φu(p) ∝ p(1− p) (i.e. with finite derivatives on the right of 0 and left of 1) seems to break the result.
Proof: The proof makes use of several tricks to counter the fact that the right-hand side of ineq. (28) is essentially concave
– but not always – in p, and essentially convex – but not always – in x, and matches the left-hand side as p→ {0, 1}. In a
first step, we show that ineq. (28) holds for log x ∈ [−1, 1] (and any p ∈ [0, 1]), then Step 2 shows that ineq. (28) holds for
log x ≥ −1 (and p ∈ [0, 1]). Step 3 uses a symmetry argument on the right-hand side of ineq. (28) to extend the result to
any x > 0 (and any p ∈ [0, 1]), thereby finishing the proof.

Step 1. We remark that φu(p)
def
=
√
p(1− p) satisfies the following properties:

(i) lim0 φ
′
u(p) = +∞, lim1 φ

′
u(p) = −∞;

(ii) lim{0,1} φ
′′
u(p) + (1 + φ′u(p) · k)2 = −∞ for any k.

Denote for short F (p, x)
def
= xp exp(φu(p) · log2 x). We have:

∂F

∂p
= log x · (1 + φ′u(p) · log x) · Fx(p) , (29)

∂2F

∂p2
= log2 x ·

(
φ′′u(p) + (1 + φ′u(p) log x)2

)
· Fx(p) . (30)

It comes ∂F/∂p ∼0 φ′u(p) log2 x · Fx(p) and so lim0 ∂F/∂p = +∞ because of (i). Since F (0, x) = 1, we have
F (p, x) > p(x − 1) + 1 in a neighborhood of 0. Also, we can check as well that lim0 ∂

2F/∂p2 = −∞ because of (ii),
so F (p, x) is concave in a neighborhood of 0. For the same reasons, F (p, x) is concave in a neighborhood of 1 and since
F (1, x) = x, we also have F (p, x) > p(x− 1) + 1 in a neighborhood of 1. Now, to zero the second derivative, we need
equivalently:

log x =
1

φ′u(p)
·
(
±1

2φ
3
2
u (p)

− 1

)
, (31)
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or, equivalently again:

G(p, x)
def
= 2φ

3
2
u (p) + log x(1− 2p)φ

1
2
u (p) = r , (32)

with r ∈ {−1, 1}. We have (letting z def
= log x for short and h1(z)

def
=
√

8z2 + 9, h2(z)
def
= (2z2 + h1(z) + 3)/(z2 + 1)),

max
p∈[0,1]

G(p, x) =
(h2(z))

1
4

(√
h2(z)(z2 + 1) +

√
3 + 4z2 − h1(z)z

)
2

5
4 3

3
4

√
z2 + 1

, (33)

and we can check that maxp∈[0,1]G(p, x) < 1 when log(x) ≤ 1. We can also check that minp∈[0,1]G(p, x) > −1 when
log(x) ≥ −1, so eq. (31) has in fact no solution whenever log x ∈ [−1, 1], regardless of the choice of r. Hence, in this case,
F (p, x) is concave in p and we get F (p, x) ≥ p(x− 1) + 1, for any log x ∈ [−1, 1].

Step 2. Suppose now that | log x| > 1. We have

∂F

∂x
=

1

x
· (p+ 2φu(p) log x) ·Gp(x) , (34)

∂2F

∂x2
=

1

x2
·
(
4φ2

u(p) log2 x+ 2φu(p)(2p− 1) log x+ 2φu(p)− p(1− p)
)
·Gp(x) . (35)

We have (∂F/∂x)(p, 1) = p and convexity is ensured as long as

log x 6∈
[

1− 2p±
√

1− 8φu(p)

4φu(p)

]
def
= A . (36)

It happens that A ⊂ [−1, 1], so whenever | log x| ≥ 1, F (p, x) is convex in x. To finish Step 2, considering only the case
log x ≥ 1, it is sufficient to show that (∂F/∂x)(p, e) ≥ p, or equivalently,

H(p)
def
= (p+ 2φu(p)) exp(p+ φu(p)) ≥ ep , (37)

It can be shown that the first derivative,

H ′(p) =

(
2− p+

2 + p− 6p2

2φu(p)

)
· exp(p+ φu(p)) , (38)

is ≥ e for any p < 0.7 — so, since both limits in 0 for eq. (37) coincide, eq. (37) holds for any p < 0.7. The second
derivative (fixing Q(p)

def
= 2− 13p+ 34p2 − 12p3 − 8p4 + φu(p)((3p− 2)(1− 4p2) + 4φ2

u(p)(1− p))),

H ′′(p) = φ′′u(p) ·Q(p) · exp(p+ φu(p)) , (39)

is strictly negative for p ≥ 0.7 — so, since both limits in 1 for eq. (37) coincide, eq. (37) is strictly concave for p ≥ 0.7, it
sits above its chord [(0.7, H(0.7)), (1, e)] which itself sits above p 7→ ep for p ≤ 1, so eq. (37) holds for any p ≥ 0.7. This
achieves the proof of Step 2.

Step 3. We now have that ineq. (28) holds for any log x ≥ −1 and any p ∈ [0, 1]. To finish the argument, we just have to
remark that F (p, x) satisfies the following symmetry:

F (p, x) = x · F
(

1− p, 1

x

)
, (40)

so assuming that log x < −1, we have log(1/x) ≥ 1, so we reuse Steps 1 and 2 together with eq. (40) to obtain that for any
log x < −1,

F (p, x) = x · F
(

1− p, 1

x

)
≥ x ·

(
(1− p)

(
1

x
− 1

)
+ 1

)
= (1− p)(1− x) + x = p(x− 1) + 1 , (41)
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as claimed, where the inequality makes use of Steps 1, 2. This achieves the proof of Lemma D.
To finish the proof of Theorem C, we make use of Lemma D as follows, starting from eq. (24):

EW[exp(λ(W − E[W])) = (1− p) · exp(−pµλ) + p · exp

(
µ(1− p)λ +

σ2λ2

2

)
≤ {(1− p) · exp(−pµλ) + p · exp (µ(1− p)λ)} · exp

(
σ2λ2

2

)
(42)

= {(1− p) + p · exp (µλ)} · exp(−pµλ) · exp

(
σ2λ2

2

)
≤ exp(pµλ) · exp

(
φu(p)µ2λ2

)
· exp(−pµλ) · exp

(
σ2λ2

2

)
(43)

= exp

(
(σ2 + 2φu(p)µ2)λ2

2

)
,∀λ ∈ R . (44)

Ineq. (42) uses the fact that σ2λ2 ≥ 0, and ineq. (43) uses Lemma D with x = exp(µλ). Hence, W is sub-Gaussian with
parameters k = 1 and β2 = σ2 + 2φu(p)µ2 = σ2 + 2

√
p(1− p)µ2, as claimed. This ends the proof of Theorem C.

Theorem C leads to the following concentration inequality for the row- and column-sums of B, which are key to bound
eigenvalues.

Lemma E Let µ+
i.

def
=
∑
j µ

2
ij , µ

+
.j

def
=
∑
i µ

2
ij , σ

+
i.

def
=
∑
j σ

2
ij , σ

+
.j

def
=
∑
i σ

2
ij , and let µ+

i.

def
= µ+

i./N (and so on for the other

averages σ+
i. , σ

+
.j). Finally, let p̃µi.

def
=
∑
j pijµ

2
ij/µ

+
i. , p̃

µ
.j

def
=
∑
i pijµ

2
ij/µ

+
.j and

νri
def
= µ+

i. · φ(p̃µi.) + σ+
i. , (45)

νcj
def
= µ+

.j · φ(p̃µ.j) + σ+
.j , (46)

where φ(p)
def
= 2
√
p(1− p) is (normalized) Matsushita’s entropy. Then the following holds for any t > 0:

P

[∑
i

(Wij − pijµij) 6∈ (−Nt,Nt)
]
≤ 2 exp

(
−Nt

2

2νcj

)
, (47)

P

∑
j

(Wij − pijµij) 6∈ (−Nt,Nt)

 ≤ 2 exp

(
−Nt

2

2νri

)
. (48)

Proof: Since the sum of N independent random variables respectively (k,βi)-sub-Gaussian (i ∈ [N ]) brings a (k,
∑
i βi)

sub-Gaussian random variable, Theorem C immediately yields:

P

 1

N

∑
j

(Wij − E[Wij ]) ≥ t

 ≤ exp

(
− Nt2

2 · 1
N

∑
j(2
√
pij(1− pij)µ2

ij + σ2
ij)

)
. (49)

Since p 7→
√
p(1− p) is concave, we have:

∑
j

√
pij(1− pij)µ2

ij = µ+
i. ·
∑
j

µ2
ij

µ+
i.

·
√
pij(1− pij)

≤ µ+
i. ·
√
p̃µi. (1− p̃µi.) . (50)

We finally obtain using ineq. (50),

P

 1

N

∑
j

(Wij − E[Wij ]) ≥ t

 ≤ exp

(
− Nt2

2 · (µ+
i. · 2

√
p̃µi.(1− p̃µi.) + σ+

i. )

)
, (51)
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and we would obtain by symmetry:

P

 1

N

∑
j

(Wij − E[Wij ]) ≤ −t

 ≤ exp

(
− Nt2

2 · (µ+
i. · 2

√
p̃µi.(1− p̃µi.) + σ+

i. )

)
(52)

as well. This ends the proof of Lemma E.
Let us define function E : {1, 2, ..., 2N} → R+ with:

E(i)
def
=

{
2
√
p̃µi.(1− p̃µi.) · µ+

i. + σ+
i. if i ≤ N ,

2
√
p̃µ.(i−N)(1− p̃

µ
i.) · µ+

.(i−N) + σ+
.(i−N) otherwise , (53)

which collects the key parts in the concentration inequalities for row- / column-sums. We need in fact slightly more
than Lemma E, as we do not just want to bound row- or column-sums, but we need to bound their L1 norms (which,
since ‖u‖1 ≥ |1>u| by the triangle inequality, yields a bound on row- or column-sums). It can be verified that |Wij | is
(2,β)-sub-Gaussian with the same β as for Wij , but because |Wij | now integrates a folded Gaussian random variable
(Tsagris et al., 2014) instead of a Gaussian, its expectation is non trivial. We have not found any (simple) bound on the
expectation of such a folded Gaussian, so we provide a complete one here for Wij , which integrates as well Bernoulli
parameter pij .

Lemma F We have:

E[|Wij |] ≤ pij ·
(
|µij |+

1

γ
·

σ2
ij

σij + |µij |

)
, (54)

where γ
def
=
√
π/2. Furthermore, (54) is optimal in the sense that both sides coincide when µij = 0 (in this case,

E[|Wij |] = σij/γ).

Proof: We now have (removing indices for readability, (Tsagris et al., 2014)):

E[|W|] = p

(√
2

π
· σ exp

(
− µ2

2σ2

)
+ µ

[
1− 2Φ

(
−µ
σ

)])
, (55)

where Φ is the CDF of the standard Gaussian, so it is clear that the statement of the Lemma holds (and is in fact tight) when
µ = 0, as in this case E[|W|] = σ

√
2/π. Otherwise, assume µ 6= 0. For any z > 0, let

f(z)
def
=

1

1 +
√

1 + 4
z2

·
(√

2

π
· 1

z
exp

(
−z

2

2

))
, (56)

where u > 0 is a constant. It comes from Abramowitz & Stegun (1964, Inequality 7.1.3):

Φ(z) ≤ 1− f(z) , (57)

and so, if µ < 0,

E[|W|] = p

(
µ+

√
2

π
· σ exp

(
− µ2

2σ2

)
− 2µΦ

(
−µ
σ

))

≤ p

(
−µ+

√
2

π
· σ exp

(
− µ2

2σ2

)
+ 2µf

(
−µ
σ

))

= p

|µ|+√ 2

π
· σ exp

(
− µ2

2σ2

)1− 2

1 +
√

1 + 4σ2

µ2

 , (58)
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and we would obtain the same bound for µ > 0. There just remains to remark that (∀z > 0):

1− 2

1 +
√

1 + 1
z

≤ 1− 2
√
z + 2z ,

(
1− z +

z2

2

)
· exp

(
−z

2

2

)
≤ 1

1 + z
,

and we obtain the statement of Lemma F.
Using Lemma F , we can extend Lemma E and obtain the following Lemma.

Lemma G Let E?
def
= maxiE(i) and A denote the event:

A ≡
(
∃j ∈ [N ] : ‖cj‖1 >

∑
i

pij(|µij |+ δij) +Nt

)
∨

∃i ∈ [N ] : ‖ri‖1 >
∑
j

pij(|µij |+ δij) +Nt

 (59)

Then for any t > 0,

P [A] ≤ 4N exp

(
−Nt

2

2E?

)
, (60)

where ri
def
= (B1)i and cj

def
= (B>1)j are respectively row- and column-sums in B, δij

def
= σ2

ij/(σij +γ|µij |) and γ
def
=
√
π/2.

The way we use Lemma G is the following: pick

t =

√
2E?

N
· log

4N

δ
. (61)

We get that with probability ≥ 1− δ, we shall have both

‖cj‖1 ≤
∑
i

b̃ij +

√
2E?N · log

8N

δ
,∀j ∈ [N ] , (62)

‖ri‖1 ≤
∑
j

b̃ij +

√
2E?N · log

8N

δ
,∀i ∈ [N ] , (63)

for all columns and rows in B, with b̃ij
def
= pij(|µij |+ δij). There is a balance between the two summands in (62), (63) that

we need to clarify to handle the upper bounds This is achieved through the following Lemma.

Lemma H For any i, j,

1

N

∑
j

b̃ij ≤
√

2p̃µi.µ
+
i. + 2p̃σi.σ

+
i. ,

1

N

∑
i

b̃ij ≤
√

2p̃µ.jµ
+
.j + 2p̃σ.jσ

+
.j ,

where p̃σi.
def
=
∑
j pijσ

2
ij/σ

+
i. , p̃

σ
.j

def
=
∑
i pijσ

2
ij/σ

+
.j .
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Proof: We have for any i, j, 1

N

∑
j

b̃ij

2

=

 1

N
·
∑
j

pij |µij |

1 +
σij
|µij |

· 1

1 + γ
|µij |
σij

2

≤

 1

N
·
∑
j

pij |µij |+
1

N
·
∑
j

pijσij

2

≤ 2

 1

N
·
∑
j

pij |µij |

2

+ 2

 1

N
·
∑
j

pijσij

2

(64)

≤ 2
∑
j

p2
ijµ

2
ij + 2

∑
j

p2
ijσ

2
ij (65)

≤ 2
∑
j

pijµ
2
ij + 2

∑
j

pijσ
2
ij (66)

= 2p̃µi.µ
+
i. + 2p̃σi.σ

+
i. . (67)

Ineqs (64) and (65) follows from (
∑v
u=1 au)2 ≤ v∑u a

2
u. Ineq. (66) comes from pij ∈ [0, 1]. We would have similarly(

1

N

∑
i

b̃ij

)2

≤ 2p̃µ.jµ
+
.j + 2p̃σ.jσ

+
.j . (68)

This ends the proof of Lemma H.

II.3.2. PROOF OF THEOREM B

Let us define function U : {1, 2, ..., 2N} → R+ with:

U(i) =

{
2p̃µi.µ

+
i. + 2p̃σi.σ

+
i. if i ≤ N ,

2p̃µ.(i−N)µ
+
.(i−N) + 2p̃σ.(i−N)σ

+
.(i−N) otherwise , (69)

which collects the bounds in ineqs (67) and (68), and let U? def
= maxi U(i). Let

`
def
= N

√
U? +

√
2E?N · log

4N

δ
. (70)

` is be the quantity we need to handle all eigenspectra, but for this objective, let us define assumption (Z) as:

(Z) (1 + ε)N
√
U? ≤ 1/5 (call it the domination assumption for short) and

E?

U?
≤ ε2 · N

2 log 4N
δ

. (71)

Assumption (Z) is a bit technical: we replace it by a simpler one, (A), which implies (Z). Suppose γ ∈ (0, 1) a constant, and
assume N ≥ K1/(1−γ) without loss of generality; fix for some constant c > 0,

δ =
1

N c
, (72)

ε2 =
2

N1−γ · log
4N

δ

≥ 2(c+ 4)

N1−γ · logN . (73)
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Condition (71) is now ensured provided

U? ≥ 1

Nγ
· E? , (74)

while the domination condition is ensured, with N = Ω(c2+κ) (κ > 0 a constant) large enough so that ε ≤ 1, as long as

U? ≤ 1

100N2
. (75)

So let us simplify assumption (Z) by the following assumption, which implies (Z):

(A) c > 0 and 0 < γ < 1 being constants such that N = Ω(poly(c), 31/(1−γ)), we have:

U? ∈
[
E?

Nγ
,

1

100N2

]
. (76)

Again, (A) implies (Z).

Remark 1: the upper bound of (76) is quantitatively not so different from Linderman & Adams (2014)’s assumptions.
They work with two assumptions, the first of which being

σ2 ≤ 1

N
(77)

(we consider variances for the assumption to rely on same scales as ours), and also pick network parameters µ, σ in
such a way that large deviations for edge weights are controlled with high probability, with a condition that roughly
looks like:

µ2 +
c

N2
· σ2 = O

(
1

N2

)
, (78)

for some constant c > 3. This constraint is relevant to the same stability issues as the ones we study here, and can be
found in a slightly different form (but equivalent) in Hyvärinen & Smith (2013, Section 4), where it is mandatory for
the estimation of ICA model parameters.
Finally, Linderman & Adams (2014) make the heuristic choice to enforce at least one of the two ineqs. (77, 78).

Remark 2: the sampling constraint akin to eq. (78) is in fact very restrictive for ICA estimation of models (Hyvärinen
& Smith, 2013, Section 4), since typically each coordinate in B has to be bounded with high probability, whereas in
our case, it is sufficient to control sums (L1, row- or column-wise) with high probability. We can therefore benefit
from concentration properties on large networks that such approaches may not have.

What is interesting from (76) is the hints that provide the lower bound of (76) for Theorem B (main file) to hold. The main
difference between U? and E? is indeed (omitting factor 2 · p̃σ ∈ [0, 1] in variance terms) the switch between z 7→ 2z (for
U(.)) and z 7→ φ(z) (for E(.)). Figure 3 explains that the lower bound may be violated essentially only on networks with
very unlikely arcs almost everywhere, because φ has infinite derivative3 as z → 0. Also, it gives a justification for the name
of the two functions E and U , where maximizing E tends to favor arcs with p close to 1/2 (E stands for Equivocal), while
maximizing U tends to favor arcs with p close to 1 (U stands for Unequivocal).

3And it seems that such entropy-like penalties with infinite derivatives in a neighborhood of zero are necessary to obtain Lemma D —
as explained in the Lemma — if we want to keep the sub-Gaussian characterization of the Wijs.
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�(z)/2

z

1/2
random arc

no arc almost surely

1
sure arc

max E(.)

max U(.)1

}gap

Figure 3. Region (red cartouche) for which the lower bound in (76) may fail because φ(z) happens to be much larger than 2z — a worst
case corresponding to networks where basically all ps are very small (e.g. o(1/poly(N))). The Figure also depicts the location of p for
"ideal" maximizers of E(.) (hence the name, Equivocal arcs) and U(.) (hence the name, Unequivocal arcs).

(?) We now have all we need to bound the eigenspectra of H,H′. Let λ↑(.) (resp. λ↓(.)) denote the maximal (resp. minimal)
eigenvalue of the argument matrix. We obtain that with probability ≥ 1− δ,

λ↑(H) ≤ 1 + max
j

c>j
∑
k

ck − (rj + cj)>1

≤ 1 + max
j
‖cj‖1 max

k
|1>rk| − (rj + cj)>1 (79)

≤ 1 + max
j
‖cj‖1 max

i
‖ri‖1 + max

j
‖cj‖1 + max

i
‖ri‖1

≤ (1 + `)
2
,

(ineq. (79) comes from Hölder inequality) and similarly for the minimal eigenvalue,

λ↓(H) ≥ 1 + min
j

c>j
∑
k

ck − (rj + cj)>1

≥ 1− `2 − 2` ,

which implies that ` ≤
√

2−1 for this latter bound not to be vacuous (` is defined in eq. (70)). As long as δ = Ω(1/poly(N)),
it is not hard to see that N

√
U? dominates in ` for large networks so we can assume N large enough so that, for some small

ε > 0,

E?

U?
≤ ε2 · N

2 log 4N
δ

, (80)

which brings ` ≤ (1 + ε)N
√
U?. In this case, if (1 + ε)N

√
U? ≤ 1/5, then λ↓(H) ≥ 1/2. Furthermore, it is not hard to

check that we also get λ↑(H) ≤ 3/2. To summarize, as long as assumption (Z) (and so, as long as (A)) holds, the complete
eigenspectra of H, H−1 and by extension H′, H′−1, all lie within [1/2, 2] with high probability.
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(?) We finish with the eigenspectrum of J. We also easily obtain that

λ↑(J) ≤ max
j

r>j
∑
k

rk

≤ max
j
‖rj‖1 max

k
|1>ck|

≤ `2 ,

and obviously λ↓(J) ≥ 0, which is all we need.

(?) We now finish the proof of Theorem B, recalling that Σy can be summarized as:

Σy = A + σ2
fB + σ2

yI , (81)

with A
def
= H−1 ⊗Kt has an eigensystem which is the (Minkowski) product of the eigensystems of its two matrices, and

therefore is within [λ↓(Kt)/2, 2λ
↑(Kt)]; on the other hand, B

def
= (I−B)−1J(I−B)−>⊗ΣI has eigensystem which is the

one of JH′ (eigenvalues have different algebraic multiplicity though), which therefore is within [0, `2 · (1 + `)2] ⊂ [0, 2/25].
Hence, simplifying a bit, we can bound the complete eigenspectrum of Σy , λ(Σy), as:

λ(Σy) ⊂
[
λ↓(Kt)

2
+ σ2

y, 2λ
↑(Kt) + σ2

f + σ2
y

]
, (82)

under assumption (A), with probability ≥ 1− δ = 1− 1/N c, as claimed. This ends the proof of Theorem B.

II.3.3. FROM THEOREM B TO THEOREM 4

We now assume A ∼ B(ρij) with ρij ∼ Vij(pij), where V is a random variable satisfying pij
def
= E[Vij ] and

supp(V) ⊆ [0, 1] (the support of V). The proof essentially follows that of Theorem B, with the following minor changes.

(?) The derivation of eq. (26) now satisfies, since φu(z) is maximal in z = 1/2,

EWij [exp(λ(Wij − E[Wij ]))] ≤
∫

Supp(V)

exp

(
(σ2
ij + 2φu(z)µ2

ij)λ
2

2

)
dµ(z)

≤ exp

(
(σ2
ij + 2φu(1/2)µ2

ij)λ
2

2

)
= exp

(
(σ2
ij + µ2

ij)λ
2

2

)
. (83)

(?) Assumption (A) now reads, for some constants c > 0 and 0 < γ < 1 such that N = Ω(poly(c), 31/(1−γ)), we have:

U? ∈
[
S?

Nγ
,

1

100N2

]
, (84)

where U does not change but

S(i)
def
=

{
µ+
i. + σ+

i. (i ≤ N)

µ+
.j + σ+

.j : j
def
= N − i (i > N)

.
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II.4. Marginal likelihood given the network parameters

We first rewrite the prior in eq. 2 in the main paper as:

fi(t) = zi(t) +

N∑
j=1
j 6=i

AijWij [fj(t) + ξjt] , (85)

fi(t) = zi(t) +

N∑
j=1
j 6=i

AijWijfj(t) +

N∑
j=1
j 6=i

AijWijξjt, (86)

fi(t)−
N∑
j=1
j 6=i

AijWijfj(t) = zi(t) +

N∑
j=1
j 6=i

AijWijξjt, (87)

(I−A�W)f(t) = z(t) + A�Wξt, (88)

f(t) = (I−A�W)−1(z(t) + A�Wξt). (89)

In the main paper we refer to eq. 89 as the inverse model. With this, it is easy to see that we can write our complete model as:

zi(t) ∼ GP(0, κ(t, t′;θ)), (90)

ξt ∼ N(0, σ2
fI), (91)

εit ∼ N(0, σ2
y), (92)

fi(t) = [G]i,: (z(t) + Bξt) , (93)
yi(t) = fi(t) + εit. (94)

where B = A�W; G = (I−B)−1; [M]i,: denotes the ith row of matrix M. Here we analyze the conditional likelihood
by integrating out everything but A,W. Clearly, for fixed A,W, since all the distributions are Gaussians, and we are only
applying linear operators, the resulting distribution over fi, and consequently over yi, is also a Gaussian process. Hence, we
only need to figure out the mean function and the covariance function of the resulting process. For the expectation we have
that:

µi(t) = E [fi(t)] = 0, (95)

since both z and ξjt are zero-mean processes. For the covariance function we have that:

Cov[fi(t), fj(t
′)] = E [(fi(t)− µi(t))(fj(t)− µj(t′))] (96)

= [GGT ]i,jκ(t, t′;θ) + [GBBTGT ]i,jσ
2
f (97)

= [Kf ]i,jκ(t, t′;θ) + [E]i,jσ
2
f , (98)

where we have defined [M]i,j the i, j entry of matrix M and the matrix of latent node covariances and noise covariances as:

Kf = GGT (99)

E = GBBTGT . (100)

The covariance function of the observations is then given by:

Cov[yi(t), yj(t
′)] = [Kf ]i,jκ(t, t′;θ) + [E]i,jσ

2
f + δijσ

2
y . (101)

For further understanding of this model, let us assume that the observations lie on a grid in time, t = 1, . . . , T and Y is a
N × T matrix of observations with y = vecY hence the likelihood of all observations is:

p(y|W,A) = N(y; 0,Σy), with (102)

Σy = Kf ⊗Kt + E⊗ σ2
fI + I⊗ σ2

yI, (103)
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where ⊗ denotes the Kronecker product; If we use this setting then we obtain:

Σy = Kf ⊗Kt + (σ2
fE + σ2

yI)⊗ I. (104)

Interestingly, the model above has been studied in statistics and in machine learning (see e.g. Bonilla et al., 2008; Rakitsch
et al., 2013). Furthermore, inference and hyperparameter estimation can be done efficiently by exploiting properties of the
Kronecker product, e.g. an evaluation of the marginal likelihood can be done in O(N3 + T 3). Nevertheless, unless there is a
substantial overlapping between the locations of the observations across the nodes (i.e. times), the Kronecker formulation
becomes intractable.

Naïve computational cost. Assuming the general case (i.e. non-grid observations), let us refer to Σy = K + σ2
yI as

the covariance of the marginal process over y, as induced by the covariance function in Equation (101), where K is the
covariance matrix induced by the covariance function in Equation (98). Therefore, the prior, conditional likelihood, and
marginal likelihood of the model are:

p(f) = N(f ; 0,K), (105)

p(y|f) = N(y; f , σ2
yI), (106)

p(y) = N(y; 0,Σy), (107)

where we have omitted the dependencies of the above equation on the network parameters A,W. Because of the
marginalization property of GPs it is easy to see that all the above distributions are n-dimensional, where n =

∑N
i=1 T ,

where T is the number of observations per node. Hence the cost of evaluating the exact marginal likelihood is O(n3).

II.5. Efficient computation of marginal likelihood given network parameters

For simplicity, we consider here the synchronized case where all the N nodes in the network have T observations at the
same times. i.e. the total number of observations is n = N × T . Here we show an efficient expression for the log marginal
likelihood:

log p(y|W,A) = −n
2

log(2π)− 1

2
log |Σy| −

1

2
yTΣ−1

y y, where (108)

Σy = Kf ⊗Kt + Ω⊗ΣI, with (109)

Ω = (σ2
fE + σ2

yI) and (110)

ΣI = I (111)

The main difficulty of computing this expression is the calculation of the log determinant of an n dimensional matrix, as well
as solving an n-dimensional system of linear equations. Our goal is to show that we never need to solve these operations on
an n-dimensional matrix, which are O(n3) but instead use O(N3 + T 3) operations.

Given the eigen-decomposition of the above matrices

Ω = QΩΛΩQT
Ω (112)

ΣI = QIΛIQ
T
I = I, (113)

It is possible to show that the marginal covariance is given by

Σy = (QΩΛ
1/2
Ω ⊗QIΛ

1/2
I )

(
K̃f ⊗ K̃t + I⊗ I

)
(QΩΛ

1/2
Ω ⊗QIΛ

1/2
I )T , where (114)

K̃f = Λ
−1/2
Ω QT

ΩKfQΩΛ
−1/2
Ω (115)

K̃t = Λ
−1/2
I QT

I KtQIΛ
−1/2
I = Kt (116)

For these matrices we also define their eigen-decomposition analogously to above:

K̃f = Q̃f Λ̃fQ̃
T
f (117)

K̃t = Kt = Q̃tΛ̃tQ̃
T
t (118)
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II.5.1. LOG-DETERMINANT TERM

log |Σy| = log |Ω⊗ΣI|+ log |K̃f ⊗ K̃t + I⊗ I| (119)

= T

N∑
i=1

log λ
(i)
Ω +N

T∑
j=1

log λ
(j)
I +

N∑
i=1

T∑
j=1

log(λ̃
(i)
f λ̃

(j)
t + 1) (120)

= T

N∑
i=1

log λ
(i)
Ω +

N∑
i=1

T∑
j=1

log(λ̃
(i)
f λ̃

(j)
t + 1) (121)

II.5.2. QUADRATIC TERM

yTΣ−1
y y = yT (Λ

1/2
Ω QT

Ω ⊗Λ
1/2
I QT

I )−1
(
K̃f ⊗ K̃t + I⊗ I

)−1

(QΩΛ
1/2
Ω ⊗QIΛ

1/2
I )−1y (122)

yTΣ−1
y y = yT (QΩΛ

−1/2
Ω ⊗QIΛ

−1/2
I )

(
K̃f ⊗ K̃t + I⊗ I

)−1

(Λ
−1/2
Ω QT

Ω ⊗Λ
−1/2
I QT

I )y (123)

Let us define

ỹ = (Λ
−1/2
Ω QT

Ω ⊗Λ
−1/2
I QT

I )y (124)

= vec(Λ
−1/2
I QT

I YQΩΛ
−1/2
Ω ) (125)

= vec(YQΩΛ
−1/2
Ω ) (126)

Hence the quadratic form above becomes:

yTΣ−1
y y = ỹT

(
K̃f ⊗ K̃t + I⊗ I

)−1

ỹ (127)

= tr(ỸT Q̃tỸtfQ̃
T
f ), where (128)

[Ỹtf ]i,j =

 1

[λ̃tλ̃
T

f + 1]i,j

 [Q̃T
t ỸQ̃f ]i,j (129)

and y = vec(Y), ỹ = vec(Ỹ) are the vectors obtained by stacking the columns of the T ×N matrices Y and Ỹ respectively.
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III. Supplementary material on experiments
As mentioned in the main paper, the choice of baseline comparisons was based on Peters et al. (2014). Other than the
methods discussed in the main paper, there are four other methods considered by Peters et al. (2014): (1) Brute-force search;
(2) Greedy DAG Search (GDS, see e.g. Chickering, 2002); (3) Greedy equivalence search (GES, Chickering, 2002; Meek,
1997); (4) Regression with subsequent independence test (RESIT, Peters et al., 2014).

In the experiments reported in section 5.1, since the ground truth is known, the evaluation criteria is AUC (area under the
ROC curve). Calculating AUC values requires a discriminative threshold to generate ROCs. In the case of GDS and GES there
was no clear parameter that could be considered as the discriminative threshold, and therefore results for these algorithms
are not reported. In the case of RESIT, there is a threshold, but the threshold values for which the method produces different
results were not provided, making it infeasible to calculate AUC, and therefore the output of this algorithm is not reported.
In the experiments reported in section 5.2, the implementations of GES, GDS and RESIT that we used returned an error
(possibly because the number of nodes was greater than the observations from each node). Therefore their results are not
reported. Finally, for the experiment in section 5.3 we compared the results with CPC, which provided comparatively good
performance in other experiments. Also, we did not include the brute-force method, which is not feasible to perform in
networks with more than four nodes, and therefore makes it inapplicable in the experiments studied here.

The PC and CPC algorithms are constrain-based structure learning methods for directed acyclic graphs (DAG). The algorithms
require a conditional independence test, for which we used the test for zero partial correlation between variables. The
IAMB method is a two-phase algorithm for Markov blanket discovery. Linear correlation is used for the test of conditional
independence required by this algorithm. The LiNGAM method is a Linear non-Gaussian Additive Model (LiNGAM) for
estimating structural equation models. PW-LINGAM provides the direction of connection between the two connected nodes.
We used partial correlation for determining whether two nodes are connected, and the magnitude of the correlation was used
as the discriminative threshold. For connected nodes at the threshold PW-LINGAM was used to determine the direction of the
connection.

For [PC, CPC GES], IAMB and LiNGAM implementations provided by R packages Kalisch et al. (2012), Marco (2010),
Kalisch et al. (2012) were used respectively. For PW-LINGAM the code provided by the authors was re-implemented in R
and was used. For GDS and RESIT implementation provided by authors of Peters et al. (2014) in R was used.

In the following, we define pij as the probability of the connection from node j to node i, which is calculated as follows:

pij =
αij

αij + 1
. (130)

III.1. Prior setting and optimization specifics

We used the squared exponential covariance function and optimized variational parameters, hyperparameters, and likelihood
parameters in an iterative fashion using Adam (Kingma & Ba, 2014). Similarly to Maddison et al. (2016), different λc
values are used for the prior and posterior distributions. For experiments with N > 15, following Maddison et al. (2016) we
used λc = 0.5 for priors and λc = 2/3 for posterior distributions. For the experiments in section 5.1, in which N ≤ 15,
we used the first subject (T = 200) as the validation data and selected λc = 1.0 for priors and λc = 0.15 for posterior
distributions. The number of Monte Carlo samples was selected based on computational constraints, and were 200, 20 and 2
samples for small-scale (§5.1, 5.2), medium-scale (§5.3), and large-scale (§5.3) experiments respectively.

Prior over Wij is assumed to be zero-mean Gaussian distribution with variance σ2
w = 2/N similar to Linderman & Adams

(2014). Prior over Aij is assumed to be Concrete(1, λc), which implies that the probability that a link exists between two
nodes is 0.5:

p(Aij) = Concrete(1, λc), p(Wij) = N(0, 2/N). (131)

III.2. Brain functional connectivity data

AUC computation. This is obtained by varying the discrimination threshold and drawing the false-positive rate (fpr) vs
true-positive rate (tpr). In the case of LATNET, this threshold is the absolute expected value of the overall connection strength
between the nodes (|µijpij |). In the case of PC, CPC and IAMB algorithms, the discrimination threshold is the p-value (target
type I error rate) of the conditional independence test, and in the case of LiNGAM and PW-LINGAM, absolute values of the
estimated linear coefficients and partial correlation coefficients are used as the discrimination thresholds respectively.
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Figure 4. Performance of the methods in link prediction on the brain functional connectivity data in terms of AUC. N is the number of
nodes in the network, and T is the number of observations in each node.

III.3. Spellman’s sentinels of the yeast cell cycle

We have analyzed the signals of 799 (one gene was missing in our data, out of the 800 tagged in the original paper) sentinels
of the yeast cell cycle (YCC) from Spellman et al. (1998), for a total of ≈13,600 data points. Figure 5 presents the counting
histograms for µ and p found among all inferred arcs. Let us denote as strong arcs arcs that jointly belong to the red areas of
both curves (meaning that both p is in top 99.9% quantile and |µ| in top 99% quantile). We remark that the scale for σ is
roughly in the tenth of that for µ, so that for strong arcs, distributions with |µ| in its top 99% quantile can be considered
encoding non-void arc connection (even when small in an absolute scale). We also notice that the distribution in p admits
relatively large values (≈ 0.7), so that its top 99.9% percentile can be encoding arc probability strictly larger than 1/2. In
the Left picture of Figure 2, we plot all strong arcs with pij > 0.62; among these, the very strong arcs (displayed with thick
arcs) are those for which p > 0.65 (vs p ∈ (0.62, 0.65] for the other arcs displayed).

We have analyzed arcs belonging to at least one of these categories (p is in top 99.9% quantile or |µ| in top 99% quantile),
the intersection of both representing strong arcs. Intuitively, this top list should contain most of the (much shorter) "A-lists"
of cell-cycle genes as recorded in the literature. One of these lists (Cho et al., 1998) has been curated and can be retrieved
from Rowicka et al. (2007, Table 4 SI). It contains 106 genes. Table A1 gives the genes we retrieve, meaning that at least
one significant arc appear for each of them (p is in top 99.9% quantile or |µ| in top 99% quantile). The values given in the
Table allow to conclude that almost 68% of the 106 genes are retrieved as having at least one significant arc. Since the total
number of genes with strong arcs we retrieve is 177, out of the 799, the probability that the result observed in Table A1 is
due to chance is zero up to more than thirty digits. Hence, assuming the list of genes in Table A1 is indeed a most important
one, we can conclude in the reliability of our technique for network discovery for this domain.
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Figure 5. Counting histograms (y, blue + red) for the values of µ (left), p (center) and σ (right, y-scales are log-scales). The vertical
green segment indicates µ = 0 (left) and p = .5 (center). The red part displays the upper 99% percentile for |µ| (left) and upper 99.9%
percentile for p (center).

G1(P) FKS1, CLN3, CDC47, RAD54, PCL2, MNN1, RAD53, CLB5 8/16
G1/S DPB2, CDC2, PRI2, POL12, CDC9, CDC45, CDC21, RNR1, CLB6, POL1, MSH2, RAD27, ASF1,

POL30, RFA2, PMS1, MST1, RFA1, MSH6, SPC42, CLN2, PCL1, RFA3 23/28
S MCD1, HTA2, SWE1, HTB1, KAR3, HSL1, HHF2, HHT1, HTB2, CIK1, CLB4 11/17
G2 CLB1, CLB2, BUD8, CDC5 4/4
G2/M SWI5, CWP1, CHS2, FAR1, DBF2, MOB1, ACE2, CDC6 8/9
M(P) CDC20 1/2
M(M) TEC1, RAD51, NUM1 3/4
M(A) TIP1, SWI4, KIN3, ASF2, ASH1, SIC1, PCL9, EGT2, SED1 9/15
M(T) ∅ 0/1
M/G1 PSA1, RME1, CTS1 3/3
G1 HO 1/4
late G1 ∅ 0/3

Table A1. Genes found in at least one arc with p in top 99.9% quantile or |µ| in top 99% quantile, in the list of 106 documented genes of
the cell cycle in Cho et al. (1998); Rowicka et al. (2007), as a function of the phase as defined in Cho et al. (1998) (left). The right column
mentions the number of genes retrieved / total number of genes in the original list (for example, all G2 genes appear).

As a next step, Table A2 presents the breakdown for the relative distribution of strong arcs in the YCC as a function of the
YCC phase, using as reference the original one from Spellman et al. (1998), collapsing the vertices in their respective phase
of the YCC to obtain a concise graph of within and between phase dependences (Figure 6 gives a schematic view of the
most significant part of the distribution — arcs between different genes of the same YCC phase create the loops observed).
We can draw two conclusions: (i) the graph of dependences between phases is not symmetric. Furthermore, (ii) M and
G1 appear as the phases which concentrate more than half of the strong arcs, which should be expected given the known
regulatory importance in these two phases (Spellman et al., 1998). To make more precise in observation (i) that the network
is indeed imbalanced, we have computed the ratio out-degree / in-degree for all genes admitting strong edges of both kinds
(i.e. with the gene as in- / out- node). Table A3 presents all genes collected. A total of 100 genes is found, the majority of
which (68) is imbalanced. We also remark that roughly 80% of them is associated to M and/or G1 (only 19 are associated to
phases S or G2), which is consistent with the findings of Table A2.

To finish with the quantitative analyses, Tables A5 and A4 present the main strong genes in term of in or out degree (genes
with in or out-degree < 3 are not shown). Notice the preeminence of two well known cell-cycle regulated genes, HO and
WSC4.

To catch a glimpse at the overall network found from a more qualitative standpoint, we have learned a coordinate system for
genes based on a popular manifold learning technique (Meila & Shi, 2001). Since this technique requires the graph to be
symmetric, we have symmetrized the network by taking the max of the p-values to weight each edge. Figure 7 presents the
results obtained, for the two leading coordinates — excluding the coordinate associated to eigenvalue 1, which encodes the
stationary distribution of the Markov chain and is therefore trivial —. It is clear that the first coordinates splits key YCC
genes from the rest of the crowd (Cf Tables A5 and A4), also highlighting the importance of WSC4 and strong edges to
create the manifold. HO is used to switch mating type and WSC4 is required for maintenance of cell wall integrity (Simon
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M M/G1 G1 S G2
M 18 4 7 3 6

M/G1 5 7 3 0 1
G1 5 4 23 1 0
S 2 0 0 2 1

G2 4 1 0 0 0

Table A2. Distribution of strong arcs (p in top 99.9% quantile, |µ| in top 99% quantile) with respect to phases in the YCC. Each entry has
been rounded to the nearest integer for readability.

M

G1

G2

S

M/G1

Figure 6. Distribution of strong arcs (p in top 99.9% quantile, |µ| in top 99% quantile) with respect to phases in the YCC (clockwise),
displayed as follows: thick plain ≥ 8%, plain ∈ [4%, 8%), dashed ∈ (2%, 4%). Reference values in Table A2.

et al., 2001).

Interestingly, the most prominent genes belong to a small set of chromosomes (essentially 13, 15, 16). What is quite
striking is the fact that SPS4 and SFG1 are in fact neighbors on chromosome XV4. It is far beyond the scope of our paper to
eventually relate the network structure and associated causal influence in expression — which we aim to capture — to the
proximity in the (physical) loci of genes, but this is eventually worthwhile noticing and exploiting with respect to the already
known coexpression of neighboring genes in yeast (Santoni et al., 2013).

Comparison with CPC Last, we have compared our results to those of CPC. Results are shown in Figure 9 for the manifold
(compare to Figure 7 for our technique), and in Figure 9 for the distribution of strong arcs found (strong in the case of
CPC means p ≥ 0.05). The graph found is much closer to a complete graph, which is a quite unrealistic observation since
cell cycles are extremely imbalanced in terms of importance with respect to regulation. Furthermore, as remarked below in a
more quantitative way, it is known that Saccharomyces cerevisiae tends to have a predominant gap phase G1 compared to
G2, which is clearly less visible from the CPC results compared to LATNET’s results.

III.4. Analysis of the complete yeast genome

We have analyzed the complete set of 6178 genes (representing now 100, 000+ data points) in the yeast genome data
(Spellman et al., 1998). Not that this time, this represents a maximum of more than 38 millions arcs in total in the network.

Table A6 presents the breakdown in percentages between YCC genes and non-YCC genes. Clearly, the graph is heavily
non symmetric: while roughly 11% of strong arcs come from outside of the YCC to inside the YCC, more than 25% of

4http://www.yeastgenome.org/locus/YOR315W/overview
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Figure 7. Manifold coordinates learned from the symmetrized p-values graph using Meila & Shi (2001), on Klein disk (we chose it to ease
reading: the representation is conformal and geodesics are straight lines — WSC4, which is in fact far away from all other genes, does not
prevent a visually meaningful display of the other main genes). Segments are strong arcs (arrowheads not represented). Left: Major genes
influencing the computation and known to be Cell Cycle Transcriptionally Regulated (CCTR Rowicka et al., 2007) are displayed in plain
boxes. Chromosomes are shown in red. Right: zoom over the pink area in the left plot, showing few strong edges belong to this area, and
therefore strong edges guide the construction of the manifold’s main coordinates.

these strong arcs come from inside the YCC to outside the YCC. The largest percentage of arcs between YCC - nonYCC is
obtained from G1 onto the non YCC genes (> 10%), which seems to be plausible, since G1 is a gap phase involving a lot
of interactions with the environment, testing for nutrient supply and growth availability. Interestingly, the strong arcs are
recalibrated to take into account the complete set of genes (strong arcs are defined with respect to quantiles in data), yet the
relative proportions in the YCC still denote the predominance of M and G1, and the very small percentage of strong arcs
for phases S and G2. We notice that the predominance of phase G1 compared to G2 is in perfect accordance with the fact
that Spellman et al. (1998) picked the yeast Saccharomyces cerevisiae which is indeed known to possess long G1 phases
(compared to e.g. Saccharomyces pombe).

Finally, Figure 11 displays the manifold obtained for the complete genome. We represent only a corner of the manifold of
6K+ genes, which displays this time the importance of other YCC genes, including in particular YPR204W. This comes at
no surprise: this gene codes for a DNA helicase, a motor protein tht separates DNA strands. DNA helicases are involved in a
number of processes and not just the YCC. We do not show strong arcs in the picture, but it is worthwhile remarking that the
relative predominance of the most prevalent YCC genes is still here, in the whole genome analysis: WSC4, SPO16 and
SLD2 are in the top-5 of out-degree measures with strong arcs.

III.5. Sydney property prices data

Performance measures. Firstly, with regards to spatial coherence, it is reasonable to assume that the underlying network is
spatially localized, as property prices in nearby suburbs are likely be related. Therefore, our first performance measure is the
air distance between the suburbs that are discovered to be connected (shorter distances are better). Secondly, concerning
network stability, if we apply a method to different time windows we expect to see some overlaps between the discovered
networks. Therefore, our second measure of performance is the proportion (r) of networks in which a connection was
present (for each discovered connection). For more stable connections we expect r to be higher. To compute the above
measures, we kept the analysis window to five years (T = 20 since data is quarterly) and starting from 1995–1999 the
window is shifted by one year each time until 2010-2014. Connections between the nodes were obtained for each window,
and the discriminate thresholds were chosen so that each method finds 16-18 connections on average.

We set the discrimination threshold for each method so that on average each method finds 17-19 edges in the network
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Figure 8. Left: manifold learned from CPC, using the same convention as for LATNET. Remark that none of the edges learned by
CPC appears, because they are all concentrated inside several blobs that belong to the visible vertical line in the center. Genes displayed in
blue are those extremely localed genes that do not belong to the genes in Rowicka et al. (2007, Table 4 SI). Right: we have substituted
the edges learned by CPC by ours, showing that the most important genes in fact belong to the central blob of the picture, therefore not
discriminative of the YCC genes.

(pij = 0.597 for LATNET; p-value=0.015 for PC; p-value=0.012 for CPC; p-value=10−7 for IAMB; partial correlation= 0.5
for PW-LINGAM).

Figure 12 shows the top-6 of these arcs inferred by LATNET. They clearly indicate that one area of Sydney, Woollahra,
acts like an authority in the network, since it receives lots of arcs from other major areas (Hunters Hill, Manly, Mosman,
Pittwater). These areas all share common features: they are in central-north Sydney, all have coastal areas, and they happen
to be well-known prestigious areas with the highest median property price in Sydney (Campion, 2011), so the observed
percolation is no surprise.

Figures 13,14,15,17,16 show the results of LATNET, CPC, PC PW-LINGAM and IAMB algorithms on Sydney property price
data. Suburbs were ranked geographically according to their latitude and longitude coordinates, and their locations in the
graphs are assigned according to their ranks. We used the ranks instead of actual coordinates of the suburbs in order to be
able to better visualize connections in the inner ring. Each panel in the graphs shows the results for a certain period of
time, indicated by the label above the panel. Suburbs in Sydney are divided into four groups according to their locations:
inner ring (red points), middle ring (green points), outer ring (blue points), and Greater Metropolitan Region (GMR; yellow
points).

Data is downloaded from:
http://www.housing.nsw.gov.au/about-us/reports-plans-and-papers/rent-and-sales-reports/back-issues/issue-111
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Figure 9. Distribution of strong arcs (p ≥ 0.05) found by CPC, following Figure 6. Remark that the figure fails to carry the importance of
phases M and G1, as Figure 6 for LATNET — in particular, phase M roughly carries the same weights distribution as phase G2, which
does not conform to observations (G2 is not even mandatory for the YCC while M obviously is).
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Figure 10. Counting histograms (y, blue + red) for the values of µ (left), p (center) and σ (right, y-scales are log-scales). Conventions
follow Figure 5. A tiny fraction (< 1‰) of arcs found have p or σ close to zero; they are not shown to save readability.
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Gene Phase out/in-degree ratio

in
-d

eg
re

e
<

ou
t-

de
gr

ee

ASH1 M/G1 5.0
YIL158W M 3.0

MSH6 G1 3.0
SWI5 M 3.0

RAD53 G1 3.0
YNR009W S 2.5

MET3 G2 2.3333333333333335
YOX1 G1 2.0
SVS1 G1 2.0

YOL007C G1 2.0
CDC20 M 2.0

YKR041W G2 2.0
CDC5 M 2.0

MET28 S 2.0
YML034W M 2.0

SMC3 G1 2.0
HHO1 S 2.0

YDL039C M 2.0
RAD27 G1 2.0
FAR1 M 2.0
DIP5 M 1.75

YPL267W G1 1.6
CDC45 G1 1.5
RNR1 G1 1.5
PCL9 M/G1 1.5
LEE1 S 1.5

YOR314W M 1.5
YIL025C G1 1.4444444444444444

AGP1 G2 1.3333333333333333
CWP1 G2 1.3333333333333333
ALD6 M 1.2

YOL132W M 1.1666666666666667
YNR067C M/G1 1.0666666666666667
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ee

YNL078W M/G1 1.0
YCL013W G2 1.0

RME1 G1 1.0
CLB1 M 1.0
RPI1 M 1.0

YIL141W G1 1.0
BUD4 M 1.0

YLR235C G1 1.0
YOR315W M 1.0
YER124C G1 1.0
YPR156C M 1.0
YGL028C G1 1.0

BUD3 G2 1.0
STE3 M/G1 1.0
HST3 M 1.0
ALK1 M 1.0
CHS2 M 1.0

YLL061W S 1.0
YFR027W G1 1.0

LAP4 G1 1.0
YNL173C M/G1 1.0
YML033W M 1.0

SEO1 S 1.0
YOR264W M/G1 1.0

NUF2 M 1.0
YOR263C M/G1 1.0
YBR070C G1 1.0
YNL300W G1 1.0
YPR045C M 1.0
YOR248W G1 1.0

MYO1 M 1.0
RLF2 G1 1.0
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ee

YOL101C M/G1 0.9444444444444444
YDR355C S 0.8

HTB2 S 0.75
YRO2 M 0.7142857142857143

YDR380W M 0.6666666666666666
FET3 M 0.6666666666666666

YDL163W G1 0.6666666666666666
CLB6 G1 0.6666666666666666

ECM23 G2 0.6666666666666666
YBR089W G1 0.6666666666666666
YGR221C G1 0.6666666666666666
YDL037C M 0.6

MF(ALPHA)2 G1 0.6
YLR183C G1 0.5714285714285714

PDR12 M 0.5555555555555556
YER150W M/G1 0.5555555555555556

POL1 G1 0.5
YHR143W G1 0.5

SPS4 M 0.5
PCL1 G1 0.5

YGL184C S 0.5
EGT2 M/G1 0.5
CTS1 G1 0.5

YDR149C G2 0.5
GAP1 G2 0.5

HO G1 0.5
WSC4 M 0.4673913043478261
SPO16 G1 0.46153846153846156

YMR032W M 0.4
YGP1 M/G1 0.4
SPH1 G1 0.3333333333333333

YCL022C G1 0.3333333333333333
YCLX09W G2 0.3333333333333333

PIR1 M/G1 0.25
ARO9 M 0.16666666666666666

Table A3. Imbalancedness of the network: genes in decreasing ratio out-degree/in-degree, computed using strong arcs (p in top 99.9%
quantile, |µ| in top 99% quantile). Only those with > 0 out-degree and in-degree are shown. A star (*) indicates reported targets for
cell-cycle activators (Simon et al., 2001).
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Gene Phase out-degree
WSC4 M 43

YOL101C M/G1 17
YNR067C M/G1 16
YIL025C G1 13
YDL037C M 12
YOR264W M/G1 10
YER124C G1 10

HO G1 9
YPL267W G1 8
YLR183C G1 8

MET3 G2 7
DIP5 M 7
SEO1 S 7

YOL132W M 7
ALD6 M 6

YGL028C G1 6
PCL9 M/G1 6

SPO16 G1 6
YDL039C M 6
YOL007C G1 6
YER150W M/G1 5

YRO2 M 5
PDR12 M 5
PCL1 G1 5

YNR009W S 5
RME1 G1 5
ASH1 M/G1 5
AGP1 G2 4
GAP1 G2 4

YOR263C M/G1 4
YNL173C M/G1 4

CWP1 G2 4
FAR1 M 4
MCD1 G1 4
YOX1 G1 4

YDR355C S 4
YOR314W M 3

MSH6 G1 3
SPT21 G1 3
LEE1 S 3

YIL158W M 3
YLR049C G1 3

RNR1 G1 3
HTB2 S 3
GLK1 M/G1 3
SWI5 M 3

MF(ALPHA)2 G1 3
CDC45 G1 3
RAD53 G1 3

Table A4. Genes in decreasing out-degree for strong arcs (p in top 99.9% quantile, |µ| in top 99% quantile). Only those with out-degree
≥ 3 are shown.
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Gene Phase in-degree
WSC4 M 92

YDL037C M 20
HO G1 18

YOL101C M/G1 18
YNR067C M/G1 15
YLR183C G1 14

SPO16 G1 13
YOR264W M/G1 10
YER124C G1 10

PCL1 G1 10
YIL025C G1 9
PDR12 M 9

YER150W M/G1 9
GAP1 G2 8
SEO1 S 7
YRO2 M 7
ARO9 M 6
SPH1 G1 6

YOL132W M 6
YGL028C G1 6

MF(ALPHA)2 G1 5
YMR032W M 5

ALD6 M 5
YPL267W G1 5

YGP1 M/G1 5
YDR355C S 5

RME1 G1 5
YOR263C M/G1 4
YGL184C S 4

PCL9 M/G1 4
PIR1 M/G1 4
HTB2 S 4
DIP5 M 4

YNL173C M/G1 4
SPS4 M 4

YCL022C G1 3
YOL007C G1 3

MET3 G2 3
YGR221C G1 3
YDL039C M 3

CWP1 G2 3
YCLX09W G2 3
YDR380W M 3

AGP1 G2 3
CLB6 G1 3

YBR089W G1 3
FET3 M 3

YDL163W G1 3
ECM23 G2 3

Table A5. Genes in decreasing in-degree for strong arcs (p in top 99.9% quantile, |µ| in top 99% quantile). Only those with in-degree ≥ 3
are shown.
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M M/G1 G1 S G2 N
M 0.6 ε 1.2 ε ε 2.1

M/G1 ε ε 0.2 ε ε 1.4
G1 1.0 ε 1.0 0.2 ε 4.5
S 0.2 ε 0.2 ε 0.2 2.0

G2 0.2 ε 0.2 ε ε 1.0
N 6.6 3.5 10.3 2.3 2.9 58.5

Table A6. Distribution of strong arcs (p in top 99.9% quantile, |µ| in top 99% quantile) for the complete genome of the yeast, including
the breakdown for the YCC phases (see e.g. Table A2). "ε" means < 0.1% and "N" stands for "None" (Gene not in the sentinels of the
YCC").
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Figure 11. manifold obtained for LATNET in the whole yeast genome, conventions follow Figure 7 (strong arcs not displayed for
readability).
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Figure 12. Arcs with highest r values discovered by LATNET.
.
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Figure 13. Associations between median house prices in different suburbs discovered by LATNET

.
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Figure 14. Associations between median house prices in different suburbs discovered by CPC

.
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Figure 15. Associations between median house prices in different suburbs discovered by PC

.
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Figure 16. Associations between median house prices in different suburbs discovered by PW-LINGAM

.
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Figure 17. Associations between median house prices in different suburbs discovered by IAMB

.
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