
Leveraging Well-Conditioned Bases: Streaming and
Distributed Summaries in Minkowski p-Norms

Graham Cormode * 1 Charlie Dickens * 1 David P. Woodruff * 2

Abstract
Work on approximate linear algebra has led to
efficient distributed and streaming algorithms for
problems such as approximate matrix multipli-
cation, low rank approximation, and regression,
primarily for the Euclidean norm `2. We study
other `p norms, which are more robust for p < 2,
and can be used to find outliers for p > 2. Un-
like previous algorithms for such norms, we give
algorithms that are (1) deterministic, (2) work si-
multaneously for every p ≥ 1, including p =∞,
and (3) can be implemented in both distributed
and streaming environments. We apply our results
to `p-regression, entrywise `1-low rank approxi-
mation, and approximate matrix multiplication.

1. Introduction
Analyzing high dimensional, high volume data can be time-
consuming and resource intensive. Core data analysis, such
as robust instances of regression, involve convex optimiza-
tion tasks over large matrices, and do not naturally dis-
tribute or parallelize. In response to this, approximation
algorithms have been proposed which follow a “sketch and
solve” paradigm: produce a reduced size representation of
the data, and solve a version of the problem on this sum-
mary (Woodruff, 2014). It is then argued that the solution on
the reduced data provides an approximation to the original
problem on the original data. This paradigm is particu-
larly attractive when the summarization can be computed
efficiently on partial views of the full data—for example,
when it can be computed incrementally as the data arrives
(streaming model) or assembled from summarizations of
disjoint partitions of the data (distributed model) (Woodruff,
2014; Agarwal et al., 2012; Feldman et al., 2006). This

*Equal contribution 1Department of Computer Science, Uni-
versity of Warwick, Coventry, UK 2School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. Cor-
respondence to: Charlie Dickens <c.dickens@warwick.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

template has been instantiated for a number of fundamen-
tal tasks in high dimensional linear algebra such as matrix
multiplication, low rank approximation, and regression.

Our understanding is well-established in the common case
of the Euclidean norm, i.e., when distances are measured
under the Minkowski p-norm for p = 2. Here, it suffices to
choose a sketching matrix independent of the data—where
each entry is i.i.d. Gaussian, Rademacher, or more efficient
variants of these. For other p values, less is known, but these
are often needed to handle limitations of the 2-norm. For
instance, p = 1 is widely used as it is extremely robust with
respect to the presence of outliers while p > 2 can be used
to detect outlying observations.

We continue the study of algorithms for `p norms on stream-
ing and distributed data. A particular novelty of our results
is that unlike previous distributed and streaming algorithms,
they can all be implemented deterministically, i.e., our algo-
rithms make no random choices. While in a number of set-
tings randomized algorithms are highly beneficial, leading
to massive computational savings, there are other applica-
tions which require extremely high reliability, for which one
needs to obtain guaranteed performance across a large num-
ber of inputs. If one were to use a randomized algorithm,
then it would need vanishingly small error probability; how-
ever, many celebrated algorithms in numerical linear algebra
succeed with only constant probability. Another limitation
of randomized algorithms was shown in (Hardt & Woodruff,
2013): if the input to a randomized sketch depends on the
output of a preceding algorithm using the same sketch, then
the randomized sketch can give an arbitrarily bad answer.
Hence, such methods cannot handle adaptively chosen in-
puts. Thus, while randomized algorithms certainly have
their place, the issues of high reliability and adaptivity moti-
vate the development of deterministic methods for a number
of other settings, for which algorithms are scarce.

Our techniques can be viewed as a conceptual generaliza-
tion of Liberty’s Frequent Directions (in the 2-norm) (Lib-
erty, 2013), which progressively computes an SVD on sub-
sequent blocks of the input. This line of work (Liberty,
2013; Ghashami & Phillips, 2014; Ghashami et al., 2016;
Ghashami et al., 2016) is the notable exception in numer-
ical linear algebra, as it provides deterministic methods,



Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

although all such methods are specific to the 2-norm. Our
core algorithm is similar in nature, but we require a very
different technical analysis to argue that the basis transfor-
mation computed preserves the shape in the target p-norm.

Our main application is to show how high dimensional
regression and low rank approximation problems can be
solved approximately and deterministically in the sketch
and solve paradigm. The core of the summary is to find
rows of the original matrix which have high leverage scores.
That is, they contain a lot of information about the shape of
the data. In the Euclidean norm, leverage scores correspond
directly to row norms of an orthonormal basis. This is less
straightforward for other `p norms, where the scores cor-
respond to the row norms of so-called `p-well-conditioned
bases. Moreover, while leverage scores are often used for
sampling in randomized algorithms, we use them here in
the context of fully deterministic algorithms.

We show how a superset of rows with high leverage scores
can be found for arbitrary `p norms, based on only local in-
formation. This leads to efficient algorithms which identify
rows with high (local) leverage scores within subsets of the
data, and proceed hierarchically to collect a sufficient set of
rows. These rows then allow us to solve regression problems:
essentially, we solve the regression problem corresponding
to just the retained input rows. We apply this technique
to `p-regression and entrywise `p-low rank approximation.
In particular, we use it to solve the `∞-regression problem
with additive error in a stream. Note that the `∞ problem
reduces to finding a ball of minimum radius which covers
the data, and global solutions are slow due to the need to
solve a linear program. Instead, we show that only a subset
of the data needs to be retained in the streaming model to
compute accurate approximations. Given the relationship
between the streaming model and the distributed model that
we later define, this could be seen in the context of having
data stored over multiple machines who could send ‘impor-
tant’ rows of their data to a central coordinator in order to
compute the approximation.

Summary of Results. All our algorithms are deterministic
polynomial time, and use significantly sublinear memory
or communication in streaming and distributed models, re-
spectively. We consider tall and thin n× d matrices A for
overconstrained regression so one should think of n � d.
We implement both deterministic and randomized variants
of our algorithms.
Section 3 presents an algorithm which returns rows of high
‘importance’ in a data matrix with additive error. This
follows by storing a polynomial number (in d) of rows
and using these to compute a well-conditioned basis. The
key insight here is that rows of high norm in the full well-
conditioned basis cannot have their norm decrease too much
in a well-conditioned basis associated with a subblock; in

fact they remain large up to a multiplicative poly(d) factor.
Section 4 gives a method for computing a so-called `p-
subspace embedding of a data matrix in polynomial time.
The space is nγ to obtain dO(1/γ) distortion, for γ ∈ (0, 1)
a small constant. This result is then applied to `p-regression
which is shown to have a poly(d) approximation factor with
the same amount of space.
Section 5 describes a deterministic algorithm which gives a
poly(k)-approximation to the optimal low rank approxima-
tion problem in entrywise `1-norm. It runs in polynomial
time for constant k. This method builds on prior work by
derandomizing a subroutine from (Song et al., 2017).
Section 6 describes an algorithm for computing an additive-
error solution to the `∞-regression problem, and shows a
corresponding lower bound, showing that relative error so-
lutions in this norm are not possible in sublinear space, even
for randomized algorithms.
Section 7 concludes with an empirical evaluation. More
experiments, intermediate results, and formal proofs can
be found in the Supplementary Material, as can results on
approximate matrix multiplication.

Comparison to Related Work. There is a rich literature on
algorithms for numerical linear algebra in general p-norms;
most of which are randomized with the notable exception
of Frequent Directions. The key contributions of our work
for each of the problems considered and its relation to prior
work is as follows:

Finding high leverage rows: our algorithm is a single pass
streaming algorithm and uses small space. We show that the
global property of `p-leverage scores can be understood by
considering only local statistics. Frequent Directions is the
only comparable result to ours and outputs a summary of
the rows only in the `2-norm. However, our method covers
all p ≥ 1. Theorem 3.3 is the key result and is later used
to prove Theorem 6.1 and approximate the `∞-regression
problem.

Subspace embedding, regression and `1 low-rank approx-
imation: various approaches using row-sampling (Cohen
& Peng, 2015; Dasgupta et al., 2008), and data oblivious
methods such as low-distortion embeddings can solve re-
gression in time proportional to the sparsity of the input
matrix (Clarkson et al., 2013; Meng & Mahoney, 2013;
Song et al., 2017; Woodruff & Zhang, 2013). However,
despite the attractive running times and error guarantees of
these works, they are all randomized and do not necessar-
ily translate well to the streaming model of computation.
Our contribution here is a fully deterministic algorithm that
works for all p ≥ 1 in both streaming and distributed mod-
els. Randomized methods for `1 low-rank approximation
have also been developed in (Song et al., 2017) and our
result exploits a derandomized subroutine from this work to
obtain a deterministic result which applies in both models.



Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

2. Preliminaries and Notation
We consider computing `p-leverage scores of a matrix, low-
rank approximation, regression, and matrix multiplication.
We assume the input is a matrix A ∈ Rn×d and n � d
so rank(A) ≤ d and the regression problems are overcon-
strained. Without loss of generality we may assume that the
columns of the input matrix are linearly independent so that
rank(A) = d. Throughout this paper we rely heavily on
the notion of a well-conditioned basis for the column space
of an input matrix, in the context of the entrywise p-norm
which is ‖A‖p = (

∑
i,j |Aij |p)1/p.

Definition 2.1 (Well-conditioned basis). Let A ∈ Rn×d
have rank d. For p ∈ [1,∞) let q = p

p−1 be its dual
norm. An n× d matrix U is an (α, β, p)-well-conditioned
basis for A if the column span of U is equal to that of
A, ‖U‖p ≤ α, for all z ∈ Rd, ‖z‖q ≤ β‖Uz‖p , and
α, β, dO(1) are independent of n (Dasgupta et al., 2008).

We focus on the cases p < 2 and p > 2 because the deter-
ministic p = 2 case is relatively straightforward. Indeed, for
p = 2, ATA can be maintained incrementally as rows are
added, allowing xTATAx to be computed for any vector
x. So it is possible to find an exact `2 subspace embedding
using O(d2) space in a stream and O(ndω−1) time (ω is the
matrix multiplication constant). We adopt the convention
that when p = 1 we take q =∞.

Theorem 2.2 ((Dasgupta et al., 2008)). Let A be an n× d
matrix of rank d, let p ∈ [1,∞) and let q be its dual norm.
There exists an (α, β, p)-well-conditioned basis U for the
column space of A such that:

1. if p < 2 then α = d
1
p+ 1

2 and β = 1,
2. if p = 2 then α =

√
d and β = 1, and

3. if p > 2 then α = d
1
p+ 1

2 and β = d
1
p− 1

2 .

Moreover,U can be computed in deterministic timeO(nd2+
nd5 log n) for p 6= 2 and O(nd2) if p = 2.

We freely use the fact that a well-conditioned basis U = AR
can be efficiently computed for the given data matrix A.
Details for the computation can be found in (Dasgupta et al.,
2008) but this is done by computing a change of basis R
such that U = AR is well-conditioned. Similarly, as R can
be inverted we have the relation that UR−1 = A. Both
methods are used so we adopt the convention that U = AR
when writing a well-conditioned basis in terms of the input
and US = A for the input in terms of the basis.

2.1. Computation Models

Our algorithms operate under the streaming and distributed
models of computation. In both settings an algorithm re-
ceives as input a matrix A ∈ Rn×d. For a problem P, the

algorithm must keep a subset of the rows of A and, upon
reading the full input, may use a black-box solver to com-
pute an approximate solution to P with only the subset of
rows stored. In both models we measure the summary size
(storage), the update time which is the time taken to find the
local summary, and the query time which is the time taken
to compute an approximation to P using the summary.

The Streaming Model: The rows of A are given to the
(centralized) algorithm one-by-one. Let b be the maximum
number of rows that can be stored under the constraint that b
is sublinear in n. The stored subset is used to compute local
statistics which determine those rows to be kept or discarded
from the stored set. Further rows are then appended and the
process is repeated until the full matrix has been read. An
approximation to the problem is then computed by solving
P on the reduced subset of rows.

The Distributed Summary Model: Given a small constant
γ ∈ (0, 1), the input in the form of matrix A ∈ Rn×d is
partitioned into blocks among distributed compute nodes
so that no block exceeds nγ rows. The computation then
follows a tree structure: the initial blocks of the matrix
form n1−γ leaves of the compute tree. Each internal node
merges and reduces its input from its child nodes. The first
phase is for the leaf nodes l1, . . . , lm of the tree to reduce
their input by computing a local summary on the block they
receive as input. This is then sent to parent nodes p1, . . . , pm
which merge and reduce the received rows until the space
bound is reached. The resulting summaries are passed up
the tree until we reach the root where a single summary
of bounded size is obtained which can be used to compute
an approximation to P. In total, there are O(1/γ) levels in
the tree. As the methods require only light synchronization
(compute summary and return to coordinator), we do not
model implementation issues relating to synchronization.
Remark 2.3. The two models are quite close: the stream-
ing model can be seen as a special case of the distributed
model with only one participant who individually computes
a summary, appends rows to the stored set, and reduces the
new summary. This is represented as a deep binary tree,
where each internal node has one leaf child. Likewise, the
Distributed Summary Model can be implemented in a full
streaming fashion over the entire binary tree. The experi-
ments in Section 7 perform one round of merge-and-reduce
in the distributed model to simulate the streaming approach.

3. Finding Rows of High Leverage
This section is concerned with finding rows of high leverage
from a matrix with respect to various p-norms. We con-
clude the section with an algorithm that returns rows of high
leverage up to polynomial additive error.
Definition 3.1. Let R be a change of basis matrix such that
AR is a well-conditioned basis for the column space of A.



Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

The (full) `p-leverage scores are defined as wi = ‖eTi AR‖pp.

Note that wi depends both on A and the choice of R, but we
suppress this dependence in our notation. Next we present
some basic facts about the `p leverage scores.

Fact 1. By Definition 2.1 we have
∑
i wi =∑

i ‖(AR)i‖pp ≤ αp. Theorem 2.2 shows α = poly(d).
Define I = {i ∈ [n] : wi > τ‖AR‖pp} to be the index
set of all rows whose `p leverage exceeds a τ fraction of
‖AR‖pp, then: αp ≥ ∑i wi ≥

∑
i∈I wi ≥ |I| · τ‖AR‖pp.

Hence, |I| ≤ αp/τ‖AR‖pp = poly(d)/τ . So there are at
most poly(d)/τ rows i for which wi ≥ τ‖AR‖pp.

Fact 2. Definition 2.1 and Hölder’s inequality show that for
any vector x we have |(ARx)i|p ≤ β‖eTi AR‖pp · ‖ARx‖pp.
Then τ ≤ |eTi ARx|p/‖ARx‖pp ≤ βwi. From this we
deduce that if a row contributes at least a τ fraction of
‖ARx‖pp then τ ≤ wiβ. That is, τ ≤ wi for p ∈ [1, 2] and
τ ≤ d1/2wi for p ∈ (2,∞) by using Theorem 2.2.

Definition 3.2. Let X be a matrix and Y be a subset of the
rows of X . Define the local `p-leverage scores of Y with
respect to X to be the leverage scores of rows Y found by
computing a well-conditioned basis for Y rather than the
whole matrix X .

A key technical insight to proving Theorem 3.3 below is that
rows of high leverage globally can be found by repeatedly
finding rows of local high leverage. While relative `p row
norms of a submatrix are at least as large as the full relative
`p norms, it is not guaranteed that this property holds for
leverage scores. This is because leverage scores are calcu-
lated from a well-conditioned basis for a matrix which need
not be a well-conditioned basis for a block. However, we
show that local `p leverage scores restricted to a coordinate
subspace of a matrix basis do not decrease too much when
compared to leverage scores in the original space. Let i be
a row in A with local leverage score ŵi and global leverage
score wi. Then ŵi ≥ wi/ poly(d). The proof relies heavily
on properties of the well-conditioned basis and details are
given in the Supplementary Material, Lemma A.1. This
lemma shows that local leverage scores can potentially drop
in arbitrary `p norm, contrasting the behavior in `2. How-
ever, it is possible to find all rows exceeding a threshold
globally by altering the local threshold. That is, to find
all wi > τ globally we can find all local leverage scores
exceeding an adjusted threshold ŵi > τ/poly(d) to obtain
a superset of all rows which exceed the global threshold.
The price to pay for this is a poly(d) increase in space cost
which, importantly, remains sublinear in n. Hence, we can
gradually prune out rows of small leverage and keep only
the most important rows of a matrix. Combining Lemmas
A.1 and A.2 we can present the main theorem of the section.

We prove Theorem 3.3 by arguing the correctness of Al-
gorithm 1 which reads A once only, row by row, and so

operates in the streaming model of computation as follows.
Let A′ be the submatrix of A induced by the b block of
poly(d)/τ rows. Upon storing A′, we compute U , a local
well-conditioned basis for A′ and the local leverage scores
with respect to U , ŵi(U) are calculated. Now, the local
and global leverage scores can be related by Lemma A.1 as
wi/poly(d) ≤ ŵi so we can decide which rows to keep us-
ing an adjusted threshold. Any i for which the local leverage
exceeds the adjusted threshold is kept in the sample and all
other rows are deleted. The sample cannot be too large by
properties of the well-conditioned basis and leverage scores
so these kept rows can be appended to the next block which
is read in before computing another well-conditioned basis
and repeating in the same fashion. The proof of Theorem
3.3 is deferred to Appendix A.
Theorem 3.3. Let τ > 0 be a fixed constant and let
b denote a bound on the available space. There exists
a deterministic algorithm, namely, Algorithm 1, which
computes the `p-leverage scores of a matrix A ∈ Rn×d
with O(bd2 + bd5 log b) update time, poly(d) space, and
returns all rows of A with `p leverage score satisfying
wi ≥ τ/ poly(d).

4. `p-Subspace Embeddings
Under the assumptions of the Distributed Summary Model
we present an algorithm which computes an `p-subspace em-
bedding. By extension, this applies to both the distributed
and streaming models of computation as described in Sec-
tion 2.1. Two operations are needed for this model of com-
putation: the merge and reduce steps. To reduce the input
at each level a summary is computed by taking a block of
input B (corresponding to a leaf node or a node higher up
the tree) and computing a well-conditioned basis B = US.
In particular, the summary is now the matrix S with U and
B deleted. For the merge step, successive matrices S are
concatenated until the space requirement is met. A further
reduce step takes as input this concatenated matrix and the
process is repeated. Further details, pseudocode, and proofs
for this section are given in Appendix B.
Definition 4.1. A matrix T is a relative error (c1, c2)-`p
subspace embedding for the column space of a matrix A ∈
Rn×d if there are constants c1, c2 > 0 so that for all x ∈ Rd,
c1‖Ax‖p ≤ ‖Tx‖p ≤ c2‖Ax‖p.
Theorem 4.2. Let A ∈ Rn×d, p 6= 2,∞ be fixed and fix a
constant γ ∈ (0, 1). Then there exists a one-pass determinis-
tic algorithm which constructs a (1/dO(1/γ), 1) relative er-
ror `p-subspace embedding in with O(nγd2 +nγd5 log nγ)
update time and O(nγd) space in the streaming and dis-
tributed models of computation.

The algorithm is used in a tree structure as follows: split
inputA ∈ Rn×d into n1−γ blocks of size nγ , these form the
leaves of the tree. For each block, a well-conditioned basis is



Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Algorithm 1 Deterministic High Leverage Scores

Require: A ∈ Rn×d, τ ∈ (0, 1)
1: procedure HIGH LEVERAGE SCORES(A, τ )
2: b← poly(d)/τ
3: A′ ← first b rows of A
4: B ← LEVSCORECHECK(wcb(A′), A′, τ/poly(d))
5: while Rows of A unseen do
6: A′ ← next b rows of A
7: B ← LEVSCORECHECK(wcb([A′;B]), [A′;B], τ/poly(d))

Ensure: B

Algorithm 2 Finding high leverage rows

Require: Well-conditioned basis X for matrix
W , threshold parameter τ > 0

1: procedure LEVSCORECHECK(X,W, τ )
2: N ← Number of rows in X
3: Y ← 0
4: for i = 1 : N do
5: if wi(X) > τ then
6: Yi ←Wi

Ensure: Nonzero rows of Y

Figure 1: [X;Y ] denotes row-wise appending of matrices, U = wcb(M) denotes that U is a well-conditioned basis for M .

computed and the change of basis matrix S ∈ Rd×d is stored
and passed to the next level of the tree. This is repeated until
the concatenation of all the S matrices would exceed nγ . At
this point, the concatenated S matrices form the parent node
of the leaves in the tree and the process is repeated upon
this node: this is the merge and reduce step of the algorithm.
At every iteration of the merge-and-reduce steps it can be
shown that a distortion of 1/d is introduced by using the
summaries S. However, this can be controlled across all of
the O(1/γ) levels in the tree to give a deterministic relative
error `p subspace embedding which requires only sublinear
space and little communication. In addition, the subspace
embedding can be used to achieve a deterministic relative-
error approximate regression result. The proof relies upon
analyzing the merge-and-reduce behaviour across all nodes
of the tree.

`p-Regression Problem: Given matrix A ∈ Rn×d and tar-
get vector b ∈ Rn, find x̂ = argminx ‖Ax− b‖p.

Theorem 4.3. Let A ∈ Rn×d, b ∈ Rn, fix p 6= 2,∞ and a
constant γ > 0. The `p-regression problem can be solved
deterministically in the streaming and distributed models
with a (d + 1)O(1/γ) = poly(d) relative error approxi-
mation factor. The update time is poly(nγ(d + 1)) and
O((1/γ)nγ(d + 1)) storage. The query time is poly(nγ)
for the cost of convex optimization.

5. Low-Rank Approximation
`1-Low-Rank Approximation Problem: Given matrix
A ∈ Rn×d output a matrix B of rank k s.t., for constant k:

‖A−B‖1 ≤ poly(k) min
A′:rankk

‖A−A′‖1. (1)

Theorem 5.1. Let A ∈ Rn×d be the given data matrix
and k be the (constant) target rank. Let γ > 0 be an
arbitrary (small) constant. Then there exists a determin-
istic distributed and streaming algorithm (namely Algo-
rithm 5 in Appendix C) which can output a solution to

the `1-Low Rank Approximation Problem with relative er-
ror poly(k) approximation factor, update time poly(n, d),
space bounded by nγpoly(d), and query time poly(n, d).

The key technique is similar to that of the previous section
by using a tree structure with merge-and-reduce operations.
For input A ∈ Rn×d and constant γ > 0 partition A into
n1−γ groups of rows which form the leaves of the tree. The
tree is defined as previously with the same ‘merge’ opera-
tion, but the ‘reduce’ step to summarize the data exploits a
derandomization (subroutine Algorithm 4) of (Song et al.,
2017) to compute an approximation to the optimal `1-low-
rank approximation. Once this is computed, k of the rows
in the summary are kept for later merge steps.

This process is continued with the successive k rows from
nγ rows being ‘merged’ or added to the matrix until it has
nγ rows. The process is repeated across all of the groups in
the level and again on the successive levels on the tree from
which it can be shown that the error does not propagate too
much over the tree, thus giving the desired result.

6. Application: `∞-Regression
Here we present a method for solving `∞-regression in a
streaming fashion. Given input A and a target vector b, it
is possible to achieve additive approximation error of the
form ε‖b‖p for arbitrarily large p. This contrasts with both
Theorems 4.2 and 4.3 which achieve a relative error poly(d)
approximation. Both of these theorems require that p is
constant and not equal to the ∞-norm. This restriction
is due to a lower bound for `∞- regression showing that
it cannot be approximated with relative error in sublinear
space. The key to proving Theorem 6.1 below is using
Theorem 3.3 to find high leverage rows and arguing that
these are sufficient to give the claimed error guarantee.

The `∞-regression problem has been previously studied in
the overdetermined case and can naturally be applied to
curve-fitting under this norm. `∞-regression can be solved



Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

by linear programming (Sposito, 1976) and such a transfor-
mation allows the identification of outliers in the data. Also,
if the errors are known to be distributed uniformly across
an interval then `∞-regression estimator is the maximum-
likelihood parameter choice (Hand, 1978). The same work
argues that such uniform distributions on the errors often
arise as round-off errors in industrial applications whereby
the error is controlled or is small relative to the signal. There
are further applications such as using `∞-regression to re-
move outliers prior to `2 regression in order to make the
problem more robust (Shen et al., 2014). By applying `∞
regression on subsets of the data an approximation to the
Least Median of Squares (another robust form of regression)
can be found. We now define the problem and proceed to
show that it is possible to compute an approximate solution
with additive error in `p-norm for arbitrarily large p.

Approximate `∞-Regression problem: Given data A ∈
Rn×d, target vector b ∈ Rn, and error parameter ε > 0,
compute an additive ε‖b‖p error solution to:

min
x∈Rd

‖Ax− b‖∞ = min
x∈Rd

[
max
i
|(Ax)i − bi|

]
.

Theorem 6.1. Let A ∈ Rn×d, b ∈ Rn and fix constants
p ≥ 1, ε > 0 with p 6=∞. There exists a one-pass determin-
istic streaming algorithm which solves the `∞-regression
problem up to an additive ε‖b‖p error in dO(p)/εO(1) space,
O(md5 + md2 logm) update time and Tsolve(m, d) query
time.

Note that Tsolve(m, d) query time is the time taken to solve
the linear program associated with the above problem on
a reduced instance size. Also, observe that Theorem 6.1
requires p < ∞. This restriction is necessary to forbid
relative error with respect to the infinity norm. Indeed, p
can be an arbitrarily large constant, but for p = ∞ we
can look for rows above an ε/poly(d) threshold in the case
when A is an all-ones column n-vector (so an n× 1 matrix).
Then ‖Ax‖∞ = ‖x‖∞ since x is a scalar. Also, A is a well-
conditioned basis for its own column span but the number of
rows of leverage exceeding ε/poly(d) = ε is n for a small
constant ε. This intuition allows us to prove the following
theorem.

Theorem 6.2. Any algorithm which outputs an ε‖b‖∞ rel-
ative error solution to the `∞-regression problem requires
min

{
n, 2Ω(d)

}
space.

7. Experimental Evaluation
To validate our approach, we evaluate the use of high
`p-leverage rows in order to approximate `∞-regression1,
focusing particularly on the cases using `1 and `2 well-

1Code available at https://github.com/c-dickens/
stream-summaries-high-lev-rows

conditioned bases. It is straightforward to model `∞-
regression as a linear program in the offline setting. We use
this to measure the accuracy of our algorithm. The imple-
mentation is carried out in the single pass streaming model
with a fixed space constraint, m, and threshold, αp/m for
both conditioning methods to ensure the number of rows
kept in the summary did not exceed m. Recall from Re-
mark 2.3 that the single-pass streaming implementation is
equivalent to the distributed model with only one participant
applying merge-and-reduce, so this experiment can also be
seen as a distributed computation with the merge step being
the appending of new rows and the reduce step being the
thresholding in the new well-conditioned basis.

Methods. We analyze two instantiations of our methods
based on how we find a well-conditioned basis and repeat
over 5 independent trials with random permutations of the
data. The methods are as follows:

SPC3: We use an algorithm of Yang et al. (2013) to com-
pute an `1-wcb. This method is randomized as it em-
ploys the Sparse Cauchy Transform and is only an `1-well-
conditioned basis with constant probability We also imple-
mented a check condition which showed that almost always,
roughly 99% of the time, the randomized construction SPC3
would return a (d2.5, 1, 1)-well-conditioned basis. Thus, we
bypassed this check in our experiment to ensure quick up-
date times.

Orth: In addition, we also used an orthonormal basis using
the QR decomposition which is an `2-wcb. This method
is fully deterministic and outputs a (

√
d, 1, 2)-well- condi-

tioned basis.

Sample: A sample of the data is chosen uniformly at ran-
dom and the retained summary has size exactly m.

Identity: No conditioning is performed. For a block B
of the input, the surrogate scores wi(B) = ‖eTi B‖22/‖B‖2F
are used to determine which rows to keep. As the sum of
these wi(B) is 1, we keep all rows which have wi(B) >
2/m. Since no more than m/2 of the rows can satisfy
wi(B) > 2/m, the size of the stored subset of rows can be
controlled and cannot grow too large.

Remark 7.1. The Identity method keeps only the rows
with high norm which contrasts our conditioning approach:
if most of the mass of the block is concentrated on a few
rows then these will appear heavy locally despite the possi-
bility that they may correspond to previously seen or unim-
portant directions. In particular, if these heavy rows sig-
nificantly outweigh the weight of some sparse directions
in the data it is likely that the sparse directions will not
be found at all. For instance, consider data X ∈ Rn×d
which is then augmented by appending the identity (and
zeros) so that these are the only vectors in the new direc-
tions. That is, set X ′ = [X,0n×k;0k×d, Ik×k] and then



Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

permute the rows of X ′. The appended sparse vectors from
Ik×k will have leverage of 1 so will be detected by the well-
conditioned basis methods. However there is no guarantee
that the Identity method will identify these directions
if the entries in X significantly outweigh those in Ik×k. In
addition, there is also no guarantee that using uniform sam-
pling will identify these points, particularly when k is small
compared to n and d. So while choosing to do no condition-
ing seems attractive, this example shows that doing so may
not give any meaningful guarantees and hence we prefer the
approach in Section 3. We compare only to these baselines
as we are not aware of any other competing methods in the
small memory regime for the `∞-regression problem.

Datasets. We tested the methods on a subset of the US Cen-
sus Data containing 5 million rows and 11 columns2 and
YearPredictionMSD3 which has roughly 500,000 rows and
90 columns (although we focus on a fixed 50,000 row sam-
ple so that the LP for regression is tractable: see Figure 4c
in the Supplementary Material, Appendix F). For the census
dataset, space constraints between 50,000 and 500,000 rows
were tested and for the YearPredictionsMSD data space
budgets were tested between 2,500 and 25,000. The gen-
eral behavior is roughly the same for both datasets so for
brevity we primarily show the results for US Census Data,
and defer corresponding plots for YearPredictionsMSD to
Appendix F.

Results on approximation error compared to storage
Let f∗ denote the minimal value of the full regression ob-
tained by x∗ and let x′ be the output of the reduced prob-
lem. The approximate solution to the full problem is then
f̂ = ‖Ax′ − b‖∞ and approximation error is measured as
f̂/f∗ − 1 (note that f̂ ≥ f∗). An error closer to 0 demon-
strates that f̂ is roughly the same as f∗ so the optimal
value is well-approximated. Figures 2a and 2b show that
on both datasets the Identity method consistently per-
forms poorly while Sample achieves comparable accuracy
to the conditioning methods. Despite the simplicity of uni-
form sampling to keep a summary, the succeeding sections
discuss the increased time and space costs of using such
a sample and show that doing so is not favourable. Thus,
neither of the baseline methods output a summary which
can be used to approximate the regression problem both
accurately and quickly, hence justifying our use of lever-
age scores. Our conditioning methods perform particularly
well in the US Census Data data (Figure 2a) with Orth
appearing to give the most accurate summary and SPC3 per-
forming comparably well but with slightly more fluctuation:
similar behaviour is observed in the YearPredictionMSD

2http://www.census.gov/census2000/PUMS5.
html

3https://archive.ics.uci.edu/ml/datasets/
yearpredictionmsd

(Figure 2b) data too. The conditioning methods are also
seen to be robust to the storage constraint, give accurate
performance across both datasets using significantly less
storage than sampling, and give a better estimate in general
than doing no conditioning.

Results on Space Complexity. Recall that the space con-
straint is m rows and throughout the stream, after a local
computation, the merge step concatenates more rows to the
existing summary until the bound m is met, prior to comput-
ing the next reduction. During the initialization of the block
A′ by Algorithm 1, the number of stored rows is exactly m.
However, we measure the maximum number of rows kept
in a summary after every reduction step to understand how
large the returned summary can grow. As seen in Figure
2c, Identity keeps the smallest summary but there is
no reason to expect it has kept the most important rows.
In contrast, if m is the bound on the summary size, then
uniform sampling always returns a summary of size exactly
m. However, we see that this is not optimal as both condi-
tioning methods can return a set of rows which are pruned
at every iteration to roughly half the size and contains only
the most important rows in that block. Both conditioning
methods exhibit similar behavior and are bounded between
both Sample and Identity methods. Therefore, both of
the conditioning methods respect the theoretical bound and,
crucially, return a summary which is sublinear in the space
constraint and hence a significantly smaller fraction of the
input size.

Results on Time Complexity. There are three time costs
measured. The first is the update time taken to com-
pute the local well-conditioned basis which is theoretically
O(md2 +md5 logm) by Theorem 2.2. However, the two
bases that we test are an orthonormal basis, computable in
time O(md2) and the SPC3 transform which takes time
O(nnz(B) logm) for a block B with m rows and nnz(B)
non-zero entries. Figure 3a demonstrates that SPC3 is faster
than Orth on this data in practice but this small absolute
difference becomes negligible over the entirety of the stream
as seen in Figure 3c. The query time in Figure 3b is roughly
proportional to the summary size in all instances but here
the conditioning methods perform noticeably better due to
the smaller summary size that is returned as discussed in
the previous section. However, as seen in Figure 4c, (Sup-
plementary Material, Appendix F ) this disparity becomes
hugely significant on higher dimensionality data due to the
increased size summary retained by sampling, further justi-
fying our approach of pruning rows at every stage. While
Identity appears to have fast query time, this is due to
the summary being smaller. Although it may seem that for
smaller summaries more local bases need to be computed
and this time could prohibitively increase over the stream,
Figure 3c demonstrates that even using small blocks does
not cause the overall time (to process the stream and pro-



Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

10−2

10−1

100

Er
ro

r: 
1−

̂ f/f
*

Orth
SPC3
Sample
Identity

(a) U.S. Census

2000 4000 6000 8000 10000 12000 14000
Space Constraint (Number of rows)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Er
ro

r 1
−

̂ f/f
*

Orth
SPC3
Sample
Identity

(b) YearPredictionMSD

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

0

100000

200000

300000

400000

500000

M
ax

im
um

 su
m

m
ar

y 
si

ze

Orth
SPC3
Sample
Identity

(c) Max summary size vs space constraint

Figure 2: Error vs Space Constraint in (a) and (b) and Maximum Summary Size vs Space Constraint (c). Total input size is
5000000× 11.

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ti
m

e 
(s

ec
on

ds
)

Orth
SPC3

(a) Time to compute local basis

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
(s

ec
on

ds
)

Orth
SPC3
Sample
Identity

(b) Solution time for `∞-regression

100000 200000 300000 400000 500000
Space Constraint (Number of rows)

10−4

10−3

10−2

10−1

100

101

To
ta

l T
im

e

Orth
SPC3
Sample
Identity
Brute Force

(c) Total time

Figure 3: Computation Times compared to summary size

duce an approximate query) to increase too much. Hence,
an approximation can be obtained which is highly accurate,
and in total time faster than the brute force solver.

Experimental Summary. While it might seem attractive
not to perform any conditioning on the matrix and just pick
heavy rows, our experiments show that this strategy is not
effective in practice, and delivers poor accuracy. Although
a simple sample of randomly chosen rows can be easily
maintained, this appears less useful due to the increased time
costs associated with larger summaries when conditioning
methods output a similar estimate in less time over the
entire stream. As the `∞-regression problems depend only
on a few rows of the data there are cases when uniform
sampling can perform well: if many of the critical rows
look similar then there is a chance that uniform sampling
will select some examples. In this case, the leverage of the
important direction is divided across the repetitions, and
so it is harder to ensure that desired direction is identified.
Despite this potential drawback we have shown that both
Orth and SPC3 can be used to find accurate summaries
which perform robustly across each of the measures we
have tested. It appears that SPC3 performs comparably

to Orth; both are relatively quick to compute and admit
accurate summaries in similar space. In particular, both
conditioning methods return summaries which are a fraction
of the space budget and hence highly sublinear in the input
size, which give accurate approximations and are robust to
the concatenation of new rows. All of these factors make
the conditioning method fast in practice to both find the
important rows in the data and then compute the reduced
regression problem with high accuracy.

Due to the problems in constructing summaries which can
be used to solve regression quickly and accurately when
using random sampling or no transformation, our methods
are shown to be efficient and accurate alternatives. Our
approach is vindicated both theoretically and practically:
this is most clear in the U.S. Census dataset where small
error can be achieved using a summary roughly 2% the
size of the data. This also results in an overall speedup as
solving the optimization on the reduced set is much faster
than solving on the full problem. Such significant savings
show that this general approach can be useful in large-scale
applications.



Leveraging Well-Conditioned Bases: Streaming & Distributed Summaries in Minkowski p-Norms

Acknowledgements
The work of G. Cormode and C. Dickens is supported by
European Research Council grant ERC-2014-CoG 647557
and The Alan Turing Institute under the EPSRC grant
EP/N510129/1. D. Woodruff would like to acknowledge
the support by the National Science Foundation under Grant
No. CCF-1815840.

References
Agarwal, Pankaj, Cormode, Graham, Huang, Zengfeng,

Phillips, Jeff, Wei, Zheiwei, and Yi, Ke. Mergeable
summaries. In ACM Principles of Database Systems,
2012.

Clarkson, K. L., Drineas, P., Magdon-Ismail, M., Mahoney,
M. W., Meng, X., and Woodruff, D. P. The fast cauchy
transform and faster robust linear regression. In Proc. of
the 24-th Annual SODA, pp. 466–477, 2013.

Cohen, Michael B and Peng, Richard. `p row sampling by
lewis weights. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pp. 183–192.
ACM, 2015.

Dasgupta, A., Drineas, P., Harb, B., Kumar, R., and Ma-
honey, M. W. Sampling algorithms and coresets for lp
regression. In Proc. of the 19th Annual SODA, pp. 932–
941, 2008.

Feldman, Jon, Muthukrishnan, S., Sidiropoulos, Anastasios,
Stein, Cliff, and Svitkina, Zoya. On the complexity of pro-
cessing massive, unordered, distributed data. Technical
Report CoRR abs/cs/0611108, ArXiV, 2006.

Ghashami, M., Liberty, E., and Phillips, J. M. Efficient Fre-
quent Directions Algorithm for Sparse Matrices. ArXiv
e-prints, 2016.

Ghashami, Mina and Phillips, Jeff M. Relative errors for de-
terministic low-rank matrix approximations. In Proceed-
ings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pp. 707–717, 2014.

Ghashami, Mina, Liberty, Edo, Phillips, Jeff M., and
Woodruff, David P. Frequent directions: Simple and
deterministic matrix sketching. SIAM J. Comput., 45(5):
1762–1792, 2016.

Hand, Michael Lawrence. Aspects of linear regression esti-
mation under the criterion of minimizing the maximum
absolute residual. 1978.

Hardt, Moritz and Woodruff, David P. How robust are linear
sketches to adaptive inputs? In Proceedings of the Forty-
fifth Annual ACM Symposium on Theory of Computing,

STOC ’13, pp. 121–130, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2029-0. doi: 10.1145/2488608.
2488624. URL http://doi.acm.org/10.1145/
2488608.2488624.

Kremer, Ilan, Nisan, Noam, and Ron, Dana. On randomized
one-round communication complexity. Computational
Complexity, 8(1):21–49, 1999.

Kushilevitz, E. and Nisan, N. Communication Complexity.
Cambridge University Press, 1997.

Liberty, Edo. Simple and deterministic matrix sketching.
In The 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2013,
Chicago, IL, USA, August 11-14, 2013, pp. 581–588,
2013.

Meng, Xiangrui and Mahoney, Michael W. Low-distortion
subspace embeddings in input-sparsity time and applica-
tions to robust linear regression. In Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pp. 91–100, 2013.

Shen, Fumin, Shen, Chunhua, Hill, Rhys, van den Hengel,
Anton, and Tang, Zhenmin. Fast approximate l∞ mini-
mization: speeding up robust regression. Computational
Statistics & Data Analysis, 77:25–37, 2014.

Song, Z., Woodruff, D., and Zhong, P. Low rank approxi-
mation with entrywise `1-norm error. In STOC, 2017.

Sposito, VA. Minimizing the maximum absolute deviation.
ACM SIGMAP Bulletin, (20):51–53, 1976.

Woodruff, David. Sketching as a tool for numerical linear
algebra. Foundations and Trends in Theoretical Computer
Science, 10(1-2):1–157, 2014.

Woodruff, David and Zhang, Qin. Subspace embeddings
and lp-regression using exponential random variables.
JMLR: Workshop and Conference Proceedings, 30:1–22,
2013.

Yang, J., Meng, X., and Mahoney, M. W. Quantile regres-
sion for large-scale applications. Proc. of the 30th ICML
Conference, JMLR W&CP, 28(3):881–887, 2013.


