
Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Supplementary Material for Leveraging
Well-Conditioned Bases: Streaming and
Distributed Summaries in Minkowski
p-Norms

A. Proofs for Section 3
Lemma A.1. Denote the ith global leverage score of A by
wi and its associated local leverage score in a block of input
A be denoted ŵk. Then wi/poly(d) ≤ ŵk. In particular,
wi/(dα

pβ) ≤ ŵk.

Proof of Lemma A.1. Let U = AR. Recall that wi =
‖eTi AR‖pp. Then for some coordinate j we must have
|eTi ARej |p ≥ wi/d. Taking x = ej we see that

|(ARx)i|p ≥
wi
d
. (2)

However, Fact 1 implies :

‖ARx‖pp ≤ ‖AR‖pp ≤ αp ≤ poly(d). (3)

Hence, there exists a y ∈ col(A) with y = ARx such that
|yi|p ≥ wi/d from Equation (2). Also, ‖y‖pp ≤ αp from
Equation (3). Thus,

|yi|p
‖y‖pp

≥ |yi|
p

αp
(4)

≥ wi
dαp

(5)

≥ wi
poly(d)

. (6)

From this we see;

wi ≤
|yi|pdαp
‖y‖pp

. (7)

Now, let B be a block of rows from A. We manipulate
B by considering it either as an individual matrix or as a
coordinate subspace of A; i.e all rows are zero except for
those contained in B which will be denoted by Â. Define
ŷ = ÂRx. Then ŷj′ = yj′ when j′ is a row from B and
ŷj′ = 0 otherwise. Thus, ‖ŷ‖pp ≤ ‖y‖pp and:

wi ≤
|yi|pdαp
‖ŷ‖pp

. (8)

For rows i which are also found in B (indexed as k) we see
that |ŷk|p = |yi|p. So, for such indices, using Equations (7)
and (8):

wi ≤
|ŷk|pdαp
‖ŷ‖pp

. (9)

Since ŷ is the restriction of y to coordinates of B we
can write ŷ = BR̂x̂ where BR̂ is well-conditioned. Let
ŵk = ‖eTkBR̂‖pp be the kth local leverage score in B. By
applying the same argument as in Fact 2 it can be shown
that |ŷk|p/‖ŷ‖pp ≤ poly(d)ŵk. Indeed,

|ŷk|p = |(ÂR̂x̂)k|p (10)

≤ ‖eTk ÂR̂‖pp‖x̂‖pq by Hölder’s inequality (11)

≤ ŵkβ‖BR̂x̂‖pp (12)

≤ βŵk‖ŷ‖pp. (13)

The second inequality uses condition 2 from Theorem 2.1
and the fact thatBR̂ is a well-conditioned basis. Then using
Equation 9, the following then proves the latter claim of the
lemma:

wi
dαp

≤ |ŷk|
p

‖ŷ‖pp
≤ βŵk.

Finally, Theorem 2.2 states that β is at most poly(d) which
proves the result.

Lemma A.2. All global leverage scores above a thresh-
old can be found by computing local leverage scores and
increasing the space complexity by a poly(d) factor.

Proof of Lemma A.2. First we determine the space nec-
essary to find all leverage scores exceeding δ. Let I =
{i : wi > δ}. Then αp ≥ ∑n

i=1 wi ≥
∑
i∈I wi ≥ δ|I|

by arguing as in Fact 1 Hence, the space necessary is
|I| ≤ αp/δ. Now focus on finding these rows in the stream-
ing fashion. By Lemma A.1 we see that for rows k in the
block which is stored from the stream we have the prop-
erty that wi/dαpβ ≤ ŵk. Hence, any wi > δ results in
ŵk > δ/dαpβ for the local thresholding. So to keep all
such wi > δ, we must store all ŵk > δ/dαpβ = δ̂. Argu-
ing similarly as in Fact 1 again define Î = {k : ŵk > δ̂}
so that: αp ≥ ∑

k ŵk ≥
∑
k∈Î ŵk ≥ δ̂|Î|. Hence

|Î| ≤ αp/δ̂ = dα2pβ/δ. That is, |Î| ≤ dβαp · |I| which
proves the claim as Theorem 2.2 states that all of the param-
eters are poly(d).

Proof of Theorem 3.3. We claim that the output of Algo-
rithm 1 is a matrix B which contains rows of high leverage
in A. The algorithm initially reads in b rows and inserts
these to matrix A′. A well-conditioned basis U for A′ is
then computed using Theorem 2.2 and incurs the associ-
ated O(bd2 + bd5 log b) time. The matrix U and A′ are
passed to Algorithm 2 whereby if a row i in U has local
leverage exceeding τ then row i of A′ is kept. There are at
most poly(d)/τ of these rows as seen in Lemma A.2 and
the space required is poly(d) by the same lemma. So on
the first call to Algorithm 2 a matrix is returned with rows

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

whose `p local leverage satisfies wi/poly(d) ≤ ŵi (where
wi is the global leverage score and ŵi is the associated local
leverage score) and only those exceeding τ/ poly(d) are
kept.

The algorithm proceeds by repeating this process on a new
set of rows from A and an improved matrix B which con-
tains high leverage rows from A already found. Proceeding
inductively, we see that when Algorithm 2 is called with
matrix [A′;B] then a well-conditioned basis U is computed.
Again [A′;B]i is kept if and only if the local leverage score
from U , wi(U) > τ . By Lemma A.2 this requires poly(d)
space and the local leverage score is at least a 1/poly(d) fac-
tor as large as the global leverage score by Lemma A.1. Re-
peating over all blocks B in A, only the rows of high lever-
age are kept. Any row of leverage smaller than τ/poly(d)
is ignored so this is the additive error incurred.

B. Proofs for Section 4
Algorithm and Discussion

The pseudocode for the first level of the tree structure of the
deterministic `p subspace embedding described in Section 4
is given in Algorithm 3. We use the following notation: m is
a counter to index the block of input currently held, denoted
A[m], and ranges from 1 to n1−γ for the first level of the
tree. Similarly, t indexes the current summary, P (t) which
are all initialized to be an empty matrix. Again we use the
notation [X;Y] to denote the row-wise concatenation of
two matrices X and Y with equal column dimension.

Note that Algorithm 3 can be easily distributed as any block
of sublinear size can be given to a compute node and then
a small-space summary of that block is returned to con-
tinue the computation. In addition, the algorithm can be
performed using sublinear space in the streaming model
because at any one time a summary T of the input can be
computed which is of size d×d. Upon reading A[1], a small
space summary P (1) is computed and stored with the algo-
rithm proceeding to read in A[2]. Similarly, the summary
P (2) is computed and if [P (1);P (1)] does not exceed the
storage bound, then the two summaries are merged and this
process is repeated until at some point the storage bound
is met. Once the summary is large enough that it meets
the storage bound, it is then reduced by performing the
well-conditioned basis reduction (line (5)) and the reduced
summary is stored with the algorithm continuing to read
and summarize input until a corresponding block in the tree
is obtained (or the blocks can be combined to terminate the
algorithm).

Proof of Theorem 4.2. Let A ∈ Rn×d and B ∈ Rnγ×d.
We compute an `p well-conditioned basis for B in time
poly(nγd) by Theorem 2.2; so let B = US for U ∈ Rnγ×d

Algorithm 3 Deterministic `p subspace embedding

1: procedure `p-SUBSPACEEMBEDDING(A, p, γ < 1))
2: Counters m, t← 1
3: Summaries P (t) ← EMPTY for all t.
4: for m = 1 : n1−γ do
5: A[m] = US # U an `p wcb for A
6: if num. rows(P (t)) + d ≤ nγ then
7: P (t) ← [P (t);S]
8: else
9: P (t+1) ← S

10: t← t+ 1

11: Merge all P (t): T = [P (1); . . . ;P (·)]
12: Reduce T by splitting into blocks of nγ and repeat-

ing lines (2) - (10) with T in place of A.
13: return T

and S ∈ Rd×d a change of basis matrix.

From (Dasgupta et al., 2008), U satisfies ‖x‖p ≤ ‖Ux‖p ≤
d‖x‖p. This is because ‖x‖2 ≤ ‖Ux‖p ≤

√
d‖x‖2. There

are then two cases: if p < 2 then

‖x‖p√
d
≤ ‖x‖2 ≤ ‖Ux‖p ≤

√
d‖x‖2 ≤

√
d‖x‖p

so that ‖x‖p ≤ ‖Ux‖p ≤ d‖x‖p by rescaling by
√
d. The

third inequality is from (Dasgupta et al., 2008). Similarly, if
p > 2 then

‖x‖p ≤ ‖x‖2 ≤ ‖Ux‖p ≤
√
d‖x‖2 ≤ d‖x‖p

from which ‖x‖p ≤ ‖Ux‖p ≤ d‖x‖p. Next, the algo-
rithm ignores U and retains only S after computing the
well-conditioned basis. Using the above two bounds we
readily see that ‖Sx‖p ≤ ‖USx‖p = ‖Bx‖p. Also,
‖Sx‖p ≥ ‖USx‖p/d = ‖Bx‖p/d. Now we have obtained
a matrix S which satisfies:

‖Bx‖p
d

≤ ‖Sx‖p ≤ ‖Bx‖p. (14)

So ‖Sx‖p agrees with ‖Bx‖p up to a distortion factor of d.

Algorithm 3 applies the merge and reduce framework. The
matrix A is seen a row at a time and nγ rows are stored
which are used to construct a tree. So at every level a sub-
space embedding with distortion d is constructed. This error
propagates through each of the O(1/γ) levels in the tree so
the overall distortion to construct the subspace embedding
for A is dO(1/γ). The space bound is similar; we need nγd
storage per group so require O(1/γ)nγd overall.

Proof of Theorem 4.3. The task is to minimise ‖Ax− b‖p.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Let Z = [A, b] ∈ Rn×(d+1) and compute a subspace em-
bedding S for Z using Theorem 4.2. Note that R has
O(1/γ)nγ(d + 1) rows. Let ∆ = (d + 1)O(1/γ), then
for all y ∈ Rd+1 we have:

‖Zy‖p
∆

≤ ‖Sy‖ ≤ ‖Zy‖. (15)

Since this condition holds for all y ∈ Rd+1 it must hold,
in particular, for vectors y′ = (x,−1)T where x ∈ Rd is
arbitrary. However, observe that:

‖Zy′‖p =

∥∥∥∥[A, b]

[
x
−1

]∥∥∥∥
p

= ‖Ax− b‖p. (16)

Denote the first d columns of S by S1:d and the last column
by Sd+1. Then

‖Sy′‖p =

∥∥∥∥[S1:d, Sd+1]

[
x
−1

]∥∥∥∥
p

= ‖S1:dx− Sd+1‖p.
(17)

Now we have transformed the subspace embedding rela-
tionship into an instance of regression. In particular, S1:d

has only O(1/γ)nγd rows so is a smaller instance than the
original problem. We now focus on the task of finding
minx∈Rd ‖S1:dx−Sd+1‖p. By using Equation (15) with y′

and utilising Equations (16), (17) we have:

‖Ax− b‖p
∆

≤ ‖S1:dx− Sd+1‖p ≤ ‖Ax− b‖p. (18)

Convex optimisation can now be used to find
minx∈Rd ‖S1:dx−Sd+1‖p. Let x̂ = argminx∈Rd ‖S1:dx−
Sd+1‖p which is output from the optimisation and let
x∗ = argminx∈Rd ‖Ax − b‖p be the optimal solution we
would like to estimate. By optimality of x̂ we have:

‖S1:dx̂− Sd+1‖p ≤ ‖S1:dx
∗ − Sd+1‖p. (19)

However, combining Equation (19) with Equation (18) we
see that:

‖Ax̂− b‖p
∆

≤ ‖S1:dx̂− Sd+1‖p (20)

≤ ‖S1:dx
∗ − Sd+1‖p (21)

≤ ‖Ax∗ − b‖p (22)

Therefore, ‖Ax̂−b‖p ≤ ∆‖Ax∗−b‖p and ∆ = poly(d+1)

Algorithm 4 Deterministic `1 low rank approximation (de-
randomized version of algorithm from (Song et al., 2017))

1: procedure L1-KRANKAPPROX(X,n, d, k)
2: r = O(k log k)
3: m = O(r log r)
4: t1 = O(r log r)
5: t2 = O(m logm)
6: Generate all diagonal R ∈ Rd×d with only r 1s
7: Compute all possible sampling and rescaling matri-

ces D,T1 ∈ Rn×n corresponding to Lewis Weights of
AR whose entries are powers of 2 between 1 and 1/nd.
There are m and t1 nonzero entries on the diagonal,
respectively.

8: Compute all sampling and rescaling matrices TT2 ∈
Rd×d according to the Lewis weights of (DA)T with
t2 nonzero entries, powers of 2 between 1 and 1/nd on
the diagonal.

9: Evaluate ‖T1ARXYDAT2 − T1AT2‖1 for all
choices of above matrices.

10: Take the minimal solution
11: return ARX,Y DA

so the `p-regression problem has been solved up to a poly-
nomial d+ 1 approximation factor. The overall time com-
plexity is the time taken to compute the subspace embed-
ding, which is poly(nd) by Theorem 4.2, and the time for
the convex optimisation. However, the optimisation costs
poly(O(1/γ)nγ) (Woodruff & Zhang, 2013) which is sub-
sumed by the dominant time cost for computing the embed-
ding. Finally, the space cost is immediate from computing
the subspace embedding in Theorem 4.2.

C. Proofs for Section 5
To prove correctness of Algorithm 5 for Theorem 5.1 we
will need to invoke the following algorithm at each level of
the tree. This is a derandomized version of an algorithm
which returns a low rank approximation to an input matrix.
The derandomization follows from generating and testing
all possible combinations of the necessary matrices.

Lemma C.1. Algorithm 4 runs in time poly(nd).

Proof. Every matrix which is generated in Algorithm 4 has
a number of nonzero entries bounded by O(kpolylog(k)).
We can test all of the matrices which will take time propor-
tional to the dimension of the matrix (n or d) with exponent
O(kpolylog(k)) resulting in time poly(nd) overall, since k
is constant.

We need one further lemma which describes the approxi-
mation error induced by using well-conditioned bases to
decompose a matrix.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Lemma C.2. Let M ∈ RN×D have rank ρ and suppose
U ∈ RN×ρ is a well-conditioned basis for M . Let M =
US for a change of basis S ∈ Rρ×D. Then for all x ∈ RD:

‖Sx‖1
poly(D)

≤ ‖Mx‖1 ≤ poly(D)‖Sx‖1.

Proof. For the left-hand side we can just calculate:

‖Sx‖1 ≤ D · ‖Sx‖∞ (23)
≤ D · poly(D)‖USx‖1 (24)
= poly(D) · ‖Mx‖1. (25)

The second inequality follows from a property of the well-
conditioned basis U . The result follows from observing:

‖Mx‖1 = ‖USx‖1 ≤ ‖U‖1‖Sx‖∞ (26)
= poly(D)‖Sx‖1 (27)

C.1. Proof of Theorem 5.1

For the proof of Theorem 5.1 we introduce Algorithm 5. It
is enough to show that for every level, the low rank approx-
imations of each group is polynomially bounded by k in
error. The result follows by reasoning how this error grows
as we progress through the tree. Denote the jth block of A
by A[j].

Algorithm 5 Deterministic `1 low rank approx

1: procedure `1-k-RANKAPPROX(A, k, γ)
2: m, t← 1, Pt ← 0
3: for i = 1 : 1/γ do
4: while m < n1−iγ do
5: while number of rows of Pm < nγ do
6: Run Algorithm 4 on A[m] and k which

outputs matrix B ∈ Rk×d
7: B ←WV T (k-rank decomposition)
8: Set W = US for well-conditioned basis
U

9: Pt ← SV T

10: m← m+ 1

11: Merge-and-Reduce all Pm until we have an nγ × d
matrix.

12: Set P to be matrix of final k rows.
13: Solve minQ ‖QP −A‖1.
14: return QP

For every level in the tree we can take a group of rows, C,
and perform Algorithm 4. For every C used as input to
Algorithm 4 a k-rank matrix B of dimensions nγ × d is
returned. In particular, B has the following property:

‖C −B‖1 ≤ poly(k) min
B′rankk

‖C −B′‖1. (28)

Now factor B using a k rank decomposition. That is, set
B = WV T where W has k columns and V T has k rows.
Further decompose W as W = US for a well-conditioned
basis U . Note that W is nγ × k (and of rank k) by the rank
decomposition so U is also nγ × k and S is k × k. The
dimensions of these matrices ensure that individually they
do not exceed the space budget from the theorem.

Apply Lemma C.2 with W and k. Then we have for every
x ∈ Rk that ‖Sx‖1 = poly(k)‖Wx‖1. Since U is nγ by
k and k < poly(d), U remains within the required space
bound when we use it for the calculation. Now ignore U and
store SV T . Note that each SV T is a matrix of k directions
in Rd. Pass SV T to the next level of the tree.

Merge the SV T for each group until we have a matrix of nγ

rows. Repeat the process over all O(1/γ) levels in the tree.
We require nγd storage for every group so as we merge and
pass SV T down the levels this combines to total storage of
O(1/γ)nγpoly(d). This part of the algorithm is a repeated
use of Algorithm 4 which is poly(nd) by Lemma C.1 and
some further lower time cost manipulations. Repeating
these steps gives poly(nd) as the overall time complexity.

When this is done over all levels we will again have k
directions in Rd. Let P be the matrix with these directions
as rows. Then we claim that P can be used to construct our
approximate `1 low-rank approximation.

Proposition C.3. Let P be as described above. Then there
exists QP which is an `1 low-rank approximation for A:

min
Q
‖QP −A‖1 ≤ poly(k)‖A−A′‖1

Proof. Each use of Algorithm 4 admits a poly(k) approx-
imation at every level of the tree. Every time the well-
conditioned basis U is constructed and then ignored we
admit a further poly(k) error due to property 1 of Definition
2.1. The distortion is blown up by a factor of poly(k) ev-
ery time we use Lemma C.2 which is at every level in the
tree. Hence, the total contribution of using Algorithm 4 is
poly(k)O(1/γ) = poly(k) for constant γ.

Proposition C.3 proves the approximation is poly(k) as
claimed. By Lemma C.1 we know that Algorithm 4 is
poly(nd) time. The most costly steps in Algorithm 5 are
invocations of Algorithm 4 so combining this we see that
the overall time cost is poly(nd) as claimed, proving the
theorem.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

D. Proofs for Section 6
Proof of Theorem 6.1. Given A, the first step is to store
all rows of A whose `p leverage score is above the thresh-
old ε/poly(d). This step requires a polynomial increase to
poly(d)/ε storage from Lemma A.2. Next the change of
basis matrix R is computed so that AR is well-conditioned.
The stored matrix is B with rows corresponding to those of
large `p leverage scores from A′ and zero elsewhere. Also,
store all entries in b whose magnitude is greater than ε‖b‖p
and zero the rest out. Call this vector b′.

We now focus on the task of solving minx∈Rd ‖A′Rx −
b′‖∞. Any solution must necessarily have ‖x‖p ≤
poly(d)‖b‖p as otherwise x = 0 is a better solution. Recall
that α = d1/p+1/2 for a well-conditioned basis AR with
p > 2. Hence, the sum of all the `p leverage scores is αp =
dO(p). Then the number of rows with leverage score greater
than the ε/poly(d) is at most poly(d)/ε·dO(p) = poly(d)/ε
for a constant p.

Now, take any row for which the `p leverage score is less
than the ε/poly(d) threshold. Then:

|〈(AR)i, x〉| ≤ ‖(AR)i‖∞‖x‖1
≤ ‖(AR)i‖p‖x‖1
≤ ‖(AR)i‖p · d‖x‖p
≤ d ε

poly(d)
poly(d)‖b‖p.

By an appropriate choice of the poly(d) factors scaling ε we
see that |〈(AR)i, x〉| ≤ ε‖b‖p. On such coordinates the `∞
cost is |bi| ± ε‖b‖p so by replacing the row with one which
is all zero we still pay |bi| which is within the ε‖b‖p had we
included the row. The remaining high-leverage score rows
are stored in their entirety so the cost on these rows is the
same as in the original regression problem.

Proof of Theorem 6.2. Let S be a set of 2Ω(d) strings in
{0, 1}d with each coordinate in a string uniformly sampled
randomly from {0, 1}. Let x, y ∈ S and fix a constant
0 < c < 1. By a Chernoff bound it follows that there are
at least cd coordinates in [d] for which xi = 0 and yi = 1
with probability 1 − 2−Ω(d). This implies for appropriate
constants in the Ω(·), by a union bound, all pairs of strings
x, y ∈ S have this property. Hence, such an S exists and we
will fix this for the proof.

The regression problem can be reduced to an instance of the
Indexing problem (Kremer et al., 1999) in data streams
as follows. In the stream, the vector b will be all 1s. We will
see a random subset T of some elements from S. We claim
that it is possible to decide which case we are in: given a ran-
dom string y, whether y is in S independent of T , or y is in
T . This corresponds to solving Indexing which requires

space Ω(|S|) = Ω(min{n, 2Ω(d)}) even with randomiza-
tion, via communication complexity arguments (Kushilevitz
& Nisan, 1997).

Given a test vector y, negate its coordinates so that y ∈
{0,−1}d. Now, append y as a row to the final b coordinate
of 1 at the end of the stream to obtain the last item in the
stream (y, 1). If y were in S then both y and its complement
would be seen as rows of the matrix A. Hence, the optimal
cost for `∞-regression is at least 1. Otherwise, y is not in
S. Consider the set of coordinates R where yi = 0. Set
xi = 1/d for i ∈ R and −c/2d otherwise.

Now we consider the cost of using x. On the row cor-
responding to the negated vector y the value will be at
least (−1)(−c/2d)(cd) = c2/2. Since bi = 1 the cost
will be at most |1− c2/2| for this coordinate. On all other
rows, by using the fact there are at least cd occurrences of
xi = 0, yi = 1 the value will be at least

cd(1/d)− (d− cd)(c/2d) ≥ c− c/2 = c/2.

Hence the cost on these coordinates is at most |1 − c/2|.
Since c < 1, the `∞ cost is at most |1 − c2/2|. This is a
constant factor less than the `∞ cost of 1 from the previous
case so it is possible to decide which of the two cases we
are in and hence the space is Ω(min{n, 2Ω(d)}) as claimed.

E. Deterministic Approximate Matrix
Multiplication

Despite the generality of the subspace embedding result in
Theorem 4.2, there may be occasions where the overheads
are sufficiently large that it does not make sense to employ
this method. One such example is for the matrix multipli-
cation problem. Let A,B ∈ Rn×d and consider the task of
finding a matrix C for which ‖ATB − C‖1 < ε‖A‖1‖B‖1
where 0 < ε < 1 and the norm is entrywise 1-norm.

Lemma E.1. Let x, y ∈ Rn have unit entrywise 1-norm.
Let ε > 0. Define:

x̄i =

{
xi if |xi| > ε/2,

0 otherwise,
ȳi =

{
yi if |yi| > ε/2,

0 otherwise.

Then 〈x, y〉− ε ≤ 〈x̄, ȳ〉 ≤ 〈x, y〉 and this can be computed
using space O(1/ε).

Proof. Observe that x̄i ≤ xi and ȳi ≤ yi for 1 ≤ i ≤ n.
Hence, 〈x̄, ȳ〉 ≤ 〈x, y〉. For the left-hand side define the
following sets: Hu = {i : ui > ε/2}, Lu = {i : ui ≤ ε/2}

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

for u = x, y. Then we can write

〈x, y〉 =
∑

i∈Hx
xiyi +

∑

i∈Lx
xiyi

=
∑

i∈Hx∩Hy
xiyi +

∑

i∈Hx∩Ly
xiyi +

∑

i∈Lx∩Hy
xiyi +

∑

i∈Lx∩Ly
xiyi

≤ 〈x̄, ȳ〉+
ε

2

∑

i∈Hx
xi +

ε

2

∑

i∈Hy
yi +

ε

2

∑

i∈Ly
yi

≤ 〈x̄, ȳ〉+ ε.

Note that the sum can be written this way as the pairHx, Lx
are disjoint, and likewise for Hy, Ly. The first inequality
follows from the second line because i ∈ Hx ∩Hy means
xi and yi are retained in x̄, ȳ so this summation corresponds
directly to 〈x̄, ȳ〉. Then for every i ∈ Hx ∩ Ly we must
have that yi ≤ ε/2 so is bounded by ε

2

∑
i∈Hx xi. The same

argument holds for the remaining two summations in the
inequality. Finally, each of the three summations are at most
1 since both x and y have unit 1-norm. The summations
over Hy and Ly when combined are at most the norm of y
so can be combined such that

∑
i yi ≤ 1. This is enough to

prove the result.

The result for unit vectors is sufficient because we can sim-
ply normalize a vector, use Lemma E.1 and then rescale by
the norm of x and y. This results in 〈x, y〉 − ε‖x‖1‖y‖1 ≤
〈x̄, ȳ〉 ≤ 〈x, y〉. This result can be used to prove the follow-
ing theorem.

Theorem E.2. Let A,B ∈ Rn×d and let ε > 0. Let Ai
denote the ith row of A and Bi denote the ith column of B.
For X = A and X = B define:

Xij =

{
Xij if |Xij | > ε

2‖Xi‖1,
0 otherwise.

Then in entrywise 1-norm:

‖ABT −ABT ‖1 ≤ ε‖A‖1‖B‖1.

Proof. Fix ε > 0. The matrix product takes a row of A with
a column of BT which is simply a row of B. These are both
vectors in Rd so we can apply the transformation as in the
Theorem statement, which is equivalent to that in Lemma
E.1. By applying the rescaled version of Lemma E.1 we see
that:

|〈Ai, Bj〉 − 〈Ai, Bj〉 ≤ ε‖Ai‖1‖Bj‖1. (29)

Now the norm ‖ABT −ABT ‖1 is the sum of all summands
defined as in Equation 29 over all pairs of i and j. Comput-
ing the sum then gives the desired result.

The argument from Lemma E.1 can easily be adapted to
obtain a result for the matrix profuct ATB. Observe that
approximating ATB is equivalent to approximating inner
products between columns of A and columns of B. The
modification is that the summary must be applied column-
wise instead of row-wise as in Theorem E.2.

Theorem E.3. Let A,B ∈ Rn×d and let ε > 0. Then there
exists a deterministic algorithm which uses O(1/ε) space
and outputs A and B which satisfy:

‖ATB −ATB‖1 ≤ ε‖A‖1‖B‖1.

Proof. For a matrix X let Xi denote the ith row and Xj

denote the jth column. Let ‖Xj
:i‖1 denote the 1-norm of

column j of X up to and including row i. It is clear that this
norm is monotonic as more rows are seen in the stream. In
particular, ‖Xj

:n‖1 = ‖X‖1. Therefore, the algorithm can
be modified as follows: upon seeing a row i, if |Xij | > ε/2 ·
‖Xj

:i‖1 then keep the entry Xij and otherwise set Xoj = 0.
It is sufficient to consider only the last row. At this stage all
rows which have not exceeded the running threshold upon
seeing a particular row will have been ignored and only
those which exceed ε/2 · ‖Xj

:n−1‖1 will be stored. Then
by increasing the threshold upon seeing row n only the
Xij which exceed ‖Xj

:n‖1 = ‖X‖1 will be kept and this
is exactly the same set of rows as had the summary been
applied given full access to the rows.

Hence, we may apply the result from Lemma E.1 on the
columns of A and B as described above. It is then straight-
forward to show in a similar way to the lemma that the claim
of the theorem holds.

F. Further Experimental results
Here we illustrate the remaining experimental results on the
YearPredictionMSD dataset which include the space and
time plots. The experimental setup is the same as outline in
Section 7.

Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

0

2000

4000

6000

8000

10000

12000

14000

M
ax

im
um

 su
m

m
ar

y
si

ze

Orth
SPC3
Sample
Identity

(a) Summary Size

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

10−2

10−1

100

Ti
m

e
(s

ec
on

ds
)

Orth
SPC3

(b) Update Time

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

100

101

Ti
m

e
(s

ec
on

ds
)

Orth
SPC3
Sample
Identity

(c) Query Time

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

100

101

102

To
ta

l T
im

e

Orth
SPC3
Sample
Identity
Brute Force

(d) Total Time

Figure 4: Remaining plots for YearPredictionMSD data.

