
Modeling Sparse Deviations for Compressed Sensing using Generative Models

A. Proofs of theoretical results
A.1. Lemma 1

To account for measurement noise in our analysis, we define the ε-tube set T of a matrix A as,

TA(ε) = {w : ‖Aw‖2 ≤ ε}.

Note that in the absence of noise, TA(0) corresponds to the nullspace of A. Next, we define a difference function,
G′ : Rk × Rk → Rn such that G′(z1, z2) = G(z1) − G(z2). Consequently, we obtain a difference set Sl,G′ as the
Minkowski sum of Sl(0) (the space of l sparse vectors) and range of G′,

Sl,G′ = ∪z1,z2Sl(G′(z1, z2)).

This allows us to define σl,G′(x) as,
σSl,G′ (x) = inf

x̂∈Sl,G′
‖x− x̂‖1.

Now, in order to prove Lemma 1, we state and derive a couple of lemmas. The proofs of the next two Lemmas (3 and 4) are
modeled along the theory developed in Cohen et al. (2009) for the sensing of l-sparse vectors. We extend it to the case of
Sl,G. Lemma 3 encodes the idea that for sensing to be successful any two points in Sl,G should not be very close when acted
upon by the measurement map A. This can be equivalently stated as requiring that any point in the nullspace of A should
not be approximated very well by points in S2l,G′ . Because we are working with bounded noise we need these results on
the tube TA(2ε), instead of just the nullspace. A point of interest is that informally the next lemma provides a sufficient
condition for a good decoder to exist and also provides a different set of similar necessary conditions for good decoding.

Lemma 3. Given a measurement matrix A ∈ Rm×n, measurement noise ε such that ‖ε‖2 ≤ εmax, and a generative model
function G : Rk → Rn we want a decoder ∆ : Rm → Rn which provides the following (`2, `1)-mixed norm approximation
guarantee on the set of l-sparse vectors Sl,

‖x−∆(Ax+ ε)‖2 ≤ C0l
−tσl,G(x) + C1εmax + δ

for some constants C0, δ, t ≥ 0.

The sufficient condition for such a decoder to exist is given by,

‖η‖2 ≤
C0

2
l−tσ2l,G′(η) + C1εmax + δ, ∀η ∈ TA(2εmax).

We call this the (`2, `1)-mixed norm null space property.

A necessary condition for the same follows,

‖η‖2 ≤ C0l
−tσ2l,G′(η) + 2C1εmax + 2δ, ∀η ∈ TA(εmax).

Proof. To prove the sufficiency of the null space condition, we define a decoder ∆ : Rm → Rn as follows,

∆(y) = arg min
x:‖Ax−y‖2≤εmax

σl,G(x).

We will prove this decoder satisfies the mixed norm guarantee given the (`2, `1)-mixed norm null space property. Using the
definition of ∆, we have,

‖A(x−∆(Ax+ ε))‖2 ≤ ‖Ax+ ε−A∆(Ax+ ε))‖2 + εmax ≤ 2εmax.

This implies x−∆(Ax+ ε) ∈ TA(2εmax). Combining with the mixed norm guarantee, we have,

‖x−∆(Ax+ ε)‖2 − δ − C1εmax ≤
C0

2
l−tσ2l,G′(x−∆(Ax+ ε))

≤ C0

2
l−t(σl,G(x) + σl,G(∆(Ax+ ε)))

≤ C0l
−tσl,G(x).
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The second last step follows from the triangle inequality whereby σ2l,G′(x+ y) ≤ σl,G(x) + σl,G(y) and the last step uses
the fact that the decoder is the minimizer of σl,G(x).

For the necessary condition, consider any decoder ∆ which provides the needed guarantee. Consider η ∈ TA(εmax) and
now pick z0, z1 ∈ Rk, η0 ∈ S2l such that the following inequality is satisfied,

‖η − (G(z0)−G(z1) + η0)‖1 − ε′ ≤ σ2l,G′(η), (13)

where ε′ > 0. We can find a z0, z1, η0 for any arbitrarily small and positive ε′. This is the case because we have,

σ2l,G′(η) = inf
η̂∈S2l,G′

‖η − η̂‖1 = inf
ẑ0,ẑ1∈Rk,η̂0∈S2l

‖η − (G(ẑ0)−G(ẑ1) + η̂0)‖1,

which we obtain by parameterizing η̂ ∈ S2l,G′ as η̂ = G(ẑ0)−G(ẑ1) + η̂0 for ẑ0, ẑ1 ∈ Rk, η̂0 ∈ S2l. We cannot necessarily
find z0, z1, η0 such that ε′ = 0 because S2l,G′ may not be a closed set. For convenience, we letG0 = G(z0) andG1 = G(z1)
which means G′(z0, z1) = G(z0) − G(z1) = G0 − G1. We can split η0 as η0 = η1 + η2 for some η1, η2 ∈ Sl, and for
convenience define η3 = η − η0 −G0 +G1. Note, we can now rewrite (13) as,

‖η3‖1 ≤ σ2l,G′(η) + ε′. (14)

Since G0 + η1 ∈ Sl,G, we have σl,G(G0 + η1) = 0. This simplifies the (`2, `1)-mixed norm guarantee of our decoder when
applied to G0 + η1,

‖G0 + η1 −∆(A(G0 + η1))‖2 ≤ δ + C1εmax. (15)

Plugging in all the above, we have:

‖η‖2 = ‖η2 + η1 + η3 +G0 −G1‖2
≤ ‖η1 +G0 −∆(A(η1 +G0))‖2 + ‖η3 + η2 −G1 + ∆(A(η1 +G0))‖2
≤ δ + C1εmax + ‖ − η3 − η2 +G1 −∆(Aη +A(G1 − η2 − η3))‖2 (from Eq. (15))

≤ 2δ + 2C1εmax + C0l
−tσl,G(G1 − η2 − η3) (since η ∈ TA(εmax) and the (`2, `1)-guarantee)

≤ 2δ + 2C1εmax + C0l
−t‖η3‖1

= C0l
−tσ2l,G′(η) + 2δ + 2C1εmax + C0l

−tε′. (from Eq. (14))

As we can make ε′ arbitrarily small we can make it tend to 0 providing us with the required result.

The next lemma basically shows that if A satisfies the S-REC and RIP conditions then we operate in the constraint regime
required by the previous lemma.

Lemma 4. If the measurement matrix A ∈ Rm×n satisfies S-REC(S(a+b)l/2,G′ , 1 − α, δ) and RIP(bl, α) for integers
a, b, l > 0 and function G : Rk → Rm, then we have for any vector η ∈ TA(ε),

‖η‖2 ≤ (bl)−1/2(C0 + 1)σal,G′(η) + C1ε+ δ′

where C0 = (1− α)−1(1 + α), C1 = (1− α)−1, δ′ = δ(1− α)−1.

Proof. For any choice of η ∈ TA(ε) and G(z1), G(z2), let ν ∈ Sal be the minimizer of ‖η−G(z1) +G(z2)− ν‖1. We can
find this ν because Sal is closed, concretely we can construct this ν by taking a n dimensional vector which has everything
but the top al magnitude components in η −G(z1) +G(z2) zeroed out. As the choice of G(z1) and G(z2) is arbitrary, it
suffices to prove the statement for ‖η −G(z1) +G(z2)− ν‖1 (instead of σal,G′(η)).

Given a set of indices I for a n dimensional vector we use Ic to denote the set of indices not in I. Now note that ν
corresponds to the al largest coordinates of η′ = η −G(z1) +G(z2). Let the indices corresponding to those coordinates
be T0. We take T1 to be the indices of the next bl (and not al) largest coordinates. Similarly, define T2, . . . , Ts to be
subsequent indices for the next bl largest coordinates. The final set Ts can contain indices of less than bl coordinates. Let
T0 ∪ T1 = T . We will use xI to denote the vector obtained by zeroing out values in x for all indices in the set Ic. We can
write ηT + (G(z1)−G(z2))T c as ηT − (G(z1)−G(z2))T + (G(z1)−G(z2)) where ηT , (G(z1)−G(z2))T ∈ S(a+b)l.
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We can write ηT +(G(z1)−G(z2))T as s1−s2 where s1, s2 ∈ S(a+b)l/2. This allows us to write ηT +(G(z1)−G(z2))T c

as G(z1) + s1 − (G(z2) + s2) where G(z1) + s1, G(z2) + s2 ∈ S(a+b)l/2,G′ . Now we use the fact that A satisfies
S-REC(S(a+b)l/2,G′ ) to get,

‖ηT + (G(z1)−G(z2))T c‖2 = ‖G(z1) + s1 − (G(z2) + s2)‖2
≤ (1− α)−1‖A(G(z1) + s1 − (G(z2) + s2))‖2 + (1− α)−1δ (using S-REC)

≤ (1− α)−1‖A(ηT + (G(z1)−G(z2))T c)‖2 + (1− α)−1δ. (16)

We can write η = ηT + ηT2 + ... + ηTs . As η ∈ TA(ε) we can write AηT = −A(ηT2 + ... + ηTs) + γ where ‖γ‖2 ≤ ε.
Hence,

‖A(ηT + (G(z1)−G(z2))T c)‖2 = ‖A((η −G(z1) +G(z2))T2 + ..+ (η −G(z1) +G(z2))Ts)− γ‖2
= ‖Aη′T2 + ...+Aη′Ts − γ‖2

≤
s∑
j=2

‖Aη′Tj‖2 + ‖γ‖2

≤ (1 + α)

s∑
j=2

‖η′Tj‖2 + ε. (using RIP)

(17)

From Eq. (16) and Eq. (17), we get,

‖ηT + (G(z1)−G(z2))T c‖2 − δ′ ≤ (1− α)−1(1 + α)

s∑
j=2

‖η′Tj
‖2 + (1− α)−1ε.

Adding ‖η′T c‖2 on both sides and applying the triangle inequality, we get,

‖η‖2 ≤ ‖ηT + (G(z1)−G(z2))T c‖2 + ‖η′T c‖2

≤ ((1− α)−1(1 + α) + 1)

s∑
j=2

‖η′Tj‖2 + δ′ + C1ε. (18)

For any i ≥ 1, j1 ∈ Ti+1 ,and j2 ∈ Ti we have |η′j1 | ≤ |η
′
j2
| which in turn implies that |η′j1 | ≤ (bl)−1‖η′Ti‖1. Squaring and

adding the inequalities for all such indices in Ti and Ti+1, we get,

‖η′i+1‖2 ≤ (bl)−1/2‖η′i‖1.

Substituting the result we obtained above in Eq. (18), we get,

‖η‖2 − δ′ − C1ε ≤ (bl)−1/2((1− α)−1(1 + α) + 1)

s∑
j=1

‖η′Tj‖1 = (bl)−1/2(C0 + 1)‖η′T c
0
‖1

finishing the proof.

Lemma 1 follows directly from Lemma 3 and Lemma 4 after substituting a = 1 and b = 2.

A.2. Lemma 2

Recall that random Gaussian matrices satisfy RIP and S-REC properties with high probability (Candès & Tao, 2005; Bora
et al., 2017). For completeness and notation, we restate these facts before proving Lemma 2.

Fact 1. Let A ∈ Rm×n be a random Gaussian matrix with each entry sampled i.i.d. from N (0, 1/m). α ∈ (0, 1). For

m = O

(
l

α2
log(n/l)

)
,

A satisfies RIP(l, α) with probability at least 1− e−Ω(α2m).
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Fact 2. Let A ∈ Rm×n be a random Gaussian matrix with each entry sampled i.i.d. from N (0, 1/m). Let G : Rk → Rn
be an L-Lipschitz function and define Bk(r) = {z : ‖z‖2 ≤ r} to be the `2 norm ball. For

m = O

(
k

α2
log

(
Lr

δ

))
,

A satisfies S-REC(G(Bk(r)), 1− α, δ) with probability at least 1− e−Ω(α2m).

Note the proofs of the next two results basically involve small modifications in the proofs presented in Bora et al. (2017) at a
few key places to extend them from the setting of the range of the generative model G to the set Sl,G.

Proof. We will use the mathematical constructs of ε-nets for proving the lemma. Let M be a δ/L-net for Bk(r). Then there
exists a net such that,

log(|M |) ≤ k log

(
Lr

δ

)
.

As this net is δ/L-cover for Bk(r), we will have that G(M) is a δ-cover of G(Bk(r)).

For any two points z1, z2 ∈ Bk(r) we can find points z′1, z
′
2 ∈M such that distance in `2 norm between G(z1) and G(z′1)

is less than δ (similarly for G(z2) and G(z′2)). Now consider some set of indices I of size l and ν be an l-sparse vector with
support I (that is all elements outside the indices in I are zero). Using the triangle inequality, we get,

‖G(z1)−G(z2) + ν‖2 ≤ ‖G(z1)−G(z′1)‖2 + ‖G(z′1)−G(z′2) + ν‖2 + ‖G(z′2)−G(z2)‖2
≤ ‖G(z′1)−G(z′2) + ν‖2 + 2δ.

Again using the triangle inequality, we have,

‖AG(z′1)−AG(z′2) +Aν‖2 ≤ ‖AG(z′1)−AG(z1)‖2 + ‖AG(z1)−AG(z2) +Aν‖2 + ‖AG(z2)−AG(z′2)‖2.

From Lemma 8.3 in Bora et al. (2017), we have ‖AG(z′1)−AG(z2)‖2 = O(δ), and ‖AG(z2)−AG(z′2)‖2 = O(δ) with
probability 1− e−Ω(m). Applying this to the previous inequality gives us,

‖AG(z′1)−AG(z′2) +Aν‖2 ≤ ‖AG(z1)−AG(z2) +Aν‖2 +O(δ).

We note for fixed z′1, z
′
2 and ν varying over points with support I , G(z′1)−G(z′2) + ν lie in a subspace of size at most l + 1

(i.e., the subspace generated by G(z′1) − G(z′2) and the basis for the subspace with support I). Using the machinery of
oblivious subspace embeddings, we get,

(1− α)‖G(z′1)−G(z′2) + ν‖2 ≤ ‖AG(z′1)−AG(z′2) +Aν‖2

will hold with probability 1− e−Ω(α2m) when m = O(l/α2). We take a union bound over all choices of z′1, z
′
2 and choices

of I (choosing l indices from n). Let the number of choices be N . Using the simple bound
(
n
l

)
≤
(
ne
l

)l
we have:

log(N) ≤ 2 log(|M |) + l log
(en
l

)
≤ 2k log

(
Lr

δ

)
+ l log

(en
l

)
.

Now we conclude when,

m = O
( 1

α2

(
k log

(
Lr

δ

)
+ l log

(n
l

)))
,

the following holds with probability 1− e−Ω(α2m) for all z1, z2 ∈ Bk(r) and ν ∈ Sl (the set of l-sparse vectors),

(1− α)‖G(z1)−G(z2) + ν‖2 ≤ ‖A(G(z1)−G(z2) + ν)‖2 +O(δ).

The O(δ) can be scaled so that we just have δ there and that would not affect the bound on m in the form it is stated.

Finally, we note that Theorem 1 follows directly from the statements of Lemma 1 and Lemma 2.
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A.3. Theorem 2

We first restate the full statement of Theorem 2 for completeness:
Theorem 2. (restated) Let G : Rk → Rn be a neural network of depth d. For any α ∈ (0, 1), l > 0, let A ∈ Rm×n be a
random Gaussian matrix with

m = O
( 1

α2

(
(k + l)d log c+ (k + l) log(n/l)

))
.

rows of i.i.d. entries scaled such that Ai,j ∼ N(0, 1/m). Let ∆ be the decoder satisfying Lemma 1. Then, we have with
1− e−Ω(α2m) probability,

‖x−∆(Ax+ ε)‖2 ≤ (2l)−1/2C0σl,G(x) + C1εmax + δ′

for all x ∈ Rn, ‖ε‖2 ≤ εmax, where C0 = 2((1 + α)(1− α)−1 + 1), C1 = 2(1− α)−1, and δ′ = δ(1− α)−1.

The proof technique for Corollary 2 is closely related to Matouek (2002) and Bora et al. (2017). We provide a geometrical
proof sketch and refer the reader to the above works for further details.

Proof. Each individual layer of a neural network function G consists of at most c hyperplanes and the ReLU unit gets
activated whenever the input of the previous layer crosses these hyperplanes. This implies that the partitions made by the
hyperplanes on the input space of the previous layer describe regions where the function is defined by single matrix. From
Lemma 8.3 of Bora et al. (2017), the number of such partitions is at most O(ck). Hence, the total number of partitions from
the output space to the input space across d-layers will be O(ckd). Consequently, the range of G will be a union of O(ckd)
possibly truncated faces of dimension k in Rn.

Now if we consider the Minkowski sum Sl,G, then we observe that this set will be a union of O(ckd(n/l)l) possibly
truncated face of dimension k + l. Consider any two faces in Sl,G. The space defined by the difference of vectors (one from
each face) will be part of a subspace of size 2k + 2l + 1. This is because each face can be parameterized as v0 +

∑
tibi

where v0 is fixed, bi is a basis for this face, and ti are the parameters. Hence the difference of two faces will have the same
parametrization with at most 2k+ 2l basis vectors and a fixed point. Adding the fixed point to the basis gives us the required
subspace.

Finally, we use oblivious subspace embeddings to note that a random Gaussian matrix A with each entry sampled from
N (0, 1/m) leads to a subspace emebedding with distortion α with a probability of 1− e−Ω(α2m) for m = O((k + l)/α2).
Since there areO(ckd(n/l)l) such faces we take a union bound over all pairs of them to see thatA satisfies S-REC(Sl,G, (1−
α)−1, 0) with probability 1− c2kd(n/l)2le−Ω(α2m). This implies that if we have,

m = O

(
1

α2

(
(k + l)(d log c+ log(n/l))

))
then A satisfies S-REC(Sl,G, (1− α)−1, 0) with probability 1− e−Ω(α2m) finishing the proof.

B. Architectures and hyperparameter details
For both the MNIST and Omniglot dataset, the network architecture was fixed to 784 − 500 − 500 − 20 for both the
generative network and the inference network (except for the final layer of the inference network which has 40 units since
both the mean and the variance of the Gaussian variational posterior are learned). Learning is done using Adam (Kingma &
Ba, 2015) with a learning rate of 0.001.

For LASSO-based recovery the signal recovery algorithms/libraries were from CVXOPT (Andersen et al., 2013). The
Adam (Kingma & Ba, 2015) implementations in Tensorflow (Abadi et al., 2016) was used for generative model-based
recovery and Sparse-Gen recovery. The step sizes were selected by evaluating different step sizes via grid search over a
held-out validation set (distinct from the held-out test set for which the scores are reported). The recovery procedure was run
10 times each for the generative model based method and the Sparse-gen method, the value with the smallest measurement
error is then returned.

C. Additional results for CelebA dataset
For the CelebA dataset, we train models based on the DCGAN (Radford et al., 2015) architecture using adversarial training.
As natural images are not sparse in the standard basis, we use basis vectors obtained from wavelets and discrete cosine
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(a) CelebA - `1
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(b) CelebA - `2
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Figure 5. Reconstruction error in terms of `1 (left), `2 (center), and `∞ (right) norms for the CelebA datasets. The performance of
Sparse-DCGAN is competitive with DCAN for low measurements and it matches Lasso at high measurements as expected.

transform for LASSO and Sparse-Gen (called Sparse-DCGAN here). The graphs show that the trends are similar to the
MNIST and Omniglot experiments. Sparse-DCGAN shows comparable performance to DCGAN for low measurements and
does better than LASSO and DCGAN as the number of measurements increase. The wavelet basis works better than the
DCT basis for Sparse-DCGAN.


