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Abstract
State-space models (SSMs) are a highly expres-
sive model class for learning patterns in time
series data and for system identification. Deter-
ministic versions of SSMs (e.g., LSTMs) proved
extremely successful in modeling complex time
series data. Fully probabilistic SSMs, however,
are often found hard to train, even for smaller
problems. We propose a novel model formulation
and a scalable training algorithm based on dou-
bly stochastic variational inference and Gaussian
processes. This combination allows efficient in-
corporation of latent state temporal correlations,
which we found to be key to robust training. The
effectiveness of the proposed PR-SSM is evalu-
ated on a set of real-world benchmark datasets in
comparison to state-of-the-art probabilistic model
learning methods. Scalability and robustness are
demonstrated on a high dimensional problem.

1. Introduction
System identification, i.e. learning dynamics models from
data (Ljung, 2010), is key in model-based control design
(Aström & Murray, 2010; Camacho & Alba, 2013) and
model-based reinforcement learning (RL) (Deisenroth &
Rasmussen, 2011; Doerr et al., 2017b). State-space models
(SSMs) are one popular class of representations for model
learning (Billings, 2013), which describe a system with in-
put ut, output yt, and a latent Markovian state xt. The
transition model f , observation model g, process, and mea-
surement noise εt and γt form a discrete-time SSM

xt+1 = f(xt,ut) + εt ,

yt = g(xt) + γt .
(1)
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In real systems, the latent state xt can typically not be
measured directly, but has to be inferred from a series of
noisy output observations. Efficient methods exist for linear
models (Van Overschee & De Moor, 2012) and non-linear,
deterministic models (Hochreiter & Schmidhuber, 1997).

Probabilistic models enable safe RL and alleviate model
bias (Deisenroth & Rasmussen, 2011). Placing a Gaussian
process (GP) prior on the unknown transition function f and
potentially on the observation model g allows for Bayesian
model learning, resulting in GP-SSMs. Robust training of
these probabilistic, non-linear SSMs is a challenging and
only partially solved problem, especially for higher dimen-
sional systems (Frigola et al., 2013; Bayer & Osendorfer,
2014; Krishnan et al., 2015; Fraccaro et al., 2016; Elefthe-
riadis et al., 2017; Svensson & Schön, 2017). This paper
proposes the probabilistic recurrent state-space model1 (PR-
SSM2). PR-SSM takes inspiration from RNN model learn-
ing. In particular, the transition model is unrolled over time,
therefore accounting for temporal correlations whilst simul-
taneously allowing for learning by backpropagation through
time. The proposed method enables probabilistic model
predictions, inferring complex latent state distributions, and
principled model complexity regularization. We propose
an adapted form of a recognition model for the initial state,
which facilitates scalability through batch learning and learn-
ing of slow or unstable system dynamics (cf. Sec. 5).

In summary, the key contributions of this paper are:
• Combining gradient-based and sample-based inference

for efficient learning of nonlinear Gaussian process
state-space models;

• Tractable variational approximation, maintaining the
true latent state posterior and temporal correlations;

• Doubly stochastic inference scheme for scalability;
• Recognition model, which allows for initializing the

latent state distribution and thus for robust training and
prediction.

Together, these contributions allow for efficient and robust
learning of the PR-SSM. The proposed framework is evalu-
ated on a set of real-world system identification datasets and
benchmarked against a range of state-of-the art methods.

1Code available at: https://github.com/
boschresearch/PR-SSM .

2Pronounced prism.

https://github.com/boschresearch/PR-SSM
https://github.com/boschresearch/PR-SSM
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2. Related Work
Modeling the behavior of systems with only partially observ-
able states has been an active field of research for many years
and several schools of thought have emerged. Representa-
tions range from SSMs (Van Overschee & De Moor, 2012)
over Predictive State Representations (PSRs) (Littman &
Sutton, 2002; Singh et al., 2003; Rudary & Singh, 2004) to
autoregressive models (Murray-Smith & Girard, 2001; Gi-
rard et al., 2003; Likar & Kocijan, 2007; Billings, 2013), as
well as hybrid versions combining these approaches (Mattos
et al., 2015; 2016; Doerr et al., 2017a).

Autoregressive (history-based) methods avoid the complex
inference of a latent state and instead directly learn a map-
ping from a history of h past inputs and observations to
the next observation, i.e. yt+1 = f(yt:t−h,ut:t−h). These
models face the issue of learning from noise corrupted in-
put data. Recent work addresses this problem by either ac-
tively accounting for input noise (McHutchon & Rasmussen,
2011) or reverting to a hybrid, autoregressive formulation
in a latent, but noise free state (Mattos et al., 2016; Doerr
et al., 2017a). Such models can be made deep and trained
in a recurrent manner (Mattos et al., 2015).

In contrast, SSMs are based on a compact, Markovian state
representation. Furthermore, they allow for the direct appli-
cation of many existing control algorithms, which rely on
the explicit representation of the latent state. Exact solutions
for state inference and model learning for linear Gaussian
SSMs are given by the well known Kalman filter/smoother
(Kalman, 1960) and subspace identification (Van Overschee
& De Moor, 2012). In the case of non-linear latent state
transition dynamics, both deterministic and probabilistic
variants are active fields of research.

Deterministic variants such as Long Short-Term Memory
(LSTM) models have been shown to be powerful repre-
sentations for tasks such as natural language processing
(Venugopalan et al., 2014) or text understanding (Sutskever
et al., 2011). However, for the purpose of system identifica-
tion and control, probabilistic predictions are often preferred
to make model errors explicit (Deisenroth & Rasmussen,
2011). A variety of stochastic deep recurrent models has
been presented based on Stochastic Gradient Variational
Bayes (SGVB) (Bayer & Osendorfer, 2014; Krishnan et al.,
2015; Watter et al., 2015; Chung et al., 2015; Archer et al.,
2015; Karl et al., 2016; Fraccaro et al., 2016; Gemici et al.,
2017). The PR-SSM inference is inspired by the learning
procedure in these deep recurrent models while employing
GPs as a principled way of model regularization. Both pro-
cedures share the explicit unrolling of transition and obser-
vation model. Errors between the predicted and the observed
system output are propagated back over time. Therefore, the
transition dynamics has to be inferred, but the latent state
(distribution) is given implicitly. This way, the challenging

initialization and optimization of latent state variables is pre-
vented. In contrast to deep recurrent models, the PR-SSM
loss and model regularization is automatically obtained from
the GP assumption. Furthermore, PR-SSMs obtain predic-
tive distributions and the proposed initial state recognition
model facilitates learning on shorter sub-trajectories and
unstable systems, which is not possible in deep recurrent
models.

GP-SSMs are a popular class of probabilistic SSMs (Wang
et al., 2008; Ko & Fox, 2009; Turner et al., 2010; Frigola
et al., 2013; 2014; Eleftheriadis et al., 2017). The use of GPs
allows for a fully Bayesian treatment of the modeling prob-
lem resulting in an automatic complexity trade-off, which
regularizes the learning problem. Filtering and smoothing in
GP-SSMs has already been covered extensively: determin-
istic (e.g. linearization) as well as stochastic (e.g. particles)
methods are presented in (Ko & Fox, 2009; Deisenroth et al.,
2012). These methods, however, assume an established sys-
tem model, which is generally not available without prior
knowledge. In this work, the latent state smoothing distribu-
tion is given implicitly and optimized jointly during model
learning.

Approaches to probabilistic GP-SSMs mainly differ in their
approximations to the model’s joint distribution (e.g. when
solving for the smoothing distribution or for the observa-
tion likelihood). One class of approaches aims to solve for
the true distribution, which requires sample-based methods,
e.g. Particle Markov Chain Monte Carlo (PMCMC), as in
(Frigola et al., 2013; 2014). These methods are close to exact
and thus are able to represent temporal correlations. How-
ever, they are computationally inefficient and intractable
for higher latent state dimensions or larger datasets. A sec-
ond class of approaches is based on variational inference
and mean field approximations in the latent state (Mattos
et al., 2015; Föll et al., 2017). These methods, however,
operate on latent autoregressive models, which can be ini-
tialized by the observed output time series, such that the
learned latent representation acts as a smoothed version
of the observations. In Markovian latent spaces, no such
prior information is available and therefore initialization is
non-trivial. Model optimization based on mean field ap-
proximations empirically leads to highly suboptimal local
solutions. Bridging the gap between both classes, recent
methods strive to recover (temporal) latent state structure. In
(Eleftheriadis et al., 2017), a linear, time-varying latent state
structure is enforced as a tractable compromise between
the true non-linear dependencies and no dependencies as
in mean field variational inference. However, to facilitate
learning, a more complex recognition model over the linear
time-varying dynamics is required. In contrast, the proposed
PR-SSM can efficiently incorporate the true dynamics by
combining sampling- and gradient-based learning.
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3. Gaussian Process State-Space Model
This section presents the general model background for GP-
SSMs. Following a short recap of GPs in Sec. 3.1 and a
specific sparse GP prior in Sec. 3.2, PR-SSM as one partic-
ular GP-SSM is introduced in Sec. 3.3. Inference on this
model is detailed in Sec. 4.

3.1. Gaussian Process

A GP (Williams & Rasmussen, 2005) is a distribution
over functions f : RD → R that is fully defined by a
mean function m(·) and covariance function k(·, ·). For
each finite set of points X = [x1, . . . ,xN ] from the
function’s domain, the corresponding function evaluations
f = [f(x1), . . . , f(xN )] are jointly Gaussian as given by

p(f |X) = N (f |mX ,KX,X) , (2)

with mean vector mX having elements mi = m(xi) and
covariance matrix KX,X with entries Kij = k(xi,xj).
Given observed function values f at input locationsX , the
GP predictive distribution at a new input location x∗ is
obtained as the conditional distribution

p(f∗ | x∗,f ,X) = N (f∗ | µ, σ2), (3)

with posterior mean and variance

µ = mx∗ + kx∗,XK
−1
X,X(f −mX) , (4)

σ2 = kx∗,x∗ − kx∗,XK
−1
X,XkX,x∗ , (5)

where kA,B denotes the scalar or vector of covariances for
each pair of elements inA andB. In this work, the squared
exponential kernel with Automatic Relevance Determina-
tion (ARD) (Williams & Rasmussen, 2005) with hyper-
parameters θGP is employed. Due to the proposed sampling-
based inference scheme (cf. Sec. 4), any other differentiable
kernel might be incorporated instead.

3.2. GP Sparsification

Commonly, the GP prediction in (3) is obtained by con-
ditioning on all training data X , y. To alleviate the com-
putational cost, several sparse approximations have been
presented (Snelson & Ghahramani, 2006). By introducing
P inducing GP targets z = [z1, . . . , zP ] at pseudo input
points ζ = [ζ1, . . . , ζP ], which are jointly Gaussian with
the latent function f , the true GP predictive distribution is
approximated by conditioning only on this set of inducing
points,

p(f∗ | x∗,f ,X) ≈ p(f∗ | x∗, z, ζ) , (6)
p(z) = N (z |mζ ,Kζ,ζ) . (7)

The predicted function values consequently become mutu-
ally independent given the inducing points.

3.3. PR-SSM Model Definition

The PR-SSM is built upon a GP prior on the transition func-
tion f(·) and a parametric observation model g(·). This is
a common model structure, which can be assumed without
loss of generality over (1), since any observation model can
be absorbed into a sufficiently large latent state (Frigola-
Alcade, 2015). Eliminating the non-parametric observa-
tion model, however, mitigates the problem of ‘severe non-
identifiability’ between transition model f(·) and observa-
tion model g(·) (Frigola et al., 2014). Independent GP priors
are employed for each latent state dimension d given indi-
vidual inducing points ζd and zd.

In the following derivations, the system’s latent state, input
and output at time t are denoted by xt ∈ RDx , ut ∈ RDu ,
and yt ∈ RDy , respectively. The shorthand x̂t = (xt,ut)
denotes the transition model’s input at time t. The output
of the transition model is denoted by ft+1 = f(x̂t). A
time series of observations from time a to time b (including)
is abbreviated by ya:b (analogously for the other model
variables).

The joint distribution of all PR-SSM random variables is
given by

p(y1:T ,x1:T ,f2:T , z) =

[
T∏
t=1

p(yt | xt)

]
p(x1)p(z) (8)[

T∏
t=2

p(xt | ft)p(ft | x̂t−1, z)

]
,

where p(ft | x̂t−1, z) =
∏Dx

d=1 p(ft,d | x̂t−1, zd) and
z ≡ [z1, . . . zDx

]. A graphical model of the resulting PR-
SSM is shown in Fig. 1.

The individual contributions to (8) are given by the ob-
servation model and the transition model, which are now
described in detail. The observation model is governed by

p(yt | xt) = N (yt | g(xt), diag(σ2
y,1, . . . , σ

2
y,Dy

)), (9)

In particular, in our experiments, we employed a parametric
observation model

g(xt) = Cxt . (10)

The matrixC is chosen to select theDy first entries of xt by
defining C := [I,0] ∈ RDy×Dx with I being the identity
matrix. This model is suitable for observation spaces that are
low-dimensional compared to the latent state dimensionality,
i.e. Dy < Dx, which is often the case for physical systems
with a restricted number of sensors. The first Dy latent
state dimensions can therefore be interpreted as noise free
sensor measurements. For high-dimensional observation
spaces (e.g. images), a more involved, given observation
model (e.g. a pretrained neural network) may be seamlessly
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Figure 1. Graphical model of the PR-SSM. Gray nodes are ob-
served variables in contrast to latent variables in white nodes.
Thick lines indicate variables, which are jointly Gaussian under a
GP prior.

incorporated into the presented framework as long as g(·) is
differentiable.

Process noise is modeled as

p(xt | ft) = N (xt | ft, diag(σ2
x,1, . . . , σ

2
x,Dx

)) . (11)

The transition dynamics is described independently for each
latent state dimension d by p(ft,d | x̂t−1, zd)p(zd). This
probability is given by the sparse GP prior (7) and predictive
distribution (6), where x∗ = x̂t and f∗ = ft,d. The initial
system state distribution p(x1) is unknown and has to be
estimated.

4. PR-SSM Inference
Computing the log likelihood or a posterior based on (8)
is generally intractable due to the nonlinear GP dynam-
ics model in the latent state. However, the log marginal
likelihood log p(y1:T ) (evidence) can be bounded from be-
low by the Evidence Lower BOound (ELBO) (Blei et al.,
2017). This ELBO is derived via Jensen’s inequality by in-
troducing a computationally simpler, variational distribution
q(x1:T ,f2:T , z) to approximate the model’s true posterior
distribution p(x1:T ,f2:T , z | y1:T ) (cf. eq. (8)). In contrast
to previous work (Frigola et al., 2014; Mattos et al., 2015;
Eleftheriadis et al., 2017), the proposed approximation ex-
plicitly incorporates the true temporal correlations in the
latent state, whilst being scalable to large datasets. Previous
work based on sequential Monte Carlo methods (Frigola
et al., 2013; Svensson & Schön, 2017) already allowed for
temporal correlations but required computationally challeng-
ing resampling in each timestep. The inference scheme is
inspired by doubly stochastic variational inference for deep
GPs as presented in (Salimbeni & Deisenroth, 2017).

4.1. Variational Sparse GP

PR-SSM employs a variational sparse GP (Titsias, 2009)
based on a variational distribution q(z) on the GP’s inducing
outputs as previously used in (Frigola et al., 2014; Eleftheri-
adis et al., 2017). Eliminating the inducing outputs, however,
results in dependencies between inducing outputs and data
which, in turn, leads to a complexity of O(NP 2), where

N is the number of data points and P the number of induc-
ing points (Titsias, 2009). Unfortunately, this complexity
is still prohibitive for large datasets. Therefore, we resort
to an explicit representation of the variational distribution
over inducing outputs as previously proposed in (Hensman
et al., 2013). This explicit representation enables scalability
by utilizing stochastic gradient-based optimization since
individual GP predictions become independent given the
explicit inducing points. Following a mean-field variational
approximation the inducing output distribution is given as
q(z) =

∏Dx

d=1N (zd | µd,Σd) for each latent state dimen-
sion d with diagonal variance Σd. Marginalizing out the
inducing outputs, the GP predictive distribution is obtained
as Gaussian with mean and variance given by

µ = mx̂t
+α(x̂t)(µd −mζd) ,

σ2 = kx̂t,x̂t
−α(x̂t)(Kζd,ζd − Σd)α(x̂t)

T ,

α(x̂t) := kx̂t,ζdK
−1
ζd,ζd

.

(12)

4.2. Variational Approximation

In previous work (Mattos et al., 2015), a factorized vari-
ational distribution is considered based on a mean-field
approximation for the latent states x1:T . Their variational
distribution is given by

q(x1:T ,f2:T , z) =[
Dx∏
d=1

q(zd)

[
T∏
t=2

p(ft,d | x̂t−1, zd)

]][
T∏
t=1

q(xt)

]
.

This choice, however, leads to several caveats: (i) The num-
ber of model parameters grows linearly with the length of
the time series since each latent state is parametrized by
its individual distribution q(xt) for every time step. (ii)
Initializing the latent state is non-trivial since the true, un-
derlying observation mapping is generally unknown and
non-bijective. (iii) The model design does not represent
correlations between time steps. Instead, these correlations
are only introduced by enforcing pairwise couplings during
the optimization process. The first two problems have been
addressed in (Mattos et al., 2015; Eleftheriadis et al., 2017)
by introducing a recognition model, e.g. a Bi-RNN3, which
acts as a smoother which can be learned through backpropa-
gation and which allows to obtain the latent states given the
input/output sequence.

The issue of representing correlations between time steps,
however, is currently an open problem which we aim to
address with our proposed model structure. Properly rep-
resenting these correlations is a crucial step in making the

3A bi-directional RNN operates on a sequence from left to
right and vice versa to obtain predictions based on past and future
inputs.
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optimization problem tractable in order to learn GP-SSMs
for complex systems.

For PR-SSM, the variational distribution is given by

q(x1:T ,f2:T , z) = (13)
T∏
t=2

[
p(xt | ft)

Dx∏
d=1

[p(ft,d | x̂t−1, zd)q(zd)]

]
q(x1) ,

with

q(x1)=N (x1 | µx1 ,Σx1) , q(zd)=N (zd | µd,Σd) .

In contrast to previous work, the proposed variational dis-
tribution does not factorize over the latent state but takes
into account the true transition model, based on the sparse
GP approximation from (8). In previous work, stronger ap-
proximations have been required to achieve an analytically
tractable ELBO. This work, however, deals with the more
complex distribution by combining sampling and gradient-
based methods.

In (Frigola et al., 2014), the variational distribution over
inducing outputs has been optimally eliminated. This leads
to a smoothing problem in a second system requiring com-
putationally expensive, e.g. sample-based, smoothing meth-
ods. Instead, we approximate the distribution by a Gaussian,
which is the optimal solution in case of sparse GP regression
(cf. (Titsias, 2009)).

The PR-SSM model parameters include the varia-
tional parameters for the initial state and inducing
outputs and hyperparameters, such as inducing inputs,
noise parameters and GP kernel parameters: θPR-SSM =
(µx1

,Σx1
,µ1:Dx

,Σ1:Dx
, ζ1:Dx

, σ2
x,1:Dx

, σ2
y,1:Dy

, θGP,1:Dx
).

Note that in the PR-SSM, the number of parameters grows
only with the number of latent dimensions, but not with the
length of the time series.

4.3. Variational Evidence Lower Bound

Following standard variational inference techniques (Blei
et al., 2017), the ELBO is given by

log p(y1:T )≥Eq(x1:T ,f2:T ,z)

[
log

p(y1:T ,x1:T ,f2:T ,z)

q(x1:T ,f2:T , z)

]
=: LPR-SSM . (14)

Maximizing the ELBO is equivalent to minimizing
KL(q(x1:T ,f2:T , z) ‖ p(x1:T ,f2:T , z | y1:T )) (Blei et al.,
2017), therefore this is a way to optimize the approximated
model parameter distribution with respect to the intractable,
true model parameter posterior.

Based on (8) and (13) and using standard variational calcu-

lus, the ELBO (14) can be transformed into

LPR-SSM =

T∑
t=1

Eq(xt)[log p(yt | xt)]

−
Dx∑
d=1

KL(q(zd) ‖ p(zd; ζd)) , (15)

with q(xt) defined in Sec. 4.4. The first part is the expected
log-likelihood of the observed system outputs y based on
the observation model and the variational latent state dis-
tribution q(xt). This term captures the capability of the
learned latent state model to explain the observed system
behavior. The second term is a regularizer on the inducing
output distribution that penalizes deviations from the GP
prior. Due to this term, PR-SSM automatically trades off
data fit against model complexity. A detailed derivation of
the ELBO can be found in the supplementary material.

4.4. Stochastic Gradient ELBO Optimization

Training the proposed PR-SSM requires maximizing the
ELBO in (15) with respect to the model parameters θPR-SSM.
While the second term, as KL between two Gaussian dis-
tributions, can be easily computed, the first term requires
evaluation of an expectation with respect to the latent state
distribution q(xt), given by

q(xt) =

∫ t∏
τ=2

[p(xτ | fτ )p(fτ | x̂τ−1, z)]

q(x1)q(z)dx1:t−1df2:tdz . (16)

Since the true non-linear, latent dynamics is maintained in
the variational approximation (13), analytic evaluation of
(16) is still intractable. Because of the latent state’s Marko-
vian structure, the marginal latent state distribution q(xt) at
time t is conditionally independent of past time steps, given
the previous state distribution q(xt−1) and the explicit rep-
resentation of GP inducing points. This enables a differen-
tiable, sampling-based estimation of the expectation term.
Samples x̃t from (16) can be obtained by recursively draw-
ing from the sparse GP posterior in (12) for t = 1, . . . , T .
Drawing samples from a Gaussian distribution can be made
differentiable with respect to its parameters µd, σ2

d using the
re-parametrisation trick (Kingma & Welling, 2013). The
gradient can be propagated back through time due to this
re-paramatrization and unrolling of the latent state. An unbi-
ased estimator of the first term in the ELBO in (15) is given
by

Eq(xt)[log(yt | xt)] ≈
1

N

N∑
i=1

log p(yt | x̃(i)
t ) . (17)

Based on the stochastic ELBO evaluation, analytic gradi-
ents of (15) can be derived to facilitate stochastic gradient-
descent-based model optimization.
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Figure 2. Predictions of the initial, untrained (left) and the final,
trained PR-SSM (right) based on the full gradient ELBO optimiza-
tion. The system input/output data (blue) is visualized together
with the model prediction (orange) for a part of the Furnace dataset.
Samples of the latent state distribution and output distribution are
shown in gray. The colored, shaded areas visualize mean +/- two
std of the latent state x and observation y. The initial model ex-
hibits a random walk behavior in the latent space. In the trained
model, the decay of the initial state uncertainty can be observed in
the first time steps. In this experiment, no recognition model has
been used (cf. Sec. 5).

4.5. Model Predictions

After model optimization based on the ELBO (15), model
predictions for a new input sequence u1:T and initial latent
state x1 can be obtained based on the approximate, varia-
tional posterior distribution in (13). In contrast to (Mattos
et al., 2015), no approximations such as moment matching
are required for model predictions. Instead, the complex
latent state distribution is approximated based on samples
from (16). The predicted observation distribution can then
be computed from the latent distribution according to the
observation model in (9). Instead of a fixed, uninformative
initial latent state, a learned recognition model (cf. Sec. 5
for details) can be utilized to find a more informative model
initialization.

5. Extensions for Large Datasets
Optimizing the ELBO (15) based on the full gradient is
prohibitive for large datasets and long trajectories. Instead,
a stochastic optimization scheme based on mini-batches of
sub-trajectories is introduced.

Directly optimizing the initial latent state distribution q(x1)
for each sub-trajectory would lead to a full parametriza-
tion of the latent state which is undesirable as described
in Sec. 4.2. Instead, we propose a parametric recognition
model, which initializes the latent state q(x1). In recent
work on SSMs (Mattos et al., 2015; Eleftheriadis et al.,
2017), a recognition model is introduced to parametrize the
smoothing distribution p(x1:T | y1:T ,u1:T ). We propose a

Figure 3. Comparison of the fully trained PR-SSM predictions with
(lower row) and without (upper row) initial state recognition model
on a test dataset. The initial transient based on the uncertainty from
an uninformative initial state distribution q(x1) = N (x1 | 0, I)
decays, as shown in upper plots. Below the outcome is shown
when q(x1) is initialized by the smoothing distribution q(x1 |
y1:L,u1:L), given the first L steps of system input/output. Using
the recognition model yields a significantly improved latent state
initialization and therefore decreases the initial state uncertainty
and the initial transient behavior.

similar approach, but only to model the initial latent state

q(x1) = N (x1 | µ1,Σ1) ≈ q(x1 | y1:L,u1:L) , (18)
µ1,Σ1 = h(y1:L,u1:L; θrecog) . (19)

The initial latent state distribution is approximated by a
Gaussian, where mean and variance are modeled by a recog-
nition model h. The recognition model acts as a smoother,
operating on the first L elements of the system input/output
data to infer the first latent state. Instead of directly optimiz-
ing q(x1) during training, errors are propagated back into
the recognition model h, which is parametrized by θrecog.

Additionally, the proposed recognition model can also be
used to predict behavior on test data, where the initial latent
state is not known.

6. Experimental Evaluation
In the following, we present insights into the PR-SSM op-
timization schemes, comparisons to state-of-the-art model
learning methods and a large scale experiment.

6.1. PR-SSM Learning

For small datasets (i.e. short training trajectory lengths), the
model can be trained based on the full gradient of the ELBO
in (15). A comparison of the model predictions before and
after training with the full ELBO gradient is shown in Fig. 2.

Empirically, three major shortcomings of the full gradient-
based optimization schemes are observed: (i) Computing
the full gradient for long trajectories is expensive and prone
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Table 1. Comparison of model learning methods on five real-world benchmark examples. The RMSE result (mean (std) over 5 indepen-
dently learned models) is given for the free simulation on the test dataset. The best result (solid underline) and second best result (dashed
underline) is indicated. The proposed PR-SSM consistently outperforms the reference (SS-GP-SSM) in the class of Markovian state space
models and robustly achieves performance comparable to the one of state-of-the-art latent, autoregressive models. Best viewed in color.

ONE-STEP-AHEAD,
AUTOREGRESSIVE

MULTI-STEP-AHEAD, LATENT SPACE
AUTOREGRESSIVE

MARKOVIAN STATE-SPACE
MODELS

TASK GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

ACTUATOR 0.627 (0.005) 0.599 (0) 0.438 (0.049) 0.613 (0.190) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)
BALLBEAM 0.284 (0.222) 0.087 (0) 0.139 (0.007) 0.209 (0.012) 0.124 (0.034) 411.6 (273.0) 0.073 (0.007)
DRIVES 0.701 (0.015) 0.373 (0) 0.828 (0.025) 0.868 (0.113) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)
FURNACE 1.201 (0.000) 1.205 (0) 1.195 (0.002) 1.188 (0.001) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)
DRYER 0.310 (0.044) 0.268 (0) 0.851 (0.011) 0.355 (0.027) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

SARCOS 0.169 (-) N.A. N.A. N.A. N.A. N.A. 0.049 (-)

to the well-known problems of exploding and vanishing
gradients (Pascanu et al., 2013). (ii) An uninformative initial
state is prohibitive for unstable systems or systems with
slowly decaying initial state transients. (iii) Momentum-
based optimizers (e.g. Adam) exhibit fragile optimization
performance and are prone to overfitting.

The proposed method addresses these problems by employ-
ing the stochastic ELBO gradient based on minibatches of
sub-trajectories and the initial state recognition model (cf.
Sec. 5). Fig. 3 visualizes the initial state distribution q(x1)
and the corresponding predictive output distribution p(y1)
for the fully trained model based on the full gradient (top
row), as well as for the model based on the stochastic gra-
dient and recognition model (bottom row). The transient
dynamics and the associated model uncertainty is clearly
visible for the first 15 time steps until the initial transient
decays and approaches the true system behavior. In contrast,
the learned recognition model almost perfectly initializes
the latent state, leading to much smaller deviations in the
predicted observations and far less predictive uncertainty.
Notice how the recognition model is most certain about
the distribution of the first latent state dimension (orange),
which is directly coupled to the observation through the
parametric observation model (cf. (9)). The uncertainty for
the remaining, latent states, in contrast, is slightly higher.

Comparing the full ELBO gradient-based model learning
and the stochastic version with the recognition model, the
stochastic model learning is far more robust and counteracts
the overfitting tendencies in the full gradient-based model
learning. A comparison of the model learning progress for
both methods is depicted in the supplementary material.
Due to the improved optimization robustness and the appli-
cability to larger datasets, the stochastic, recognition-model-
based optimization scheme is employed for the model learn-
ing benchmark presented in the next section. Empirically,
the cost of the proposed sampling scheme is much lower

compared to methods employing SMC for sampling the full
model posterior. In the experiments, 50 latent state samples
were employed (details in the supplementary material).

6.2. Model Learning Benchmark

The performance of PR-SSM is assessed in comparison
to state-of-the-art model learning methods on several real-
world datasets as previously utilized by (Mattos et al., 2015).
The suite of reference methods is composed of: One-step
ahead autoregressive GP models: GP-FITC (Snelson &
Ghahramani, 2006) and NIGP (McHutchon & Rasmussen,
2011). Multi-step-ahead autoregressive and recurrent GP
models in latent space: REVARB based on 1, respectively
2, hidden layers (Mattos et al., 2015) and MSGP (Doerr
et al., 2017a). GP-SSMs, based on a full Markovian state:
SS-GP-SSM (Svensson & Schön, 2017) and the proposed
PR-SSM. Currently, no published and runnable code exists
for the model learning frameworks presented in (Turner
et al., 2010; Frigola et al., 2013; 2014; Eleftheriadis et al.,
2017). To enable a fair comparison of the methods’ perfor-
mance and robustness, whitened data, a default configura-
tion across tasks and a predefined amount of input/output
data for initialization is employed. The presented results are
therefore not directly comparable to previous work, where
different data pre/postprocessing or method configurations
are employed. A more thorough evaluation, which matches
the published results from previous work, as well as experi-
mental details are given in the supplementary material.

The benchmark results are summarized in Tab. 1. A de-
tailed visualization of the resulting model predictions on the
Drives dataset is shown in Fig. 4. For the one-step-ahead
models (GP-NARX, NIGP), two variants are used to obtain
long-term predictive distributions: Propagating the mean
(no uncertainty propagation) and approximating the true pos-
terior by a Gaussian using exact moment matching (Girard
et al., 2003). The results show that PR-SSM consistently
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Figure 4. Free simulation results for the benchmark methods on the Drives test dataset. The true, observed system output (blue) is
compared to the individual model’s predictive output distribution (orange, mean +/- two std). Results are presented for the one-step-ahead
models GP-NARX and NIGP in the left column. REVARB and MSGP (shown in the middle column) are both based on multi-step
optimized autoregressive GP models in latent space. In the right column, the SS-GP-SSMs, as a model based on a Markovian latent state,
is compared to the proposed PR-SSM.

Figure 5. Results on the Sarcos large scale task: Predictions from
the GP-NARX baseline (red) and the PR-SSM (orange) for two
out of seven joint positions. The ground truth, measured joint
positions are shown in blue. PR-SSM clearly improves over the GP-
NARX predictions. Similar results are obtained for PR-SSM on the
remaining 5 joints, where the GP-NARX model fails completely
(cf. supplementary materials for details).

outperforms the SS-GP-SSM learning method. Similarly,
performance is improved in comparison to baseline methods
(GP-NARX and NIGP). In the ensemble of models based
on long-term optimized autoregressive structure (REVARB,
MSGP), no method is clearly superior. However, the perfor-
mance of PR-SSM is consistently strong. The probabilistic
methods results are competitive or improve over the per-
formance of deterministic RNN/LSTM models, as shown
in (Mattos et al., 2015). Note that PR-SSM demonstrates
robust model learning performance across all datasets.

6.3. Large Scale Experiment

To evaluate the scalability, results are provided for the for-
ward dynamics model of the SARCOS 7 degree of freedom
robotic arm. The task is characterized by 60 experiments
of length 337 (≈ 20.000 datapoints), 7 input, and 7 output

dimensions. PR-SSM is set up with a latent state dimen-
sionality Dx = 14. From the set of reference methods, only
GP-NARX can be adapted to run efficiently on this dataset
without major effort (details are given in the supplementary
material). A visualization of the model predictions is shown
in Fig 5 and prediction RMSEs are listed in Tab. 1. The
results show that PR-SSM is able to learn robustly and accu-
rately for all system outputs from all experimental data. In
contrast, the GP-NARX baseline achieves worse predictions
and fails to predict the remaining five joints (not shown).

7. Conclusion
In this work, we presented Probabilistic Recurrent State-
Space Models (PR-SSM) as a novel model structure and
efficient inference scheme for learning probabilistic, Marko-
vian state-space models. Based on GP priors and doubly
stochastic variational inference, a novel model optimization
criterion is derived, which is closely related to the one of
powerful, but deterministic, RNNs or LSTMs. By maintain-
ing the true latent state distribution and thereby enabling
long-term gradients, efficient inference in latent space be-
comes feasible. Furthermore, a novel recognition model
enables learning of unstable or slow dynamics as well as
scalability to large datasets. Robustness, scalability and
high performance in model learning is demonstrated on real-
world datasets in comparison to state-of-the-art methods.

A limitation of PR-SSM is its dependency on an a-priori
fixed latent state dimensionality. This shortcoming could po-
tentially be resolved by a sparsity enforcing latent state prior,
which would suppress unnecessary latent state dimensions.
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