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Abstract
Traditional methods for the discovery of latent
network structures are limited in two ways: they
either assume that all the signal comes from the
network (i.e. there is no source of signal outside
the network) or they place constraints on the net-
work parameters to ensure model or algorithmic
stability. We address these limitations by propos-
ing a model that incorporates a Gaussian process
prior on a network-independent component and
formally proving that we get algorithmic stabil-
ity for free, while providing a novel perspective
on model stability as well as robustness results
and precise intervals for key inference parameters.
We show that, on three applications, our approach
outperforms previous methods consistently.

1. Introduction
Networks represent the elements of a system and their in-
terconnectedness as a set of nodes and arcs (connections)
between them. Applications of network analysis range from
biological systems such as gene regulatory networks and
brain connectivity networks, to social networks and interac-
tions between financial indices.

When dealing with continuous observations, a commonly
used framework for this purpose is linear causal models
(Bollen, 1989; Pearl, 2000; Spirtes et al., 2000), in which
the data-generation process is defined such that the obser-
vations from each node are a linear combination of the
observations from other nodes and additive noise with – typ-
ically – a constant mean and variance. Hence, temporal
variations in the observations from a node are either asso-
ciated to the other nodes in the network, or to the changes
in latent confounders; i.e., in the absence of any change
in these two components, observations from a node are as-
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sumed to follow the noise distribution and thus unaffected
by the time-varying signals that come from outside the net-
work. This comes as a significant limitation for real-world
problems where observations from a node can also follow a
network-independent trend. For example, when considering
property prices in the suburbs of a city, some of them can
follow a decreasing/increasing trend over time, essentially
independent of other suburbs.

Our first contribution overcomes this limitation. We
propose a network-structure discovery model that gener-
alizes linear causal models by incorporating a network-
independent component for each node, which is deter-
mined by a Gaussian process (GP) prior capturing the
inter-dependencies between observations over time. Con-
sequently, the output of a node is now given by a sum of
the network-independent component and a (noisy) linear
combination of the observations from the other nodes. Our
model considers the parameters of this linear combination
(which determine the structure of the network) as random
variables. This modeling approach provides a more flexible
data-generation process due to the non-parametric nature
of the GP prior but, of course, raises the question of what
algorithms can be used to learn such more general models.

Our second contribution provides an answer to this ques-
tion, including an efficient variational inference approach
for the posterior over the network-dependent parameters.
A key part relies on showing that, by marginalizing the la-
tent functions corresponding to the network-independent
components, our approach is closely related to multi-task
GP models under a product covariance (Bonilla et al., 2008;
Rakitsch et al., 2013). This allows us to exploit properties of
Kronecker products in order to compute the marginal like-
lihood (conditioned on the network parameters) efficiently.
We estimate the posterior over the network-dependent pa-
rameters building upon recent breakthroughs in variational
inference (Rezende et al., 2014; Kingma & Welling, 2014;
Maddison et al., 2016).

Computational efficiency is not the only concern of previous
popular approaches: all rely on more or less stringent as-
sumptions to make sure that parameters do not deviate from
a prescribed, finite regime. In short, “There is a stability
caveat to retrieve the network”. What finiteness is related
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to takes various forms: this can be the number of events for
Hawkes process modeling (Linderman & Adams, 2014), the
variance of the process (Shimizu et al., 2006), the iterated
dynamical system parameters (Hyvärinen & Smith, 2013),
the non-singularity of the mixing matrix (Shimizu et al.,
2011), etc. It is legitimate to ask where our more general
model and algorithm position us with respect to this caveat.

Our third contribution is a formal proof that stability is
not an issue in our case. Concrete distributions (Maddison
et al., 2016) happen to be important in our setting not just for
their convenience in the reparameterization trick (Kingma
& Welling, 2014): they help to get stability for free. Fur-
thermore, we investigate what we get with the assumptions
used in previous work to guarantee stability (Linderman &
Adams, 2014). What we get, which to our knowledge has
never been documented, is that key parameters are not just
stable: with high probability, they are easy to bound and
meet some form of statistical robustness. The variance of
the network signal, for example, is of the same order as
that of the network-independent parameters, and therefore
robust to changes in the network-dependent distributions.
This result is highly relevant, considering the choices we
make to get tractable families of distributions over network
parameters for variational inference.

Experiments. We benchmark our approach against the
state of the art on three very different and challenging prob-
lems: discovering brain functional connectivity, modeling
property prices in Sydney, and understanding regulation in
the yeast genome. We provide a quantitative evaluation
of our approach, showing that it consistently outperforms
competitive baselines. Furthermore, when investigating the
full yeast genome regulation, our qualitative analyses show
that even in a large network (up to 38,000,000+ arcs), our
technique is able to recover both high-level and low-level
knowledge that is strikingly consistent with the previous
literature and hints on original findings.

1.1. Related Work

Our approach is different from standard linear causal mod-
els with Gaussian noise (e.g. Bollen, 1989; Pearl, 2000) in
three key aspects: (i) we do not assume that the underlying
network is a directed acyclic graph (e.g. Spirtes et al., 2000);
(ii) we represent the connection strengths using random
matrices; and (iii) we incorporate the network-independent
Gaussian process component. Concerning aspect (i), cyclic
models are particularly important for the analysis of biolog-
ical data in which the underlying networks typically include
reciprocal connections (e.g., connections between different
brain regions) or cycles (such as gene regulatory networks).
Such models have been explored in the previous works,
however, they differ from the current model in aspects (ii)
and (iii) mentioned above. Examples of these studies in-

clude early work of Richardson (1996) and more recent
works such as Hyttinen et al. (2012); Mooij et al. (2011)
and Hyvärinen & Smith (2013). On a different vein and
regarding aspect (ii) mentioned above, our use of random
matrices representing network structure is similar to the
model in Linderman & Adams (2014), but that model is
focused on point-process data rather than continuous-valued
observations.

With regard to aspect (iii), as observations in our model are
generated from several latent Gaussian processes, our frame-
work is related to GP latent variable models (Lawrence,
2005). However, our goal is to recover the underlying net-
work structure, instead of carrying out dimensionality re-
duction or predicting observations for the nodes. Other
models in this class can be used for causal inference (Zhang
et al., 2010; Huang et al., 2015), which are different from
our model in aspects (i) and (ii). With regard to multi-task
GP models (Bonilla et al., 2008; Rakitsch et al., 2013) and
more general frameworks for modeling vector-valued out-
puts (Wilson & Ghahramani, 2010), other approaches have
considered Bayesian inference in multi-task learning subject
to specific constraints, such as rank constrains (Koyejo &
Ghosh, 2013). However, their work is mostly focused on
dealing with the problem of high-dimensional data instead
of network discovery. Finally, unlike our work, other ap-
proaches assume a non-Gaussian additive noise (Shimizu
et al., 2006) or a nonlinear transformation of the network-
dependent component (Hoyer et al., 2009).

2. Model Specification
Given a dataset D of vector-valued observations Y =
{yi}Ni=1 and their corresponding times1 {ti}Ni=1 from N
nodes in a network, our goal is to infer the existence and
strength of the arcs between the nodes. For simplicity
in the notation, we assume that each observation yi is T -
dimensional and denote n = N × T as the total number of
observations. Let yi(t) be the output of node i at time t,

yi(t) = fi(t) + εit, εit ∼ N(0, σ2
y), (1)

where σ2
y is the observation-noise variance. To model latent

function fi, we assume that it is generated by two sources:
(i) a network-independent component, denoted by zi(t), and
(ii) a network-dependent component, i.e., a weighted sum
of the inputs received from the rest of the network:

fi(t) = zi(t) +

N∑
j=1
j 6=i

AijWij [fj(t) + ξjt] ,

zi(t) ∼ GP(0, κ(t, t′;θ)), ξjt ∼ N(0, σ2
f ),

(2)

1Although we refer to time indexes throughout this paper, the
applicability of our method is not constrained to time-series data
or one-dimensional inputs.



Variational Network Inference: Strong and Stable with Concrete Support

where Aij ∈ {0, 1} represents the existence of an arc from
node j to node i and Wij ∈ R determines the weight of
the connection from node j to node i (assuming Aii =
Wii = 0). These are elements of the adjacency matrix A
and weight matrix W, respectively, which we will refer to as
network parameters. The network-independent component
zi(t) is drawn from a Gaussian process (GP; Rasmussen
& Williams, 2006) with covariance function κ(t, t′;θ) and
hyperparameters θ.

2.1. Prior over Network Parameters

Eq. (1) defines the likelihood of our observations and eq. (2)
defines the prior over the latent functions given the network
parameters A,W. We assume these parameters are also
random variables and their prior is defined as:

p(A,W) = p(A)p(W) =
∏
ij

p(Aij)p(Wij),

p(Aij) = Bern(ρ), p(Wij) = N(0, σ2
w),

(3)

where Bern(ρ) denotes a Bernoulli distribution with param-
eter ρ. Note that defining separate priors over A and W –
as above – allows us to specify separately our beliefs about
the sparsity of the network connections and their strengths.
Furthermore, these priors can be more effective than weak-
sparsity inducing priors (Mohamed et al., 2012).

3. Inference
Our main inference task is to estimate the posterior over the
network parameters p(A,W|D). To this end, by exploit-
ing the closeness of GPs under linear operators, we will
first show in §3.1 the exact expression for the (conditional)
marginal likelihood p(Y|A,W) obtained when marginal-
izing the latent functions. Furthermore, by establishing a
relationship of our model to multi-task learning (Rakitsch
et al., 2013; Bonilla et al., 2008), we show how to compute
this marginal likelihood efficiently. Subsequently, due to the
highly nonlinear dependence of p(Y|A,W) on A,W, we
will approximate the posterior over these network parame-
ters using variational inference in §3.2.

3.1. Marginal Likelihood given Network Parameters

Let us denote the values of all latent functions fi(t) at
time t with f(t) = [f1(t), . . . , fN (t)], and similarly z(t) =
[z1(t), . . . , zN (t)]. Hence, we can rewrite eq. (2) as:

f(t) = (I−A�W)−1(z(t) + A�Wξt), (4)

where � is the Hadamard product. We refer to the model in
eq. (4) as the inverse model and its the detailed derivation
is in the supplement (§II.4). We can see now that, for fixed
A,W, the resulting distribution over fi is also a Gaussian

process. Hence, we only need to figure out the mean func-
tion and the covariance function of the resulting process.
Below we present the main results and leave the details to
the supplement (§II.4).

Let B
def
= A �W and define the following intermediate

matrices (which are a function of the network parameters):

E = (I−B)−1BBT (I−B)−T ,

Kf = (I−B)−1(I−B)−T .
(5)

Then we have that the mean function and covariance func-
tion of the latent processes are:

µi(t) = E [fi(t)] = 0,

Cov[fi(t), fj(t′)] = [Kf ]i,jκ(t, t
′;θ) + [E]i,jσ

2
f ,

(6)

where [M]i,j denotes the i, j entry of matrix M. Conse-
quently, the distribution of the noisy process yi is also a
Gaussian process. Let us assume synchronized observa-
tions, i.e. that observations for all nodes lie on a grid in
time, t = 1, . . . , T . Furthermore, let Y be the N × T ma-
trix of observations and define y = vec(Y), where vec(·)
takes the columns of the matrix argument and stacks them
into a single vector. Therefore, the log-marginal likelihood
conditioned on the network parameters is given by (⊗ is
Kronecker product):

log p(y|A,W) = −1

2
log |Σy| −

1

2
yTΣ−1

y y + C,

with Σy = Kf ⊗Kt + (σ2
fE + σ2

yI)⊗ I,
(7)

where C = −n/2 log(2π); Kt is the T × T covariance ma-
trix induced by evaluating the covariance function κ(t, t′;θ)
at all observed times; E and Kf are defined as in eq. 5; and,
as before, n = N × T is the total number observations.

3.1.1. RELATIONSHIP WITH MULTI-TASK LEARNING

Remarkably, the marginal likelihood of the model described
in eq. (7) reveals an interesting relationship with multi-task
learning when using Gaussian process priors. Indeed, it
boils down to the marginal likelihood of multi-task GP mod-
els under a product covariance (Bonilla et al., 2008; Rakitsch
et al., 2013). In our case, the nodes in the network can be
seen as the tasks in a multi-task GP model and are associ-
ated with a task-dependent covariance Kf , which is fully
determined by the parameters of the network A,W. This
contrasts with multi-task models where Kf is, in general,
a free parameter (Bonilla et al., 2008). Similarly, the input
covariance Kt is the covariance of the observation times.

Finally, conditioned on A,W, our model’s marginal likeli-
hood exhibits a more complex noise covariance σ2

fE+ σ2
yI,

which depends strongly on the network parameters. Such a
covariance structure was not studied by Bonilla et al. (2008),
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as they considered only diagonal noise-covariances. How-
ever, Rakitsch et al. (2013) did consider the more general
case of Gaussian systems with a covariance given by the
sum of two Kronecker products. In the following section,
we exploit their results in order to compute, for fixed A,W,
the marginal likelihood of our model.

3.1.2. COMPUTATIONAL EFFICIENCY

In this section we show an efficient expression for the com-
putation of the log-marginal likelihood in eq. (7). For sim-
plicity, we consider the synchronized case where all the N
nodes in the network have T observations at the same times
and, as before, we denote the total number of observations
with n = N × T . The main difficulties of computing the
log-marginal likelihood above are the calculation of the log-
determinant of an n dimensional matrix, as well as solving
an n-dimensional system of linear equations. Our goal is
to show that we never need to solve these operations on
an n-dimensional matrix, which are O(n3) but instead use
O(N3 + T 3) operations. The results in this section have
been previously shown by Rakitsch et al. (2013) for covari-
ances with a sum of two Kronecker products.

We show our derivations in the supplement (§II.5) and
present the results specific to our model here. To give some
intuition behind such derivations, the main idea is to “factor-
out” the noise matrix σ2

fE+σ2
yI from the covariance matrix

Σy and then apply properties of the Kronecker product.
Hence, given the following matrix definitions along with
their eigen-decompositions:

Ω
def
= (σ2

fE + σ2
yI) = QΩΛΩQT

Ω,

K̃f
def
= Λ

−1/2
Ω QT

ΩKfQΩΛ
−1/2
Ω = Q̃f Λ̃fQ̃

T
f ;

(8)

the log-determinant and the quadratic term in eq. (7) are

log |Σy| = T

N∑
i=1

log λ
(i)
Ω +

N∑
i=1

T∑
j=1

log(λ̃
(i)
f λ̃

(j)
t + 1),

yTΣ−1
y y = tr(ỸT Q̃tỸtfQ̃

T
f ),

(9)
where: [Ỹtf ]i,j = [Q̃T

t ỸQ̃f )]i,j/[λ̃tλ̃
T

f + 1]i,j , Ỹ =

YQΩΛ
−1/2
Ω , and Q̃tΛ̃tQ̃

T
t is the eigen-decomposition of

Kt. We see that the above computations only require the
eigen-decompositions of the N × N matrix K̃f and the
T × T matrix Kt, while avoiding matrix operations on the
whole n× n matrix of covariances Σy .

3.2. Variational Inference over Network Parameters

Having marginalized the latent functions f corresponding
to the network-independent component, our next step is
to use variational inference to approximate the true pos-
terior p(A,W|D) with a tractable family of distributions

q(A,W) that factorizes as

q(A,W) =q(A)q(W) =
∏
i,j

q(Aij)q(Wij),

i, j = 1 . . . N , and i 6= j.
(10)

Following standard variational-inference arguments, we aim
to optimize the variational objective, so-called evidence
lower-bound (Lelbo), which is given by:

Lelbo
def
= Lkl + Lell,

Lkl = −KL(q(A,W)||p(A,W)),
Lell = Eq(A,W)[log p(Y|A,W)],

(11)

where KL(q||p) denotes the Kullback-Leibler divergence
between distributions q and p, and p(A,W) is the prior over
the network-dependent parameters as defined in eq. (3).

For non-trivial models and approximate posteriors, the ex-
pectations required in the objective above are analytically
intractable. Modern variational inference methods estimate
Lelbo and its gradients using Monte Carlo samples and the
re-parameterization trick (see e.g. Kingma & Welling, 2014;
Rezende et al., 2014). Thus, we set our approximate pos-
terior over Wij as q(Wij) = N(µij , σ

2
ij), which can be

re-parameterized easily using Wij = µij + σijzw, where
zw ∼ N(0, 1). Furthermore, since the re-parameterization
trick cannot be applied to discrete distributions, we use a
continuous relaxation of discrete random variables known as
the Concrete distribution (Maddison et al., 2016; Jang et al.,
2016). In particular we set q(Aij) = Concrete(αij , λc),
and sample from it using its re-parameterization:

U ∼ Uniform(0, 1),
aij = (logαij + logU− log(1− U))/λc,
Aij = 1/(1 + exp(−aij)),

(12)

where αij are variational parameters and λc is a constant.
Analogously to Maddison et al. (2016), we also relax our
priors and estimate the log-probabilities in Lkl using:

log q(Aij) = log λc − λcaij + logαij

− 2 log(1 + exp(−λcaij + logαij)),
(13)

and similarly for p(Aij). Having relaxed our discrete vari-
ables, we proceed with optimization of the Lelbo in eq. (11)
by using Monte Carlo samples from q(W,A) to estimate
Lell. For computing KL(q(A)||p(A)) we use samples from
q(A), p(A) and their log-probabilities as defined in eq. (13).
Finally, for KL(q(W)||p(W)) we use the analytical form
for the KL-divergence between two Gaussians.

As a consequence of the relaxation of the prior and poste-
rior over A via the Concrete distribution, defining a sound
joint (dependent) distribution between A and W is quite
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challenging, which motivates the independence assumptions
made in eq. (10). However, A and W still interact in the
likelihood and these interactions are captured during varia-
tional learning.

4. Stability and Robustness
Lkl is straightforward to compute as explained in section
3.2, so the eventual stability burden relies on calculating
log p(y|W,A) in Lell using samples of W and A. At the
core of this problem lies the non-singularity of (I − B).
This problem appears in the most popular approaches as
well, sometimes as is (Shimizu et al., 2011), sometimes
coming with stronger constraints on the boundedness of
the coordinates of B (Hyvärinen & Smith, 2013) or its
eigenvalues (Linderman & Adams, 2014). Such constraints
can be related to stability issues because, when they fail
to hold, parameters diverge. What we now show is that
stability is not an issue for our model: we get it for free.

Theorem 1 For any value of the parameters of the concrete
distributions (λc ≥ 0 and αij ≥ 0 (∀i 6= j)), I −A �W
is non-singular with probability one.

Proof sketch: The proof (given in extenso in supplement,
§II.1) is non-trivial to handle the limit cases of λc = 0
or αij = 0. To understand the importance of concrete
distributions, we sketch here the case λc > 0 or αij >
0 (∀i 6= j). For any2 N ≥ 2, denote g1, g2, ..., gN the
columns of I − A �W. Each can be thought of as a
random vector where one coordinate takes value 1 with
probability 1, and this coordinate is different for each two
vectors. I−A�W is non invertible iff g1, g2, ..., gN are
linearly dependent. None of the gjs can be the null vector,
so if I − A �W is not invertible, then ∃j > 1 : gj ∈
span(g1, g2, ..., gj−1). As a consequence,

Pr(det(I−A�W) = 0)

≤
∑
j

Pr(gj ∈ span(g1, g2, ..., gj−1)) , (14)

where the distribution is the product distribution over the
columns of I−A�W. Fix any g1, g2, ..., gj−1 belonging

to the respective supports of the columns, and let qj
def
=

Pr(gj ∈ span(g1, g2, ..., gj−1)|g1, g2, ..., gj−1). It is not
hard to check that the densities of gj for j ≥ 1 are all
absolutely continuous with respect to Lebesgue measure —
a key fact, developed in supplement, authorized by the fact
that the concrete distribution in eq. (13) “passes through”
the absolute continuity of the input distribution (uniform).
Along with the fact that span(g1, g2, ..., gj−1) has strictly
positive codimension for any j ≤ N , it comes qj = 0,∀j ≥
2,∀g1, g2, ..., gj−1 fixed. Integrating over the choices of
g1, g2, ..., gj−1, we get Pr(gj ∈ span(g1, g2, ..., gj−1)) =

2Whenever N = 1, I−A�W
def
= [1] is always invertible.

0,∀j ≤ N and so Pr(det(I − A �W) = 0) = 0 from
eq. (14). As a consequence, I − A �W is non-singular
with probability one, as claimed.
Now, if say λc = 0 or some αij = 0, some atom events for
column sampling appear with non-zero probability, but the
associated determinant can be reduced to that of a squared
submatrix for which the previous analysis holds, leading to
the same result.
Given Theorem 1, the following result is not surprising.

Theorem 2 For any value of the parameters of the concrete
distributions (λc ≥ 0, αij ≥ 0 (i 6= j)), any σ2

y > 0,
|Lell| � ∞.

The complete proofs of these theorems are given in the
supplement, §II.1, §II.2.

Since we get stability for free, where other popular ap-
proaches need to make assumptions to get it, one might ask
what more we can get under assumptions that would look
alike. Such assumptions constrain the network parameters,
typically using the moments or values, eventually including
the network size (Hyvärinen & Smith, 2013; Linderman &
Adams, 2014). What we now show is that under similar
assumptions, we do not just get stability for inference, we
make it numerically easy with high probability, and this
holds for a sampling model (M) more general than ours,
meaning that one could make alternative choices to the con-
crete distributions we use and yet keep the same property:

(M ) (∀i, j) (i) weight Wij is picked as N(µij , σ
2
ij) (µij ∈

R, σij > 0), and (ii) adjacency Aij is picked as
Bern(ρij) with ρij ∼ V, where V is any random vari-
able with support in [0, 1] (letting pij

def
= E[ρij ]).

To get our result, we need two functions that aggregate the
complete network signal coming from (or to) each node,
U, S : {1, 2, ..., 2N} → R+, defined as:

U(i)
def
=

2

N
·
{ ∑

j pij(µ
2
ij + σ2

ij) if i ≤ N∑
j pji∗(µ

2
ji∗ + σ2

ji∗) otherwise ,

S(i)
def
=

1

N
·
{ ∑

j µ
2
ij + σ2

ij if i ≤ N∑
j µ

2
ji∗ + σ2

ji∗ otherwise ,

with i∗ def
= i−N . For any diagonalizable U, λ(U) denotes

its eigenspectrum, and λ↑(U)
def
= max |λ(U)|, λ↓(U)

def
=

min |λ(U)|. Let us now state our main result. We shall
comment afterwards the assumptions it makes.

Theorem 3 Fix any constants c > 0 and 0 < γ < 1 and
let λ◦

def
= (λ↓(Kt)/2) + σ2

y , λ•
def
= 2λ↑(Kt) + σ2

f + σ2
y and

g(z,y)
def
= (N/2) log z+ z‖y‖22−C, where C is defined as

in (7). Under sampling model M , suppose that

max
i
U(i) ∈

[
maxi S(i)

Nγ
,

1

100N2

]
. (15)
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If N is larger than some constant depending on c and γ,
then with probability ≥ 1− 1/N c, we have:

− log p(y|W,A) ∈ [g(λ◦,y), g(λ•,y)] ,∀y .(16)

Hence, if the non-network dependent “signal” is not flat (say,
λ↓(Kt), σ2

y are above machine zero), then it is in fact pretty
easy to sample Lell over most of its support. As discussed in
the supplement, the constraint of eq. (15) can be weakened
for specific Vs (e.g. for more “informative” distributions).
We also remark that we do not face the sparsity constraints
of the model of Linderman & Adams (2014), such as a
mandatory sparsity increase with N .

Theorem 3 is a direct consequence of another Theorem
which can be roughly summarized as:

"modulo an assumption on the network-dependent
parameters, the covariance of observations is of the same

order as the (co)variance of the network independent
component plus that of the noise."

In short, there is a form of robustness (in the statistical
sense) achieved on the output with respect to the network-
dependent parameters. This can also be viewed as a bal-
ance achieved on the second-order moments, between the
network-dependent “signal” versus the one which is not
network-dependent. We put signal in quotes since the rest
includes the noise parameters.
Theorem 4 Under the conditions of Theorem 3, with prob-
ability ≥ 1 − (1/N c) over the sampling of W and A, we
have that λ(Σy) ⊂ [λ◦, λ•].
(Proof in supplement, §II.3.) It is not hard to check that
eq. (16) is a direct consequence of Theorem 4. Let us finally
comment those assumptions on the network-dependent pa-
rameters made in eq. (15). To be nonempty, the interval
puts the implicit constraint that maxi S(i) = O(1/N ζ) for
some constant ζ, i.e. roughly, the expected square signal
(node-wise) has to be bounded. Such a bound in the signal’s
values can be found in Hyvärinen & Smith (2013). Consider
now the upperbound in eq. (15). It is quantitatively not so
different from Linderman & Adams (2014)’s assumptions.
They consider two assumptions, the first of which being3

σ2 ≤ 1

N
, (17)

and also pick network parameters µ, σ in such a way that
large deviations for edge weights are controlled with high
probability, with a condition that roughly looks like:

µ2 +
c

N2
· σ2 = O

(
1

N2

)
, (18)

for some constant c > 0. The constraint put on the maxi-
mum node-wise network signal in eq. (15) is in fact quite
similar to the constraints imposed by eqs. (17) and (18).

3We consider variances for the assumption to rely on the same
scales as ours.

Summary of theoretical results and consequences:
“Stability”, as used in various works, takes on two forms,
describing either the stability of the model (Linderman &
Adams, 2014; Shimizu et al., 2006) or the numerical sta-
bility of the learning algorithm (Shimizu et al., 2011). Our
results contribute to both: while Theorems 1 and 2 are es-
sentially numerical stability results, the robustness result of
Theorem 4 is a model stability result, since it bounds the
overall model’s signal as a function of the external signal to
the network. Theorem 3 lies in between, but its key purpose
may be more practical. It says that one can approximate
some key variational inference parameters with high prob-
ability, which can therefore save time at the expense of an
affordable approximation.

5. Experiments
We evaluate our approach on three distinct domains: dis-
covering brain functional connectivity (BRAIN), modeling
property prices in Sydney (SYDNEY) and regulation in the
yeast genome (YEAST). We considered the methods used
recently by Peters et al. (2014) as baselines for comparison.
These include: (1) PC algorithm (Spirtes et al., 2000); (2)
Conservative PC algorithm (CPC, Ramse et al., 2006); and
(3) LiNGAM (Shimizu et al., 2006). In addition to the above,
we considered (4) IAMB (Tsamardinos et al., 2003), and
(5) Pairwise LiNGAM (PW-LINGAM, Hyvärinen & Smith,
2013), which is a cyclic model and has been developed
specifically for discovering connectivity between different
brain regions. For the reasons detailed in the supplement
(§III), other methods used in Peters et al. (2014) were not ap-
plicable to the datasets analyzed here. We used the squared
exponential covariance function. For more details of the
baseline methods, prior setting and optimization specifics
see the supplement, §III. Given the posterior distribution
q(Aij), the posterior probability of existence of a connec-
tion from node j to i was calculated as αij/(1 + αij).

5.1. BRAIN Domain

Here we want to discover the connectivity between different
brain regions, which is a crucial element of neuroscience
studies. We analyzed the benchmarks of Smith et al. (2011),
in which the activity of different brain regions is simulated
for 50 subjects at 200 time points (T = 200) for networks
with a different number of nodes (N = 5, 10, 15). The true
underlying network connectivities are reported in Smith
et al. (2011), which we used to calculate the area under the
ROC curve (AUC) for the links predicted for each subject.
Ground-truth data includes whether there is a connection
(edge) from node i to j (directional; “positive” is when there
is a connection), which were used to calculate true/false pos-
itive rates by varying the discrimination threshold (see the
supplement, §III.2, for details). As it is not possible to de-
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Figure 1. (a) AUC values (the higher the better) on BRAIN, com-
puted using the networks in Smith et al. (2011) as the ground truth.
(b) Results on SYDNEY using the air distance as a measure of
spatial coherence (the lower the distance the better) between the
connections discovered by each method. (c) Results on SYDNEY

using the proportion of the networks in which a discovered arc
is present (r) as a measure of temporal stability (the higher the
better). The shaded area represents r statistically > 0 (risk α =
0.05). LiNGAM was unable to perform inference on BRAIN (a) for
T = 50 and on SYDNEY (b and c).

fine comparable discriminative thresholds across different
methods, using the AUC avoids the selection of a single
threshold altogether. We note that the underlying network is
a directed acyclic graph (DAG); however networks discov-
ered by LATNET are not restricted to DAGs, and therefore
baseline methods assuming the underlying network is a
DAG have a favorable bias.

Figure 1(a) shows the AUC of each method (for N = 15)
using box-plots (top and bottom edges of the box correspond
to the first and third quartiles respectively). Results for
N = 5, 10 are given in the supplement (§III.2). In the case
of LATNET, we used the posterior uncertainties around the
predicted connections and their strengths to determine the

discriminative thresholds for the AUC calculations. We see
that, although other methods are favorably biased about the
underlying structure, LATNET consistently outperforms all
the baseline methods.

5.2. SYDNEY Domain

Here we aim to discover the relationship between property
prices in different suburbs of Sydney. The data include
quarterly median sale prices for 51 suburbs in Sydney and
surrounding area from 1995 to 2014. Since the underlying
network is unknown, we cannot compute the AUC and in-
stead use two other performance measures concerned with
spatial coherence and temporal stability. For this purpose,
we compute the air distance between the suburbs that are dis-
covered to be connected (the shorter the better) and the pro-
portion (r) of networks in which a connection was present
(for each discovered connection) when our method is ap-
plied to different time windows (the higher the better). We
set the discrimination threshold for each method so that on
average each method finds 17-19 edges in the network.

Figure 1(b) shows the air distance between the connected
nodes discovered by each method. The average distance
by LATNET is 21km, which is almost half of the aver-
age distance by the other methods (CPC:38km, PC:40km,
IAMB:43km, PW-LINGAM:60km; p-values < 0.001 for all
t-tests between arc distances in LATNET and each of the com-
petitors). Therefore, the networks discovered by LATNET
are more spatially coherent than the baselines’. Similarly,
Figure 1(c) shows the r values for the different methods.
Less than 8%, 5%, 1% of PC, CPC and IAMB arcs were sig-
nificant (risk α = 0.05), respectively, while more than 29%
of LATNET arcs are significant. Interestingly, PW-LINGAM
did not find any significant arcs. We then conclude that tem-
poral stability of the connections discovered by LATNET is
significantly better than all the baseline methods. Additional
details and results can be found in the supplement (§III.5).

5.3. YEAST Domain

We use LATNET to infer local and global genome regulation
patterns for one extensively studied species, Saccharomyces
cerevisiae (Spellman et al., 1998). This represents 100,000+
data points and a network with up to 38,000,000+ arcs. The
true underlying network is unknown but there is extensive lit-
erature about its major features. Here we take as references
the cell cycle transcriptionally regulated genes (Rowicka
et al., 2007) and http://www.yeastgenome.org as a more gen-
eral resource. For space reasons, we summarize experiments
here, and leave to the supplement their exhaustive treatment.

Analysis of the sentinels of the yeast cell cycle (YCC),
which represents ≈ tenth of the network (Spellman et al.,
1998). We extracted key genes and connections discovered
by LATNET based on a subset of strong arcs. Figure 2 (left)
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Figure 2. Results on YEAST using LATNET (best viewed in color). Left: subgraph Gw containing all strong arcs; plain rectangles
(vs dashed): reported (vs unreported) cell cycle transcriptionally regulated genes (Rowicka et al., 2007); thick arcs = topmost strong
arcs; black arcs (resp red arcs): µ > 0 (resp. µ < 0); red disk: chromosome number; in blue: gene with no known biological
process/function/compartment; Center: manifold learned from strong arcs, displayed in Klein disk (conformal). Strong arcs in blue
segments; only most important gene names shown; pink rectangle: area with comparatively few strong arcs; Right: network aggregating
strong arcs discovered for the YCC, between cell cycle phases.

summarizes the results. We observe that (i) in terms of
nodes, the key discovered genes are known to be involved in
the cell structure dynamics. Strikingly, although SFG1 is not
among the reported key genes, it happened to be neighbors
of SPS4 (a key gene) on the same chromosome, and there-
fore it is likely to be part of the network and can be targeted
for future investigations. (ii) In terms of the connections, the
topmost strong arcs belong to a small connected component
(Gw) that are asymmetrically organized around gene WSC4,
which is consistent with the fact that the underlying network
should be directed.

We then aimed to obtain a broader network map without
filtering arcs. Figure 2 (center) shows the manifold coordi-
nates induced by the network’s graph, built upon Meila &
Shi (2001). With such a technique, clusters of genes that are
“significantly far” from each other should represent different
key network structure components. In our case, it is evident
that there is a “crowd versus the rest of the crowd” struc-
ture, and this rest of the crowd gathers almost only heavily
regulated genes, that is, genes that are known to be heavily
connected in the true network. It is therefore apparent that
LATNET has succeeded in recovering a prominent network
structure around such genes. Consistent with the literature,
a small number of key genes drive the coordinates. Last,
Figure 2 (right) summarizes the broad picture of strong arcs
between YCC phases: it should come at no surprise that cell
splitting, (M)itosis, has the largest number of these arcs.

Analysis of the full genome (results in supplement, III.4).
A successful technique should recover three essential fea-
tures of the complete network, from local to global: (i) the
fact that it is locally highly asymmetric by nature, with a
small number of direct feedbacks relatively to the genome

size; (ii) the fact that key sub-networks like YCC should
still be in the top rank of the global network and (iii) known
connected sub-networks should still appear with as little
noise as possible brought by the overall network. LATNET
clearly succeeds at (i), with more than twice strong arcs
going outside the YCC compared to arcs coming in the
YCC from non-YCC genes. LATNET is also good at (ii), and
we see that YCC genes tend to be outnumbered by genes
that are perhaps more “all-purpose” but still supposed to
be involved in heavy regulation mechanisms, which makes
sense. The most prominent result is perhaps on (iii): the
predominance of gap phase G1 compared to G2 that we
still observe with all genes hints on the yeast species from
which our data comes from: this is a indeed a known feature
of Saccharomyces cerevisiae, versus other species like S.
pombe for example. None of these patterns, in particular (ii)
and (iii), were discovered using the baseline methods.

6. Conclusion & Discussion
We have proposed a Bayesian framework for network struc-
ture discovery for continuous-valued observations; devel-
oped an efficient inference algorithm for it; and shown its
benefits on real applications. Our theoretical analysis shows
that the traditional constraints for stability (Hyvärinen &
Smith, 2013; Linderman & Adams, 2014; Shimizu et al.,
2006) in networks are alleviated. What we get with such
assumptions is a non-negligible uplift in the easiness of the
expected log-likelihood part, the bottleneck of the ELBO,
and a robustness of the output’s variance with respect to the
network parameters. These results also hold for a class of
posteriors broader than the ones we use, opening interesting
avenues of applications for Concrete distributions.
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