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This supplementary material provides details about the
derivations and configuration of the proposed PR-SSM in
Sec. 1. Sec. 2 elaborates on the reference methods and the
employed datasets in the model learning benchmark. Finally,
additional experimental results from PR-SSM learning, the
model learning benchmark, and the large scale experiment
are summarized in Sec. 3.

1. Probabilistic Recurrent State-Space Model
1.1. Evidence Lower Bound (ELBO)

Summarizing the model assumptions from the main paper,
the model’s joint distribution is given by

p(y1:T ,x1:T ,f2:T , z) =

[
T∏

t=1

p(yt | xt)

]
[

T∏
t=2

p(xt | ft)

]
[
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t=2

Dx∏
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p(ft,d | x̂t−1, zd)p(zd)

]
p(x1) . (1)

The variational distribution over the unknown model vari-
ables is defined as

q(x1:T ,f2:T , z) =

[
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p(xt | ft)

]
[
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Table 1. Default configuration for the initialization of the PR-SSM
(hyper-) parameters θPR-SSM. This configuration has been employed
for all experiments in the benchmark section.

PARAMETER INITIALIZATION

INDUCING INPUTS ζd ∼ U(−2, 2) ∈ RP×(Dx+Du)

INDUCING
OUTPUTS

q(zd) = N (zd | µd,Σd) ∈ RP

µd,i ∼ N (µd,i | 0, 0.052)
Σd = 0.012 · I

PROCESS NOISE σ2
X,i = 0.0022 ∀i ∈ [1, DX]

SENSOR NOISE σ2
Y,i = 1.02 ∀i ∈ [1, DY]

KERNEL HYPER-
PARAMETERS

σ2
f = 0.52

l2i = 2 ∀i ∈ [1, Dx]

Together, the derivation of the ELBO is given below in (3)
to (8).

In the ELBO, as derived in (8), the last term is a regulariza-
tion on the initial state distribution. For the full gradient-
based optimization in the main paper, an uninformative
initial distribution is chosen and fixed, such that the third
term is dropped. In the stochastic optimization scheme,
this term acts as a regularization preventing the recognition
model to become overconfident in its predictions.

1.2. Model Configuration

The PR-SSM exhibits a large number of model (hyper-)
parameters θPR-SSM which need to be initialized. However,
empirically, most of these model parameters can be initial-
ized to a default setting as given in Tab. 1. This default
configuration has been employed for all benchmark experi-
ments presented in the main paper.

The PR-SSM’s latent state dynamics model and noise mod-
els are configured to initially exhibit a random walk behavior.
This behavior is clearly visible for the prediction based on
the untrained model in Fig. 2 of the main paper. The GP
prior is approximating the identity function based on an
identity mean function and almost zero inducing outputs (up
to a small Gaussian noise term to avoid singularities). The
inducing inputs are spread uniformly over the function’s do-
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Table 2. Structural configuration of the PR-SSM as utilized in the
benchmark experiments.

PARAMETER INITIALIZATION

INDUCING POINTS P = 20
STATE SAMPLES N = 50

SUBTRAJECTORIES
NBATCH = 10
Tsub = 100

LATENT SPACE Dx = 4

main. The noise processes are initializes such as to achieve
high correlations between latent states over time (i.e. small
process noise magnitude). At the same time, a larger obser-
vation noise is required to obtain a inflation of predictive
uncertainty over time. This inflation of predictive uncer-
tainty is again clearly visible in Fig. 2 of the main paper.
Both noise terms are chosen in a way to obtain numerically
stable gradients for both the sample based log likelihood and
the backpropagation through time in the ELBO evaluation.

The number of samples used in the ELBO approximation,
number of inducing points in the GP approximation and
batch size are, in contrast, a trade-off between model ac-
curacy and computational speed. The proposed default
configuration empirically showed good performance whilst
being computationally tractable.

Two tuning parameters remain, which are problem specific
and have to be chosen for each dataset individually. Depend-
ing on the true system’s timescales/sampling frequency and
system order, the length of subtrajectories Tsub for mini-

Table 3. Summary of the real-world, non-linear system identifi-
cation benchmark tasks. All datasets are generated by recording
input/output data of actual physical plants. For each dataset, the
lengths of training and test set are given together with the number
of past input and outputs used for the NARX dynamics models.

Ntrain Ntest Lu , Ly

ACTUATOR (NRGAARD, 2000) 512 512 10
BALLBEAM (MOOR, 2017) 500 500 10
DRIVES (WIGREN, 2010) 250 250 10
FURNACE (MOOR, 2017) 148 148 3
DRYER (MOOR, 2017) 500 500 2

batching and the latent state dimensionality Dx have to be
specified manually. For the benchmark datasets we choose
Tsub = 100 and Dx = 4.

2. Model Learning Benchmark Details
In the main paper, the proposed PR-SSM’s long-term pre-
dictive performance is compared to several state-of-the-art
methods. The benchmark is set up similar to the evalua-
tion presented in (Doerr et al., 2017). Details about the
individual benchmark methods, their configuration and the
employed datasets can be found in the following sections.
Minor adjustments with respect to the set up in (Doerr et al.,
2017) will be pointed out in the following. These have been
introduced to enable fair comparison between all benchmark
methods.
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Figure 1. Comparison of the learning progress of the proposed
method on the Drive dataset given the full ELBO gradient (blue)
and the stochastic gradient, based on minibatches and the recog-
nition model (orange). RMSE and log likelihood results over
learning iterations are shown for the free simulation on training
and test dataset. The full gradient optimization scheme overfitts
(in particular visible in the log likelihood) and exposes a difficult
optimization objective (cf. spikes in model loss). Stochastically
optimizing the model-based on the proposed minibatched ELBO
estimates and employing the recognition model significantly re-
duces overfitting and leads to more robust learning.

2.1. Benchmark Methods

The proposed PR-SSM is evaluated in comparison to meth-
ods from three classes: one-step ahead autoregressive mod-
els (GP-NARX, NIGP), multi-step ahead autoregressive
models in latent space (REVARB, MSGP) and Markov
state-space models (SS-GP-SSM). To enable a fair com-
parison, all methods have access to a predefined amount of
input/output data for initialization.

(i) GP-NARX (Kocijan et al., 2005): The system dynam-
ics is modeled as yt+1 = f(yt, . . . , yt−Ly

, ut, . . . , ut−Lu
)

with a GP prior on f . The GP has a zero mean function and
a squared exponential kernel with automatic relevance deter-
mination. The kernel hyper-parameters, signal variance and
lengthscales, are optimized based on the standard maximum
likelihood objective. A sparse approximation (Snelson &
Ghahramani, 2006), based on 100 inducing inputs is em-
ployed. Moment matching (Girard et al., 2003) is employed
to obtain a long-term predictive distribution.

(ii) NIGP (McHutchon & Rasmussen, 2011): Noise Input
GPs (NIGP) account for uncertainty in the input by treating
input points as deterministic and inflating the corresponding
output uncertainty, leading to state dependent noise, i.e.
heteroscedastic GPs. The experimental results are based on
the publicly available Matlab code. Since no sparse version
is available, training is performed on the full training dataset.
Training on the full dataset is however not possible for larger
datasets and provides an advantage to NIGP. Experiments
based on a random data subset of size 100 lead to decreased

performance in the order of the GP-NARX results or worse.

(iii) REVARB (Mattos et al., 2015): Recurrent Variational
Bayes (REVARB) is a recent proposition to optimize the
lower bound to the log-marginal likelihood log p(y) using
variational techniques. This framework is based on the vari-
ational sparse GP framework (Titsias, 2009), but allows
for computation of (time-)recurrent GP structures and deep
GP structures (stacking multiple GP-layers in each time-
step). For our benchmark, we run REVARB using one
(REVARB1) respectively two (REVARB2) hidden layers,
where each layer is provided with 100 inducing inputs. We
closely follow the original setup as presented by (Mattos
et al., 2015), performing 50 initial optimization steps based
on fixed variances and up to 10000 steps based on variable
variances. Unlike for the other benchmark methods, the au-
toregressive history of REVARB implicitly becomes longer
when introducing additional hidden layers.

(iv) MSGP (Doerr et al., 2017): MSGP is a GP-NARX
model operating in a latent, noise free state, which is trained
by optimizing its long-term predictions. The experimental
results are obtained according to the configuration described
in (Doerr et al., 2017), again using 100 inducing points and
moment matching.

(v) SS-GP-SSM (Svensson & Schön, 2017): The Sparse-
Spectrum GP-SSM is employing a sparse spectrum GP ap-
proximation to model the system’s transition dynamics in a
Markovian, latent space. The available Matlab implementa-
tion is restricted to a 2D latent space. In the experimental
results, a default configuration is employed as given by:
K = 2000, N = 40, n basis u = n basis x = 7. The
variables are defined as given in the code published for
(Svensson & Schön, 2017).

2.2. Benchmark Datasets

The benchmarks datasets are composed of popular sys-
tem identification datasets from related work (Narendra
& Parthasarathy, 1990; Kocijan et al., 2005; Mattos et al.,
2016). They incorporate measured input output data from
technical systems like hydraulic actuators, furnaces, hair
dryers or electrical motors. For all of these problems, both
inputs and outputs are one-dimensional Du = Dy = 1.
However, the system’s true state is higher dimensional such
that an autoregressive history or an explicit latent state repre-
sentation is required to capture the relevant dynamics. The
number of historic inputs and outputs for the autoregres-
sive methods is fixed a-priori for each dataset as previously
used in other publications. For model training, datasets
are normalized to zero mean and variance one based on the
available training data. References to the individual datasets,
training and test trajectory length, and the utilized history
for the GP-NARX models are summarized in Tab. 3.
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Figure 2. Detailed results from the Sarcos large scale task: Predictions from the GP-NARX model (red) and the PR-SSM (green) for all
seven joint positions as obtained for the first test experiment. The ground truth, measured joint positions are shown in blue. PR-SSM is
clearly able to capture the robot arm dynamics, whereas the GP-NARX model only succesfully captures a rough model of the robot arm
dynamics for two out of seven joints.

3. Additional Results
3.1. Optimization Schemes Comparison

In Fig. 1, the RMSE and the negative log likelihood, which
is obtained for the model’s long-term prediction, is depicted
over learning iterations for the training- (solid line) and test-
(dotted line) set from the Drives dataset. The full gradient
optimization (blue) obtains smaller training loss in compari-
son to the stochastic optimization scheme for both RMSE
and negative log likelihood. The resulting test performance
however indicates similar performance in terms of RMSE
whilst showing clear overfitting of the full-gradient-based
model in terms of log likelihood. Additionally, optimizing,
based on the full gradient, is much more delicate and less
robust as indicated by the spikes in loss and the higher vari-
ance of incurred optimization progress. Fig. 1 depicts mean
(lines) and minimum to maximum intervals (shaded areas)
of incurred loss, based on five independent model trainings.

3.2. Detailed Benchmark Results

In Tab. 4, detailed results are provided for the benchmark
experiments. The reference learning methods in the pre-
sented benchmark are highly deceptive to changes in the
data pre-processing and the long-term prediction method.
Therefore, results are detailed for GP-NARX, NIGP, RE-
VARB 1, and REVARB 2 for all combinations of normal-
ized/unnormalized training data and mean or moment match-
ing predictions. The results for methods MSGP, SS-GP-
SSM and PR-SSM are always computed for the normalized
datasets using the method specific propagation of uncer-
tainty schemes.

Obtaining uncertainty estimates is one key requirement for
employing the long-term predictions, e.g. in model-based
control. Therefore, only the predictive results based on the
approximate propagation of uncertainty through moment
matching is considered in the main paper, although better
results in RMSE are sometimes obtained from employing
only the mean predictions. A comparison of the predictive
results based on mean and moment matching predictions
on the Drives dataset is shown in Fig. 5. The results from
the unnormalized datasets and moment matching are in line
with the results published in (Doerr et al., 2017).

3.3. Large Scale Experiment Details

The Sarcos task is based on a publicly available dataset com-
prising joint positions, velocities, acceleration and torques
of a seven degrees-of-freedom SARCOS anthropomorphic
robot arm. This dataset has been previously used in (Vi-
jayakumar & Schaal, 2000; Williams & Rasmussen, 2005)
in the task of learning the system’s inverse dynamics, there-
fore mapping joint position, velocities, and accelerations
to the required joint torques. This task can be framed as a
standard regression problem, which is solved in a supervised
fashion. In contrast, in this paper, we consider the task of
learning the forward dynamics, i.e. predicting the joint posi-
tions given a sequence of joint torques. The system output is
therefore given by the seven joint positions (Dy = 7). Joint
velocities and acceleration, as latent states, are not available
for learning but have to be inferred. The system input is
given by the seven joint torques (Du = 7).

The original training dataset (44.484 datapoints) recorded at
100 Hz has been downsampled to 50 Hz. It is split into 66
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Table 4. Comparison of model learning methods on five real-world benchmark examples. The RMSE result (mean (std) over 5 indepen-
dently learned models) is given for the free simulation on the test dataset. For each dataset, the best result (solid underline) and second
best result (dashed underline) is indicated. The proposed PR-SSM consistently outperforms the reference (SS-GP-SSM) in the class of
Markovian state space models and robustly achieves performance comparable to the one of state-of-the-art latent, autoregressive models.

ONE-STEP-AHEAD
AUTOREGRESSIVE

MULTI-STEP-AHEAD AUTOREGRESSIVE IN
LATENT SPACE

MARKOVIAN STATE-SPACE
MODELS

DATA UNNORMALIZED + MEAN PREDICTION DEFAULT CONFIGURATION

TASK GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

ACTUATOR 0.645 (0.018) 0.752 (0) 0.496 (0.057) 0.565 (0.047) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)
BALLBEAM 0.169 (0.005) 0.165 (0) 0.138 (0.001) 0.073 (0.000) 0.124 (0.034) 411.550 (273.043) 0.073 (0.007)
DRIVES 0.579 (0.004) 0.378 (0) 0.718 (0.081) 0.282 (0.031) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)
FURNACE 1.199 (0.001) 1.195 (0) 1.210 (0.034) 1.945 (0.016) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)
DRYER 0.278 (0.003) 0.281 (0) 0.149 (0.017) 0.128 (0.001) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

DATA UNNORMALIZED + MOMENT MATCHING DEFAULT CONFIGURATION

TASK GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

ACTUATOR 0.633 (0.018) 0.601 (0) 0.430 (0.026) 0.618 (0.047) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)
BALLBEAM 0.077 (0.000) 0.078 (0) 0.131 (0.005) 0.073 (0.000) 0.124 (0.034) 411.550 (273.043) 0.073 (0.007)
DRIVES 0.688 (0.003) 0.398 (0) 0.801 (0.032) 0.733 (0.087) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)
FURNACE 1.198 (0.002) 1.195 (0) 1.192 (0.002) 1.947 (0.032) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)
DRYER 0.284 (0.003) 0.280 (0) 0.878 (0.016) 0.123 (0.002) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

DATA NORMALIZATION + MEAN PREDICTION DEFAULT CONFIGURATION

TASK GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

ACTUATOR 0.665 (0.014) 0.791 (0) 0.506 (0.092) 0.559 (0.069) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)
BALLBEAM 0.357 (0.199) 0.154 (0) 0.141 (0.004) 0.206 (0.008) 0.124 (0.034) 411.550 (273.043) 0.073 (0.007)
DRIVES 0.564 (0.029) 0.369 (0) 0.605 (0.027) 0.376 (0.026) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)
FURNACE 1.201 (0.001) 1.205 (0) 1.196 (0.002) 1.189 (0.001) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)
DRYER 0.282 (0.001) 0.269 (0) 0.123 (0.001) 0.113 (0) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

DATA NORMALIZATION + MOMENT MATCHING DEFAULT CONFIGURATION

TASK GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

ACTUATOR 0.627 (0.005) 0.599 (0) 0.438 (0.049) 0.613 (0.190) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)
BALLBEAM 0.284 (0.222) 0.087 (0) 0.139 (0.007) 0.209 (0.012) 0.124 (0.034) 411.550 (273.043) 0.073 (0.007)
DRIVES 0.701 (0.015) 0.373 (0) 0.828 (0.025) 0.868 (0.113) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)
FURNACE 1.201 (0.000) 1.205 (0) 1.195 (0.002) 1.188 (0.001) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)
DRYER 0.310 (0.044) 0.268 (0) 0.851 (0.011) 0.355 (0.027) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

independent experiments as indicated by the discontinuities
in the original time-series data. Six out of 66 experiments
have been utilized for testing whereas the other 60 experi-
ments remain for training. None of the reference methods
from the model learning benchmark is out-of-the-box appli-
cable to this large scale dataset. To obtain a baseline, the
sparse GP-NARX model has been trained on a subset of
training experiments (400 inducing points, approx. 2000
training data points). The PR-SSM can be directly trained
on the full training dataset utilizing its stochastic, mini-
batched optimization scheme. PR-SSM is setup similar to
the configuration described in the benchmark experiment
but based on a 14 dimensional latent state (Dx = 14). Long-
term prediction results on one of the test experiments are
visualized in Fig. 2. PR-SSM robustly predicts the robot
arm motions for all joints and clearly improves over the

GP-NARX baseline. In contrast, the GP-NARX baseline
can not predict the dynamics on 5 out of 7 joints.
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