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Abstract
This paper develops a Riemannian optimization
framework for solving optimization problems on
the set of symmetric positive semidefinite stochas-
tic matrices. The paper first reformulates the prob-
lem by factorizing the optimization variable as
X = YYT and deriving conditions on p, i.e.,
the number of columns of Y, under which the
factorization yields a satisfactory solution. The
reparameterization of the problem allows its for-
mulation as an optimization over either an embed-
ded or quotient Riemannian manifold whose ge-
ometries are investigated. In particular, the paper
explicitly derives the tangent space, Riemannian
gradients and retraction operator that allow the
design of efficient optimization methods on the
proposed manifolds. The numerical results re-
veal that, when the optimal solution has a known
low-rank, the resulting algorithms present a clear
complexity advantage when compared with state-
of-the-art Euclidean and Riemannian approaches
for graph clustering applications.

1. Introduction

MULTIPLE NP-hard and combinatorial optimization
problems can be approximated using convex re-

laxation, e.g., non-negative matrix factorization (Ding
et al., 2010; Yang & Oja, 2011), compressive sensing
(Chandrasekaran et al., 2012), low-rank matrix completion
(Boumal & Absil, 2011; Vandereycken, 2013; Cambier &
Absil, 2015). A theoretical analysis of these problems al-
lows one to obtain conditions under which the solution to
the relaxed problem coincides with that of the original one.
Nonetheless, despite their convexity, solving the relaxed
problems can often be a computation bottleneck in large-
scale applications.

In this paper, we consider solving optimization problems
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over the set of symmetric positive semidefinite stochas-
tic matrices. Such optimization problems appear in mul-
tiple applications such as graph clustering and commu-
nity detection (Zass & Shashua, 2006; Arora et al., 2011;
Yang & Oja, 2012; Vinayak & Hassibi, 2016; Wang et al.,
2016). Instead of solving the problem in the original n(n+1)

2 -
dimensional space, the factorization of the optimization vari-
able X = YYT , with Y being an n× p matrix, allows us
to reduce the dimension to np which is extremely attractive
when p � n. However, while the factorization is conve-
nient, it makes the problem non-convex with non-isolated
solutions. Indeed, note that for any solution Y and an or-
thogonal p× p matrix O, the matrix YO also represents a
solution to the problem.

Factorizing a low-rank matrix and casting the convex prob-
lem into a non-convex one has been well studied in the
literature, particularly for solving semidefinite programs
(SDPs). For example, the factorization X = YYT is sug-
gested in (Homer & Peinado, 1997) to solve the maximum
cut problem. The authors in (Helmberg & Rendl, 2000)
exploit it to solve SDPs with fixed trace. More generally,
(Burer & Monteiro, 2003) investigates low-rank factoriza-
tion for solving SDPs in standard form.

Taking advantage of both the low-rank factorization and
the optimization over Riemannian manifolds, the authors in
(Grubišić & Pietersz, 2007) propose a first-order Rieman-
nian algorithm for solving optimization problems on the
elliptope, i.e., positive semidefinite matrices with ones on
the diagonal. The quotient manifold is deeply investigated
in (Bonnabel & Sepulchre, 2009) and an invariant metric
that makes the manifold geodesically complete is derived.
A simpler quotient structure is introduced in (Journée et al.,
2010) to solve optimization problems with general trace
constraints, including the elliptope and the spectahedron,
by proposing a second-order algorithm with guaranteed
quadratic convergence. This manuscript follows a similar
approach to the aforementioned works in the sense that a
new quotient structure is proposed to solve optimization
problems in which the optimization variable is a low-rank
positive semidefinite stochastic matrix.

Earlier work (Douik & Hassibi, 2018) studied the dou-
bly stochastic and symmetric multinomial manifolds to
represent doubly stochastic and symmetric stochastic ma-
trices. This work extends the aforementioned results to
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low-rank positive semidefinite stochastic matrices. To this
end, Section 2 formulates the optimization problem of in-
terest and derives conditions under which the non-convex
reparametrization yields a satisfactory solution. Section 3
introduces the essential tools for optimization over Rie-
mannian manifolds and their quotient. Geometries of the
introduced manifold and its quotient are investigated in Sec-
tion 4. Finally, before concluding in Section 6, Section 5
discusses various numerical results.

2. Low-Rank Optimization on the Set of
Stochastic Matrices

2.1. Problem Formation

Let X ∈ Rn×n be a real symmetric n×n matrix and define
the objective function g : Rn×n −→ R. For simplicity, this
conference version assumes that the objective function is
convex. We are interested in solving the following optimiza-
tion problem:

min
X∈Rn×n

g(X) (1a)

s.t. Xij ≥ 0, 1 ≤ i, j ≤ n (1b)
m∑
j=1

Xij = 1, 1 ≤ i ≤ n, (1c)

X � 0, (1d)
wherein constraint (1b) underlines that the matrix is element-
wise positive, constraint (1c) corresponds to the fact that
the matrix is stochastic, and constraint (1d) insists that the
matrix is positive semidefinite.

The optimization problem (1) requires searching for a solu-
tion in a space of dimension n(n+1)

2 which can be intractable
for large-scale problems, e.g., community detection with
millions of individuals. Nevertheless, the applications of
interest in this paper share the intrinsic property that the
optimal solution has a much smaller rank than the ambient
dimension.

The rest of the paper assumes that the optimal solution X∗

to the optimization problem (1) has a rank r. If such rank
is known a priori through preliminary analysis, one may di-
rectly use the appropriate Riemannian geometry introduced
in Section 3. Otherwise, one needs to increase the size of
the model p until the optimality conditions derived in the
rest of this section are satisfied.

2.2. Notation and Terminology

This paper uses the following matrix notations. Matrices
and vectors are written with bold characters, e.g., X. The
identity matrix is represented by the symbol I. The all one
and all zeros vectors of length n are denoted by 1n and
0n, respectively. The index n in 1n may be omitted if the

dimension is clear from the context. The transpose and the
(i, j)-th element of a matrix X are denoted by XT and Xij ,
respectively. The inverse of a non-singular square matrix X
is indicated by X−1. A positive semidefinite matrix X is
denoted by X � 0. Similarly, the paper uses the notation
X ≥ 0 to refer to an element-wise positive matrix.

Let the notation Tr(.) denote the trace operator. The notation
〈X,Y〉 = Tr(YTX) refers to the inner product of matrices
X and Y on the space Rn×n, called herein the Frobenius
inner product. The Frobenius norm of a matrix X is defined
as ||X||2F = Tr(XTX).

Given two matrices of the same dimensions, the element-
wise product, known as the Hadamard product, is denoted
by the symbol�. Let Sn = {X ∈ Rn×n|X = XT } denote
the set of symmetric n× n matrices. Similarly, let Spskew be
the set of p× p skew-symmetric matrices, i.e., X = −XT

for all X ∈ Spskew. A full rank n× p matrix Y is an element
of the set Rn×p∗ . The set Op = {O ∈ Rp×p∗ |OOT = I}
groups the orthogonal p× p matrices.

Consider a smooth function f : E −→ R from some
Euclidean space E . The Euclidean gradient of f(X) at
X, i.e., matrix whose (i, j) entry is δf(X)

δXij
, is denoted by

GradX(f(X)) which can be abbreviated, unless confusion
prevents, as Grad(f(X)). The directional derivative of
f(X) in the direction Z ∈ E , denoted by D(f(X))[Z], is
defined as follows:

D(f(X))[Z] = lim
t→0

f(X + tZ)− f(X)

t
.

2.3. The Non-Convex Reparametrization

As stated previously, solving the optimization problem (1)
requires searching for a solution in an n(n+1)

2 -dimensional
space. To alleviate such computation burden, this section
proposes using the low-rank decomposition X = YYT

wherein Y ∈ Rn×p. Therefore, the reformulated optimiza-
tion problem is the following:

min
Y∈Rn×p

g(YYT ) (2a)

s.t. YYT ≥ 0 (2b)

YYT1 = 1. (2c)

The reparametrized problem requires searching for a solu-
tion in an np� n(n+1)

2 dimensional space. However, even
under the assumption that the optimization problem (1) is
convex, the reformulated problem (1d) is non-convex. The
next subsection derives conditions under which the reformu-
lated problem and the original one are equivalent.

2.4. Optimality Conditions

This section derives conditions under which an extreme
point Y of (2) corresponds to an extreme point X = YYT
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of the optimization problem (1). To this end, the first order
optimality conditions are derived. These results extend the
findings in (Burer & Monteiro, 2003; Journée et al., 2010)
to problems with inequality constraints.

The following lemma characterizes the first-order optimality
condition of the optimization problem (1).

Lemma 1. A solution X ∈ Rn×n is an extreme point of
the optimization problem (1) if there exists the unique dual
variables σ ∈ Rn, SX,Ψ ∈ Sn such that the following
equations hold:

GradX(g(X)) + σ1T + 1σT = SX + Ψ (3a)
X � 0 (3b)
X ≥ 0 (3c)

X1 = 1 (3d)
SX � 0 (3e)
Ψ ≥ 0 (3f)

X�Ψ = 0 (3g)
SXX = 0, (3h)

with constraint (3a) translating the fact (X, σ,SX,Ψ) is
a saddle point for the Lagrangian, (3b)-(3d) stating that
the solution is a feasible point, (3e) and (3f) representing
the positiveness of the dual variables and (3g) and (3h)
expressing the complementary slackness.

Similarly, the optimality conditions for the non-convex re-
formulation and (2) are given in the following lemma:

Lemma 2. A solution Y ∈ Rn×p is an extreme point of
the optimization problem (2) if there exists the unique dual
variables λ ∈ Rn and Φ ∈ Sn satisfying the following:

(GradX(g(YYT )) + λ1T + 1λT −Φ)Y = 0 (4a)

YYT ≥ 0 (4b)

YYT1 = 1 (4c)
Φ ≥ 0 (4d)

YYT �Φ = 0, (4e)
with constraint (4a) translating the fact (Y, λ,Φ) is a sad-
dle point for the Lagrangian, (4b) and (4c) stating that the
solution is a feasible point, (4d) representing the positive-
ness of the dual variable and (4e) expressing the comple-
mentary slackness.

Given the first order optimality conditions of both problems,
the following theorem derives the conditions under which
an extreme value of (2) coincides with an extreme one of
the original optimization problem (1):

Theorem 1. An extreme point Y of the optimization prob-
lem (2) produces an extreme point X = YYT of the prob-
lem (1) if and only if the following holds:

GradX(g(YYT )) + λ1T + 1λT −Φ = SY � 0, (5)
wherein λ and Φ are the dual variable associated with Y.

Algorithm 1 Gradient Descent on Riemannian Manifolds
Require: ManifoldM, function f , and retraction R.

1: Initialize Y ∈M.
2: while ||Grad f(Y)|| > 0 do
3: Set descent direction

ξY = −grad f(Y)/||grad f(Y)||Y.

4: Compute step size α using the backtracking method.
5: Update Y by retraction Y = RY(αξY).
6: end while
7: Output Y.

3. Optimization on Riemannian Embedded
and Quotient Manifolds

The fundamental idea of optimization algorithms on mani-
folds is to locally approximate the manifold by its tangent
space at Y. Afterwards, unconstrained optimization is per-
formed on the tangent space. In particular, a descent di-
rection is computed by deriving the Riemannian gradient,
denoted by grad f(Y). Finally, the point on the tangent
space is retracted to the manifold using the retraction RY.
The steps of the gradient descent algorithm on both the em-
bedded and quotient Riemannian manifolds can be found
in Algorithm 1. Performing these steps requires the com-
putation of the tangent space, Riemannian gradient, and
retraction operator which we derive in Section 4 for both
the embedded and the quotient manifolds.

This section defines the above relevant concepts from differ-
ential and Riemannian geometry. In particular, Subsection
3.1 introduces the essential tools for optimization over Rie-
mannian embedded manifolds. Subsection 3.2 provides the
tools for optimization over quotient Riemannian manifolds.
The definitions and notations used herein can be found in
the book (Absil et al., 2008). In the rest of the manuscript,
variables relative to the quotient manifold, e.g., equivalence
classes, are denoted by overline characters.

3.1. Manifold Optimization: Definitions and Notation

LetM be a matrix manifold embedded in the set of matrices
Rn×p, known as the embedding space. The manifold is said
to have a dimension d, also known as the number of degrees
of freedom, if there exists a mapping from the manifold to
an open subset of Rd. Given a point Y on the manifold, the
tangent space TYM is a d-dimensional Euclidean space that
approximates the manifoldM at Y. Such tangent space is
generated by computing the speed at the origin of all curves
inM going through and rooted at Y.

Tangent spaces play a primary role in optimization methods
over Riemannian manifolds as they allow to locally trans-
form the curved manifold into a smooth vector space to
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which common unconstrained optimization techniques can
be applied. However, one needs the notion of distance and
length on these tangent spaces to apply optimization algo-
rithms. Such a notion is provided by a bilinear, symmetric,
positive, and smoothly varying form, known as the Rieman-
nian metric. The restriction of the Riemannian metric to
the tangent space TYM forms an inner-product denoted
by 〈., .〉Y. Although this paper uses the induced Frobenius
inner product as a Riemannian metric, the subscript Y in
〈., .〉Y is kept to further clarify which tangent space is being
considered. In the rest of the manuscript, tangent vectors are
denoted by Greek letters wherein the point on the manifold
in which the tangent is computed is given as a subscript.
In particular, the norm of a tangent vector ξY ∈ TYM is
denoted by the following:

||ξY||2Y = 〈ξY, ξY〉Y, ∀ ξY ∈ TYM

The first order derivative, i.e., the Riemannian gradient, is
obtained by taking the component of the Euclidean gradient
in the tangent space. This can be mathematically formal-
ized by finding the unique tangent vector grad f(Y) in the
tangent space TYM such that:
〈grad f(Y), ξY〉Y = D(f(Y))[ξY], ∀ ξY ∈ TYM.

As stated earlier, this manuscript considers the induced
Frobenius inner product as a Riemannian metric which al-
lows the simplification of the above equation. Indeed, let
PY : Rn×p → TYM denote the orthogonal projection
from the ambient space to the tangent one, then the Rie-
mannian gradient grad f can be written as a function of the
Euclidean Grad f one as follows:

grad f(Y) = PY(Grad f(Y)).

After choosing the descent direction, the step size is chosen
according to Wolfs conditions, i.e., the Armijo and curvature
conditions (Absil et al., 2008). Finally, the tangent vector
is retracted to the manifold using the retraction operator R
whose restriction RY to the tangent space TYM satisfies
the centering, i.e., RY(0) = Y, and local rigidity, i.e.,
dRY(τξY)

dτ

∣∣∣
τ=0

= ξY, properties (Absil et al., 2008).

3.2. Optimization on Quotient Riemannian Manifolds

Let ∼ be an equivalence relationship and define the set
M =M/ ∼ as the quotient of the manifoldM by ∼. The
set M admits a manifold structure. In other words, the
quotient manifoldM groups all elements ofM in the same
equivalence class as a single point. Let π be the natural
projection that associates to each Y ∈ M its equivalence
class π(Y) = [Y] = Y ∈ M. These three notations for
equivalence classes are used interchangeably in this paper
depending on the context.

Let 〈., .〉Y be the Riemannian metric on the tangent space
TYM of the embedding space M. The quotient M =

M/ ∼ admits a Riemmanian structure for the induced Rie-
mannian metric if and only if the metric is compatible with
the equivalence relationship ∼, i.e., it does not depend on
the chosen representative of the equivalence class. To ex-
press the compatibility of the metric, we first introduce the
horizontal lift.

For a point Y ∈ M, let ξY ∈ TYM be a tangent vector.
In a similar manner that Y can be represented by multiple
Y ∈ π−1(Y), the tangent vector ξY can be represented
by multiple predecessors for each Y ∈ π−1(Y). Indeed,
fix Y ∈ π−1(Y), then any tangent vector ξY ∈ TYM
satisfying D(π(Y))[ξY] = ξY can be considered as a valid
representation of the tangent vector ξY. To circumvent the
aforementioned problem and obtain a unique representa-
tion of ξY for each predecessor Y ∈ π−1(Y), we use the
fact that π−1(Y) represents a manifold. Therefore, one
can obtain a unique representation by orthogonally (in the
Riemannian metric sense) decomposing the tangent space
TYM into a vertical space VYM and a horizontal space
HYM such that:

VYM = TYπ−1(Y)

TYM = VYM⊕HYM

Assuming the ambient space is a vector space, it can be
composed into a tangent space TYM and its orthogonal
complement T ⊥YM. In particular, for each Y ∈ M, the
embedding space Rn×p can be uniquely decomposed into a
direct sum of the above defined linear space, i.e.,:

Rn×p = HYM⊕VYM⊕T ⊥YM.

The representation of ξY ∈ TYM at Y ∈ π−1(Y), denoted
by ξY and referred to as the horizontal lift of a tangent
vector ξY at Y, is the unique element in the horizontal space
HYM satisfying D(π(Y))[ξY] = ξY. Such representation
as horizontal lift allows to get a unique parameterization of
tangent vectors in a quotient manifold.

The manifoldM represents a Riemannian manifold for the
Riemmanian metric 〈., .〉Y on TYM if and only if for all
tangent vectors ξY, ηY ∈ TYM the following holds:
〈ξY1

, ηY1
〉Y1 = 〈ξY2

, ηY2
〉Y2 , ∀Y1,Y2 ∈ π−1(Y).

Under the above assumption, the operator 〈., .〉Y on TYM
defined by 〈ξY, ξY〉Y = 〈ξY, ηY〉Y for any Y ∈ π−1(Y)
represents a well-defined Riemannian metric for the quotient
manifoldM.

Let PHY be the orthogonal projection, in the Riemannian
inner product sense, from the ambient space Rn×p to the
horizontal space HYM. Let f : M → R be a function
that is constant on each equivalence class [Y] for all Y ∈
M. The above function, said to be compatible with the
equivalence relationship, induces a function f : M → R

such that f(Y) = f(Y) for any predecessor Y of the
equivalence class Y. Under the above assumptions, the
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Riemannian gradient is obtained by projecting the Euclidean
one onto the horizontal space of any predecessor. In other
words, the Riemannian gradient is given by:

grad f(Y) = PHY (Grad f(Y)), Y ∈ π−1(Y)

Let Y ∈M and let Y1 and Y2 be any two representatives
in π−1(Y). Assume that the retractions RY1

and RY2
on

the tangent spaces TY1
M and TY2

M of the manifoldM
satisfy the property:

π(RY1(ξY1
)) = π(RY2(ξY2

)), ∀ ξY ∈ TYM.

A retraction that satisfy the above equation for all represen-
tatives in π−1(Y) is said to be compatible with the equiva-
lence relationship and generate a retraction on the quotient
manifold as follow:

RY(ξY) = π(RY(ξY)),Y ∈ π−1(Y). (6)

4. Geometry of the Embedded and Quotient
Low-Rank Positive Multinomial Manifolds

This section studies the geometry of the embedded and quo-
tient low-rank positive multinomial manifolds. Subsection
4.1 derives the expression of the tangent space, Riemannian
gradient and retraction for the embedded low-rank positive
multinomial manifold. Similarly, Subsection 4.2 derives
these ingredients for the quotient low-rank positive multino-
mial manifold.

4.1. The Low-Rank Positive Multinomial Manifold

In the rest of the paper, we use the notationMn
p to refer

to the embedded low-rank positive multinomial manifold
defined as:
Mn

p = {Y ∈ Rn×p∗ |YYT > 0 and YYT1 = 1}.

It is easy to see that the above set represents a well-defined
manifold as it can be mapped to an open set in Rn(p−1)

by vectorizing the first (p − 1) columns of Y. The above
manifold is seen as an embedded manifold in the set of non-
singular matrices in Rn×p. In other words, the manifold
is regarded as an embedded structure in the non-compact
Stiefel manifold Rn×p∗ . Define the function f :Mn

p → R

by f(Y) = g(YYT ) wherein the function g : Rn×n → R

is defined in (1) and (2). Using the aforementioned defini-
tions, this section proposes a first order Riemannian opti-
mization algorithm to solve the following problem:

min
Y∈Mn

p

f(Y). (7)

The following proposition provides the expression of the
tangent space of embedded low-rank positive multinomial
manifold:

Proposition 1. The tangent space TYMn
p for a point

Y ∈ Mn
p is given by the following n(p − 1)-dimensional

Euclidean space:
TYMn

p = {ξY ∈ Rn×p | (ξYYT + YξTY)1 = 0}

Let the embedding space Rn×p∗ be equipped with the Frobe-
nius inner product, defined as 〈A,B〉 = Tr(ATB) for all
matrices A and B in Rn×p∗ . This paper considers that the
embedded manifold inherits the inner product of the embed-
ding space. In other words, the induced norm 〈., .〉Y on the
tangent space TYMn

p for Y ∈Mn
p is given by:

〈ξY, ηY〉Y = 〈ξY, ηY〉, ∀ ξY, ηY ∈ TYMn
p

Given the above Riemannian metric and the tangent space
definition in Proposition 1, the expression of the Riemannian
gradient is given in the following theorem:

Theorem 2. Let Grad f(Y) be the Euclidean gradient of
f at Y. The Riemannian gradient grad f(Y) is given by:

grad f(Y) = Grad f(Y)− (α1T + 1αT )Y, (8)
with α being the n-dimensional vector obtained by:

α =
1

n
(I−

1

2n
11T )(I + YYT )−1

(
Grad f(Y)YT

+ YGrad f(Y)T
)

1.

Let RY denote a retraction from the tangent space TYMn
p

to the manifoldMn
p . In order to derive an expression of

such operator, first recall the DAD theorem (Csima & Datta,
1972) which extends the Sinkhorn’s theorem for symmetric
matrices (Sinkhorn, 1964).

Theorem 3. Let A ∈ Sn be an entry-wise positive matrix,
there exists a unique diagonal matrix D with strictly positive
entries such that S = DAD is a doubly stochastic matrix.
Such matrix is obtained by the DAD algorithm (Csima &
Datta, 1972).

Let Rn×p+/2 = {Z ∈ Rn×p | ZZT > 0} and introduce the

projection Π : Rn×p+/2 → Mn
p defined by Π(Z) = DZ

wherein the diagonal matrix D is obtained from applying
the DAD algorithm to the matrix ZZT . This paper suggests
the following retraction to project tangent vectors to the
manifold:

Theorem 4. Let RY : TYMn
p →Mn

p be defined by:

RY(ξY) = Π
(
Y + 1n1Tp − exp (−ξY)

)
, (9)

with exp (ξY) begin the entry-wise exponential of the en-
tries of the matrix ξY. The operator RY is a well-defined
retraction from the neighborhood N0 of TYMn

p toMn
p .

Given the expression of the tangent space, the Riemannian
gradient, and the retraction, the per-iteration complexity of
the gradient descent in Algorithm 1 on the embedded posi-
tive multinomial manifold scales as O(n2p) which consid-
erably reduces theO(n3) complexity of solving the original
constrained problem.
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4.2. The Quotient Low-Rank Positive Multinomial
Manifold

As stated earlier, the considered problem exhibits non-
isolated solutions. Indeed, given a solution Y ∈Mn

p and an
orthogonal matrix O ∈ Op, the point YO represent another
solution. Therefore, define the relationship ∼ onMn

p such
that:

Y1 ∼ Y2 ⇔ ∃O ∈ Op s.t. Y1O = Y2

Clearly, the relationship ∼ defines an equivalence rela-
tionship. Let the set Mn

p = Mn
p/ ∼, or equivalently

Mn

p = Mn
p/Op, be the quotient manifold ofMn

p by the
above equivalence relationship. Points onMn

p are seen as
equivalence classes denoted by [Y] = Y for Y ∈Mn

p . Let
π :Mn

p →M
n

p be the canonical, or natural, projection of
points to their equivalence class, i.e., π(Y) = Y.

Note that f(Y) = g(YYT ) is invariant under ∼ as
f(Y1) = f(Y2) for all Y1 ∼ Y2. Therefore, there exists
a unique function f :Mn

p → R, known as the projection of
f , such that f(Y) = f ◦ π(Y) for all Y ∈ Mn

p . The rest
of this section is interested in studying the geometry of the
quotient low-rank positive multinomial manifold in order to
solve the following optimization problem:

min
Y∈Mn

p

f(Y).

Let Y ∈Mn

p , the equivalence class π−1(Y) can be repre-
sented by the following set π−1(Y) = {YO | O ∈ Op}.
Recall that the vertical space VYMn

p of Y at Y ∈ π−1(Y)

is given by VYMn
p = TYπ−1(Y). The expression of the

vertical space is given in the following lemma:

Lemma 3. The vertical space VYMn
p is given by:

VYM
n
p = {YM |M ∈ Spskew}. (10)

Proof. Let the function F : Rn×p → Rn×n defined by
F (Z) = YYT − ZZT . Note that π−1(Y) is given by the
level set of F at 0n×n. Indeed, each Z satisfying F (Z) =
0 implies that YYT = ZZT , i.e., Z = YO for some
orthogonal matrix O. Furthermore, it is straightforward to
conclude that F is a constant-rank function from either the
fact that 0n×n is a regular value or by noting that F is a
submersion onto the set of positive matrices. Therefore, the
tangent space at Y is given by the kernel of the indefinite
directional derivative, i.e.,
VYMn

p = TYπ−1(Y) = {ξY | ξYYT + YξTY = 0}.
Recall that Y ∈ Rn×p∗ is a full rank matrix and define Y⊥

as any n× n− p matrix orthogonal complement of Y sat-
isfying YTY⊥ = 0, then any matrix ξY can be written as
YM+Y⊥K for some p×p matrix M and some n−p×p
matrix K. Using the decomposition above, the characteri-
zation ξYYT + YξTY = 0 of VYMn

p can be rewritten as

follows:
YMYT + Y⊥KYT + YMTYT + YKT (Y⊥)T = 0

Post and pre-multiplying the above equation by
YT and Y, respectively gives (YTY)M(YTY) =
−(YTY)MT (YTY) which, after noting that (YTY) is
invertible, gives the the alternate representation in (10) of
the vertical space ofMn

p at Y. �

The following theorem endows the manifold Mn

p with a
compatible Riemannian metric in order to product a Rie-
mannian quotient manifold.
Theorem 5. Consider the Y ∈ Mn

p . The bi-linear form
defined on TYM

n

p × TYM
n

p by

〈ξY, ηY〉Y = Tr
(
ξ
T

YηY

)
,Y ∈ π−1(Y) (11)

is a well-defined Riemannian metric that is compatible with
∼ which turnsMn

p into a Riemannian quotient manifold.
The horizontal distribution of Y ∈Mn

p at Y ∈ π−1(Y) is
given by:

HYMn
p = {ηY ∈ TYMn

p | ηTYY = YT ηY}.

Let PVY and PHY be the orthogonal projections, in the Riem-
manian metric sense, from the ambient space to the ver-
tical space VYMn

p and horizontal space HYMn
p , respec-

tively. Furthermore, let PY be the orthogonal projection
from the ambient space to the tangent space TYMn

p . Re-
call that the ambient space can be decomposed as Rn×p =
TYMn

p ⊕ T ⊥YMn
p wherein the tangent space can be ex-

pressed as TYMn
p = VYMn

p⊕HYMn
p . Therefore,PHY (Z)

can be written as PHY (PY(Z)) which reduces the study of
PHY to the tangent space TYMn

p . The expression of the
orthogonal projection onto the horizontal space is given in
the below proposition:
Proposition 2. The orthogonal projection of Z from the
ambient space Rn×p to the horizontalHYMn

p is given by
the following:

PHY (Z) = PY(Z)−YM,

with PY(Z) being the orthogonal projection from the ambi-
ent space to the tangent one, and M being the solution to
the following Sylvester equation:

(YTY)M + M(YTY) = YTPY(Z)− PY(Z)TY.

Following the definition given in Section 3 of the Rieman-
nian gradient on the quotient space, the Riemannian gradient
can be written as a function of the Euclidean gradient and
its Riemannian counterpart on the embedded manifold as
follows:

grad f(Y) = PHY (Grad f(Y)) = grad f(Y)−YM,

with M being the solution to the Sylvester equation
YTYM + MYTY = YT grad f(Y)− grad f(Y)TY.

Let the following retraction RY be defined on the tangent
space TYMn

p of the embedded manifoldMn
p by RY(ξY) =
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Π(Y + ξY). The proof that the above operator represents
a retraction onMn

p is omitted as it mirrors the steps used
in the proof of Theorem 4. Indeed, note that the proposed
retraction represents the first order approximation of the
retraction in (9). Finally, consider the following retraction
RY : TYM

n

p →M
n

p be defined by:

RY(ξY) = π
(

Π(Y + ξY)
)
, (12)

for Y ∈ π−1(Y). The aforementioned operator represents
a well-defined function as it does not depend on the repre-
sentative Y ∈ π−1(Y). Indeed, let Y ∈Mn

p and consider
a couple of representatives Y and YO in π−1(Y). Let D
be the diagonal matrix such that D(Y + ξY)(Y + ξY)TD
is doubly stochastic and note the following:

D(YO + ξYO)(YO + ξYO)TD

= D(Y + ξY)(Y + ξY)TD

We have Π(YO + ξYO) = Π(Y + ξY) which shows that
RY satisfies (6) and thus concludes the proof.

5. Numerical Results
This section extensively investigates the performance of the
proposed Riemannian manifolds. Subsection 5.1 exploits
the proposed framework to provide recovery of a similarity
clustering, also known as affinity in the clustering literature,
via convex programming. This paper uses real-world data
obtained through crowdsourcing on Amazon Mechanical
Turk (Buhrmester et al., 2011). Subsection 5.2 performs a
similar comparison for a large dimension using synthetic
data generated from a stochastic block model which approx-
imate the real-world data (Vinayak & Hassibi, 2016).

We compare the performance of the proposed conjugate
gradient (CG) method on both the embedded and the quo-
tient manifolds. Unlike the steepest descent, the conjugate
gradient algorithm requires a vector transport T . The ex-
pression of such operator can be obtained by exploiting
the linear structure of the embedding space as TηY (ξY) =
PRY(ηY)(ξY) (see Proposition 8.1.2 (Absil et al., 2008)).
The performance of the proposed algorithms is tested against
the generic convex solver CVX (Grant & Boyd, 2014), a
specialized approximate solver (Lin et al., 2010), and the
symmetric multinomialMn = {X ∈ Sn | X � 0,X >
0,X1 = 1} (Douik & Hassibi, 2018). In Subsection 5.2,
the problems are evaluated over a large number of iterations,
and the mean value is presented. All simulations are carried
out using the Matlab toolbox Manopt (Boumal et al., 2014)
on an Intel Xeon Processor E5-1650 v4 (15M cache, 3.60
GHz) computer with 32Gb 2.4 GHz DDR4 RAM.

5.1. Similarity Clustering via Convex Programming

This part suggests retrieving the cluster structure of an ad-
jacency matrix obtained from crowdsourcing on Amazon

Table 1. Performance of the Proposed Methods for Clustering
Algorithm Run. Time Var. of Inf. Error Rate

CVX 3183.060 s 0.5404 6.3%
ALM 2.848651 s 0.8688 12.68%

CG onMn 6.121646 s 0.5543 6.7%
CG onMn

p 4.777171 s 0.5403 6.3%

CG onMn

p s 3.813541 0.5501 6.5%

Mechanical Turk. Images of n = 473 dogs from the Stan-
ford Dogs Dataset (Khosla et al., 2011) of p = 3 different
breeds, i.e., Norfolk Terrier (172 images), Toy Poodle (151
images) and Bouvier des Flandres (150 images), are used
in the experiment. At each trial, non-expert workers are
required to determine if the pair of dogs presented on the
screen has the same breed or not. Each worker is given a
set of 30 pair images, and around 600 responses have been
collected. Out of the total possible edges n(n−1)

2 = 111628,
only 17260 edges, i.e., around 15% of the total number of
entries, are queried and used to construct the adjacency ma-
trix A. Out of these 17260 queried edges, 3941 responses
are wrong which gives a 22% error rate. This part reveals
the cluster structure by solving the following convex opti-
mization problem whose theoretical guarantees are studied
in (Vinayak & Hassibi, 2016):

min
X∈M

1

2
||Â−X||2F + λTr(X),

with Â being the similarity matrix obtained from the par-
tially observed A by replacing the unknown entries by 0.5.
While this is not the best thing to do, the purpose of the
current paper is to show the numerical superiority of the
proposed method, not the best way to extend A to Â. The
optimization problem is solved using the numerical opti-
mization toolbox CVX (Grant & Boyd, 2014), a specialized
approximate and fast algorithm (Lin et al., 2010), known as
augmented Lagrange multipliers (ALM), and the symmetric
multinomial. Afterwards, the same problem is solved by
reformulating X = YYT and using our proposed methods
on the embedded and the quotient manifold.

The quality of the recovery is attested through the computa-
tion of the variation of information (Meilă, 2003) between
the reached cluster structure and the ground truth. Table 1 il-
lustrates the running time and the performance of the above-
mentioned optimization methods. From the table, one can
see that our method provides 3 orders of magnitude im-
provement as compared to CVX. Furthermore, it improves
the running time of the symmetric multinomial by a factor
of 2. With the same running time as ALM, our framework
provides twice as better accuracy than ALM. The simula-
tion also shows that the quotient manifold provides better
results than its embedded counterpart which is expected as
the quotient manifold reduces the dimension of the ambient
space by grouping all equivalent solutions.
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Figure 1. Performance of the proposed optimization scheme in
clustering in terms of running time against the system dimension
n for a number of clusters p = 4n/1000.
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Figure 2. Running time of the proposed first and second order op-
timization methods in a system with large dimension for a number
of clusters p = n/1000.

5.2. High Dimension Community Detection

This part proposes solving the clustering problem for a large
number of entries n, e.g., a large number of dogs in Subsec-
tion 5.1, using synthetic data. In particular, the crowdsourc-
ing part is simulated by sampling from a stochastic block
model to obtain a similarity matrix. The number of clusters,
e.g., the number of breeds of dogs in Subsection 5.1, is
also variable so as to study multiple scenarios. The size of
clusters is chosen randomly from a set of predefined sizes
for each dimension such that the recovery is theoretically
guaranteed. Furthermore, the parameters of the stochastic
block model are selected so that the theoretical guarantees
proposed in (Vinayak & Hassibi, 2016) are valid which is
further confirmed by an almost null variation of information
between the ground truth and the reached solution.

The first part of these simulations compares the time per-
formance of the proposed methods on the embedded and
quotient manifolds against the performance achieved by a
first-order method on the symmetric multinomialMn. The
second part shows the performance of the proposed solu-
tion against a system of huge dimension. For such large
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Figure 3. Performance of the proposed Riemannian optimization
algorithm against the number of clusters p for a system of dimen-
sion n = 2000.

dimension, neither the generic CVX nor the specialized Rie-
mannian symmetric multinomial are applicable. The final
part plots the running time of the suggested methods against
the number of clusters p for a fixed dimension n.

Figure 1 plots the running time of the proposed methods
again the dimension of the problem n for clusters scaling
as p = 4n/1000. As a base of comparison, this section
plots the performance of the conjugate gradient algorithm
on the symmetric multinomial. Figure 1 clearly displays
that the proposed methods achieve the same performance
with drastically lower running time. The behavior is further
illustrated in Figure 2 wherein the system dimension is
very large 8000 ≤ n ≤ 10000 for a number of clusters
p = n/1000. The configuration of Figure 1 is prohibitively
complex to run either CVX or the symmetric multinomial.
Nevertheless, our proposed methods achieve the optimal
solution in reasonable running time.

Figure 3 plots the performance of the proposed algorithms
in clustering large data sets, n = 2000, versus the number
of clusters p. As shown in the analysis in the manuscript,
the dimension of the suggested manifold increases with the
rank p. Such fact is attested by Figure 3.

6. Conclusion
This manuscript designs efficient optimization algorithms
for solving optimization problems on the set of symmetric
positive semidefinite stochastic matrices. Assuming that the
optimal solution has a much lower rank than the ambient di-
mension, the paper reformulates the problem by introducing
the factorization of the optimization variable X = YYT .
Theoretical guarantees under which the reparametrized prob-
lem produces satisfactory solution are derived. The paper
introduced an embedded and a quotient Riemannian man-
ifolds in order to solve the reparameterized problem. The
efficiency of the proposed framework is attested using both
real-world and synthetic data.
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Cambier, Léopold and Absil, P-A. Robust low-rank matrix
completion via riemannian optimization. To appear in
SIAM Journal on Scientific Computing, 2015.

Chandrasekaran, Venkat, Recht, Benjamin, Parrilo, Pablo A,
and Willsky, Alan S. The convex geometry of linear
inverse problems. Foundations of Computational mathe-
matics, 12(6):805–849, 2012.

Csima, J and Datta, B.N. The DAD theorem for symmetric
non-negative matrices. Journal of Combinatorial Theory,
Series A, 12(1):147 – 152, 1972. ISSN 0097-3165.

Ding, Chris HQ, Li, Tao, and Jordan, Michael I. Convex
and semi-nonnegative matrix factorizations. IEEE trans-
actions on pattern analysis and machine intelligence, 32
(1):45–55, 2010.

Douik, Ahmed and Hassibi, Babak. Manifold Optimization
Over the Set of Doubly Stochastic Matrices: A Second-
Order Geometry. ArXiv e-prints arXiv:1802.02628, 2018.

Grant, Michael and Boyd, Stephen. CVX: Matlab software
for disciplined convex programming, version 2.1. http:
//cvxr.com/cvx, March 2014.
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