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Abstract
We study revenue optimization learning algo-
rithms for repeated posted-price auctions where a
seller interacts with a single strategic buyer that
holds a fixed private valuation for a good and
seeks to maximize his cumulative discounted sur-
plus. We propose a novel algorithm that never
decreases offered prices and has a tight strategic
regret bound of Θ(log log T ). This result closes
the open research question on the existence of a
no-regret horizon-independent weakly consistent
pricing. We also show that the property of non-
decreasing prices is nearly necessary for a weakly
consistent algorithm to be a no-regret one.

1. Introduction
Real-time ad exchanges, search engines, social networks,
and other Internet companies consider revenue maximiza-
tion as one of the most important directions for development
of their online advertising platforms (Gomes & Mirrokni,
2014; Balseiro et al., 2015; Charles et al., 2016; Agarwal
et al., 2014). A large part of advertisement inventory is sold
via widely applicable second price auctions (He et al., 2013;
Mohri & Medina, 2014), including their generalizations
such as GSP (Varian, 2007; Sun et al., 2014) and Vickrey-
Clarke-Groves (VCG) (Varian, 2009; Varian & Harris, 2014)
auctions. The optimization of revenue here is mostly con-
trolled by means of reserve prices, whose proper setting is
studied both by game-theoretical methods (Myerson, 1981;
Krishna, 2009) and by machine learning approaches (Nisan
et al., 2007; Cesa-Bianchi et al., 2013; Paes Leme et al.,
2016). A large number of online auctions run, for instance,
by ad exchanges involve only a single advertiser (Amin
et al., 2013; Mohri & Munoz, 2014; Drutsa, 2017), and,
in this case, a second-price auction with reserve is equiva-
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lent to a posted-price auction (Kleinberg & Leighton, 2003)
where the seller sets a reserve price for a good (for instance,
an ad space) and the buyer decides whether to accept or
reject this price i.e., to bid above or below it).

In this work, we focus on a scenario when the seller repeat-
edly interacts through a posted-price mechanism with the
same strategic buyer that holds a fixed private valuation for
a good and seeks to maximize his cumulative discounted
surplus (Amin et al., 2013). At each round of this game, the
seller is able to choose the price based on previous decisions
of the buyer: i.e., she applies a deterministic online learning
algorithm, which is announced to the buyer in advance. The
seller’s goal is to maximize her cumulative revenue over a
finite time horizon T , which is generally reduced to regret
minimization1. Thus, the seller seeks for a no-regret pricing
algorithm, i.e., the one with a sublinear regret on T (Mohri
& Munoz, 2014; Amin et al., 2014; Chen & Wang, 2016).

For this setting, the algorithm PRRFES with tight strategic
regret bound of Θ(log log T ) was recently proposed (Drutsa,
2017). This algorithm is horizon-independent and right-
consistent (i.e., it never proposes prices lower than earlier
accepted ones). However, its key drawback is its ability to
decrease an offered price after its rejection, but then to pro-
pose higher prices than rejected one in subsequent rounds
(not satisfying thus the left consistency). Such a behavior of
the algorithm may be confusing for a buyer: he may doubt
that the announced algorithm is used by the seller2. The full
consistency (both right, and left) is thus quite welcome. For-
mally, there does not exist a no-regret horizon-independent
consistent algorithm (Drutsa, 2017). But, it is still an open
question whether there exists a weakly consistent algorithm
with these properties. Weak consistency is a slightly relaxed
variant of consistency and means, in particular, that, once
the seller decreases a price after a rejection, the future prices
will never exceed the rejected one.

In our study, we propose a novel algorithm that never de-
creases offered prices and can be applied against strategic
buyers with a tight regret bound of Θ(log log T ) (Th. 1).

1We study the worst-case regret minimization following (Klein-
berg & Leighton, 2003; Mohri & Munoz, 2014; Drutsa, 2017).

2See Appendix C in Supp.Mat. for an example from practice.
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This result constitutes the main contribution of our work
and closes the open research question on the existence of a
no-regret horizon-independent pricing in the class of weakly
consistent algorithms. We also show that the property of
non-decreasing prices is crucial and, in fact, is nearly neces-
sary for a weakly consistent algorithm to be a no-regret one:
namely, a double decrease of offered prices by a weakly con-
sistent algorithm is enough to cause a linear regret (Th. 2).
Construction and analysis of the proposed algorithm have
required introduction of novel techniques, which are con-
tributed by our work as well. They include a novel transfor-
mation which maps a right-consistent algorithm to a both
weakly and right- consistent one that is only able to increase
prices (Sec. 3); and methods that guarantee acceptance of ex-
ploitation prices that have not been earlier accepted (Sec. 4).

2. Preliminaries
2.1. Setup of Repeated Posted-Price Auctions

We study the mechanism of repeated posted-price auctions
earlier considered, e.g., in (Amin et al., 2013; Mohri &
Munoz, 2014; Drutsa, 2017). Namely, the seller repeatedly
proposes goods (e.g., advertisement opportunities) to a sin-
gle buyer over T rounds (the time horizon): one good per
round. The buyer holds a fixed private valuation v ∈ [0; 1]
for a good, i.e., the valuation v is unknown to the seller
and is equal for goods offered in all rounds. At each round
t ∈ {1, . . . , T}, a price pt is offered by the seller, and an al-
location decision at ∈ {0, 1} is made by the buyer: at = 1,
when the buyer accepts to buy a currently offered good at
that price, 0, otherwise. Thus, the seller applies a (pricing)
algorithm A that sets prices {pt}Tt=1 in response to buyer
decisions a = {at}Tt=1 referred to as a (buyer) strategy.
We consider the deterministic online learning case when
the price pt at a round t ∈ {1, . . . , T} can depend only
on the buyer’s actions during the previous rounds a1:t−13.
Following (Drutsa, 2017), we are studying algorithms that
do not depend on the horizon T since it is very natural in
practice (e.g., of ad exchanges) that the seller does not know
in advance the number of rounds T that the buyer wants to
interact with him. Let A be the set of such algorithms.

Hence, given a pricing algorithm A ∈ A, a buyer strategy
a = {at}Tt=1 uniquely defines the corresponding price se-
quence {pt}Tt=1, which, in turn, determines the seller’s total
revenue

∑T
t=1 atpt. This revenue is usually compared to the

revenue that would have been earned by offering the buyer’s
valuation v if it was known in advance to the seller (Klein-
berg & Leighton, 2003; Amin et al., 2013; Mohri & Munoz,
2014; Drutsa, 2017). This leads to the definition of the re-
gret of the algorithmA that faced a buyer with the valuation
v ∈ [0, 1] following the (buyer) strategy a over T rounds as

3We use a notation for a part of a strategy at1:t2 = {at}t2t=t1
.

Reg(T,A, v,a) :=
∑T
t=1(v − atpt).

Following a standard assumption in mechanism design that
matches the practice in ad exchanges (Mohri & Munoz,
2014), the seller’s pricing algorithm A is announced to
the buyer in advance. The buyer can then act strategically
against this algorithm and is assumed to follow the opti-
mal strategy aOpt(T,A, v,γ) that maximizes the buyer’s
γ-discounted surplus (Amin et al., 2013):

Surγ(T,A, v,a) :=

T∑
t=1

γtat(v − pt),

i.e., aOpt(T,A, v,γ) := argmaxa Surγ(T,A, v,a), where
γ = {γt}∞t=1 is the discount sequence, which is positive
(γt > 0 ∀t∈N) and has convergent sums (

∑∞
t=1 γt<∞).

We define the strategic regret of the algorithm A that faced
a strategic buyer with valuation v ∈ [0, 1] over T rounds as

SReg(T,A, v,γ) := Reg
(
T,A, v,aOpt(T,A, v,γ)

)
.

Thus, we consider a two-player non-zero sum repeated game
with commitment, incomplete information, and unlimited
supply, which is introduced by Amin et al. (2013) and con-
sidered in (Mohri & Munoz, 2014; Drutsa, 2017): the buyer
seeks to maximize his surplus, while the seller’s objective is
to minimize her strategic regret (i.e., maximize her revenue).
Note that only the buyer’s objective is discounted over time
(not the seller’s one), which is motivated by the observation
that sellers are far more willing to wait for revenue than
buyers are willing to wait for goods in important real-world
markets like online advertising (Amin et al., 2013; Mohri &
Munoz, 2014).

In our setting, following (Kleinberg & Leighton, 2003;
Amin et al., 2013; 2014; Mohri & Munoz, 2014; 2015;
Drutsa, 2017), we seek for algorithms that attain o(T )
strategic regret (i.e., the averaged regret converges to zero
when T →∞) for the worst-case valuation v ∈ [0, 1].
An algorithm A is said to be a no-regret one when
supv∈[0,1] Reg(T,A, v,aOpt) = o(T ). The optimization
goal consists in finding of algorithms with the lowest possi-
ble strategic regret upper bound of the form O(f(T )). Here
we treat their optimality in terms of f(T ) with the slowest
growth as T →∞. This means that the averaged regret has
the best rate of convergence to zero.

2.2. Notations and Auxiliary Definitions

Similarly to (Drutsa, 2017), a deterministic pricing algo-
rithm A can be associated with an infinite complete binary
tree T(A) (since we consider horizon-independent algo-
rithms). Each node n ∈ T(A)4 is labeled with the price
pn offered by A. We denote the node’s depth + 1 by tn.
The right and left children of n are denoted by r(n) and l(n)
respectively. The left (right) subtrees rooted at the node

4To simplify notations, n∈T means “n is a node of the tree T”.
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l(n) (r(n) resp.) are denoted by L(n) (R(n) resp.). The
operators l(·) and r(·) sequentially applied s times to a node
n are denoted by ls(n) and rs(n) respectively, s ∈ N. The
root node of a tree T is denoted by e(T).

So, the algorithm’s work flow is as follows: it starts at the
root e(T(A)) of the tree T(A) by offering the first price
pe(T(A)) to the buyer; at each step t < T , if a price pn, n ∈
T(A), is accepted, the algorithm moves to the right node
r(n) and offers the price pr(n); in the case of the rejection,
it moves to the left node l(n) and offers the price pl(n);
this process repeats until reaching the time horizon T . The
pseudo-code of this process is presented in Alg. 1. For a
node n ∈ T(A), tn equals to the round at which the price
of this node is offered. Each node n ∈ T(A) uniquely
determines the buyer decisions up to the round tn − 15.

We say that two infinite complete trees T1 and T2 are price
equivalent (and write T1

∼= T2) if the trees have the same
node labeling when we naturally match the nodes between
the trees (starting from the roots): i.e., following the same
strategy in both trees, the buyer receives the same sequence
of prices. We define, for a pricing tree T, the set of its prices
℘(T) := {pn | n ∈ T} and denote by ℘(A) := ℘(T(A))
all prices that can be offered by an algorithm A.

2.3. Background on Pricing Algorithms

First of all, we remind several classes (sets) of algorithms
that were introduced in (Mohri & Munoz, 2014; Drutsa,
2017) and include the definitions of pricing consistency of
different type, which are actively used in our work. After
that, we briefly overview pricing algorithms from existing
studies (Kleinberg & Leighton, 2003; Amin et al., 2013;
Mohri & Munoz, 2014; Drutsa, 2017).

Notion of consistency. Since the buyer holds a fixed valua-
tion, we could expect that a smart online learning algorithm
should work as follows: after an acceptance (a rejection),
it should set only no lower (no higher, respectively) prices
than the offered one. Formally, this leads to the definition:

Definition 1 ((Mohri & Munoz, 2014)). An algorithm A
is said to be consistent (A in the class C) if, for any node
n ∈ T(A), pm ≥ pn ∀m ∈ R(n) and pm ≤ pn ∀m ∈ L(n).

A consistent algorithm A is based on a clear idea (Drutsa,
2017): it explores the valuation domain [0, 1] by means of a
feasible search interval [q, q′] (initialized by [0, 1]) targeted
to locate the valuation v. At each round t, A offers a price
pt ∈ [q, q′] and, depending on the buyer’s decision, reduces
the interval to the right subinterval [pt, q

′] (by q := pt)
or the left one [q, pt] (by q′ := pt). At any moment, q is

5Therefore, each buyer strategy a1:t is bijectively mapped to
a t-length path in the tree T(A) that starts from the root e(T(A))
and goes to a t-depth node. The strategy prices are in turn the ones
that are in the nodes lying along this path.

thus always the last accepted price or 0, while q′ is the last
rejected price or 1. The most famous example of a consistent
algorithm is the binary search.
Definition 2 ((Drutsa, 2017)). An algorithm A is said to
be weakly consistent (A in the class WC) if, for any node
n ∈ T(A), (a) if pr(n) 6= pn then pm ≥ pn ∀m ∈ R(n);
and, (b) if pl(n) 6= pn then pm ≤ pn ∀m ∈ L(n).

Weakly consistent algorithms are similar to consistent ones,
but they are additionally able to offer the same price p sev-
eral times before making a final decision on which of the
subintervals [q, p] or [p, q′] continue. See App.D.1 as well.
Definition 3 ((Drutsa, 2017)). An algorithm A is said to be
right-consistent (A in the class CR) if, for any n ∈ T(A),
pm ≥ pn ∀m ∈ R(n).

Right-consistent algorithms never offer a price lower than
the last accepted one, but may offer a price higher than a
rejected one (in contrast to consistent algorithms). We have
the following relations of classes: C ⊂WC and C ⊂ CR.

Background. The consistency represents a quite reasonable
property, when the buyer is myopic (truthful, i.e., at = 1⇔
pt ≤ v), because a reported buyer decision correctly locates
v in [0, 1]. Kleinberg & Leighton (2003) showed that the
regret of any pricing algorithm against a myopic buyer is
lower bounded by Ω(log log T ) and proposed a horizon-
dependent consistent algorithm FS (Fast Search), that has
tight regret bound of Θ(log log T ) against such buyers.

A strategic buyer, incited by surplus maximization, may mis-
lead a consistent pricing algorithm (Amin et al., 2014; Mohri
& Munoz, 2014). To overcome this, Mohri & Munoz (2014)
proposed to inject so-called penalization rounds (see Def. 4)
after each rejection into the algorithm FS and got, in this
way, the algorithm PFS with strategic regret bound of
O(log T log log T ). This outperforms the algorithm “Mono-
tone” (Amin et al., 2013) with regret bound of O(T 1/2).
Both algorithms are horizon-dependent and are not optimal.
Definition 4 ((Mohri & Munoz, 2014; Drutsa, 2017)).
Nodes n1, . . . , nr ∈ T(A) are said to be a (r-length) pe-
nalization sequence if ni+1 = l(ni), pni+1 = pni , and
R(ni+1) ∼= R(ni), i = 1, . . . , r − 1.

It is easy to see that a strategic buyer either accepts the price
at the first node or rejects this price in all of them, when the
discount sequence γ is decreasing.

An optimal pricing was found in (Drutsa, 2017), where
horizon-independent algorithms were studied and the causes
of a linear regret in different classes of consistent algo-
rithms were analyzed step-by-step. First, the algorithm
FES (Drutsa, 2017) was proposed as a modification of
the FS by injecting exploitation rounds after each re-
jection to obtain a consistent horizon-independent algo-
rithm against truthful buyer with tight regret bound of
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Θ(log log T ). Second, this pricing was upgraded to the algo-
rithm PRRFES (Drutsa, 2017) to act against strategic buyers.
Namely, it was shown that there is no no-regret pricing in
the class RWC of regular weakly consistent algorithms (a
subset of WC, see Def. A.1 in Suppl.Mat.), which com-
prises, in particular, all consistent horizon-independent al-
gorithms even being modified by penalization rounds. This
led to a guess that possibly the left consistency require-
ment should be relaxed. Inspired by this guess, the optimal
right-consistent algorithm PRRFES with tight strategic re-
gret bound of Θ(log log T ) was built. However, the research
question on the existence of a no-regret horizon-independent
algorithm in the class WC remained open. Our research
goal comprises closing of that open research question.

2.4. Related Work

Most of studies on online advertising auctions lies in the
field of game theory (Krishna, 2009; Nisan et al., 2007). A
large part of them focused on characterizing equilibrium:
efficiency (Aggarwal et al., 2009a), mechanism expressive-
ness (Dütting et al., 2011), competition across auction plat-
forms (Ashlagi et al., 2013), buyer budget (Agarwal et al.,
2014), etc. They considered different auctions (Varian,
2009; Aggarwal et al., 2009b; Celis et al., 2011) and con-
ducted experimental analysis (Ostrovsky & Schwarz, 2011;
Thompson & Leyton-Brown, 2013; Lahaie et al., 2018).

Studies on revenue maximization were devoted to both the
seller revenue solely (Zhu et al., 2009; He et al., 2013) and
various trade-offs as well (Bachrach et al., 2014; Goel &
Khani, 2014; Morgenstern & Roughgarden, 2015). The op-
timization problem was generally reduced to a selection of
reserve prices for buyers: for instance, in VCG (Myerson,
1981), GSP (Lucier et al., 2012), and others (Gomes & Mir-
rokni, 2014; Paes Leme et al., 2016). Reserve prices, in such
setups, usually depend on distributions of buyer valuations
or bids that thus estimated or fitted (He et al., 2013; Sun
et al., 2014; Paes Leme et al., 2016). Alternative approaches
learned reserve prices directly (Mohri & Medina, 2014;
2015; Rudolph et al., 2016; Medina & Vassilvitskii, 2017).
In contrast to these works, we use an online deterministic
learning approach to set prices in repeated auctions.

Revenue optimization for repeated auctions was mainly con-
centrated on algorithmic reserve prices, that are updated
in online fashion over time, and was also known as dy-
namic pricing. An extensive survey on this field is presented
in (den Boer, 2015). Dynamic pricing was studied: under
game-theoretic view (Iyer et al., 2011; Leme et al., 2012;
Chen & Farias, 2015; Balseiro et al., 2016; Ashlagi et al.,
2016); as bandit problems (Amin et al., 2011; Zoghi et al.;
Lin et al., 2015; Weed et al., 2016); feature-based pric-
ing (Amin et al., 2014; Cohen et al., 2016); and from other
aspects (Heidari et al., 2016; Yuan et al., 2014; Roughgarden

& Wang, 2016; Feldman et al., 2016; Chawla et al., 2016).
Vanunts et al. (2018) study the same repeated auction setup,
but seek for algorithms that maximize the strategic revenue
expected over buyer valuations. A series of studies (Schmidt,
1993; Devanur et al., 2015; Immorlica et al., 2017) close
to ours considered repeated sales where the seller does not
commit for its pricing policy (in contrast to our setting).
That studies showed that the seller earns less in settings
without commitment than with it, what motivates the seller
to be interested in commitment. The most relevant part of
these works to ours are (Kleinberg & Leighton, 2003; Amin
et al., 2013; Mohri & Munoz, 2014; Drutsa, 2017), where
our scenario with a fixed private valuation is considered and
whose algorithms are discussed in more details in Sec. 2.3.
In contrast to the first three studies, we propose and an-
alyze algorithm that have tight strategic regret bound of
Θ(log log T ), and, unlike in (Drutsa, 2017), this pricing is
weakly consistent and never decreases offered prices.

3. Transformation pre

Let us introduce a novel transformation which is referred to
as pre and transforms any pricing algorithm to another one.
First, we define this transformation for labeled binary trees.

Definition 5. Given a non-negative real number q ∈ R+

and a labeled binary tree T1, the transformation pre :
(q,T1) 7→ T2 is such that the labels (i.e., prices) of the
tree T2 are defined recursively in the following way starting
from the root node e(T2) of the tree T2:

pe(T2) := q, L
(
e(T2)

) ∼= pre
(
q,L

(
e(T1)

))
and R

(
e(T2)

) ∼= pre
(
pe(T1),R

(
e(T1)

))
.

(1)

Second, since each pricing algorithm A ∈ A is associated
with a complete binary tree T(A), the transformation pre

is thus correctly defined for pricing algorithms: namely,
pre : R+×A→ A and pre(q,A1) is the pricing algorithm
associated with the tree pre(q,T(A1)). In Algorithm 2, for
better understanding, we provide a reader with a pseudo-
code that applies the pricing pre(q,A) with given q ∈ R
and a source pricing A ∈ A6. See an example in App.D.2.

Informally speaking, this transformation tracks over the
nodes in the source algorithm’s tree T(A), but, being in
a current node n ∈ T(A), it offers the price from one of
preceding nodes, where the buyer purchased a good last
time (or q if never purchased), instead of offering the price
pn from the current node n. From the buyer’s point of view,
the choice between the pricing of the subtree L(n) and the
one of the subtree R(n), n ∈ T(A), should be made at the
round previous to the one where the price pn will be offered.

6Alg. 2 is placed side-by-side along with Alg. 1 in order to
show the difference between the work flow of the transformed
pricing pre(q,A) and the one of the source pricing A.
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Algorithm 1 Pseudo-code of an algorithm A.
1: Input: A ∈ A
2: Initialize: n := e(T(A)),
3: while the buyer plays do
4: Offer the price pn to the buyer
5: if the buyer accepts the price then
6: n := r(n)
7: else
8: n := l(n)
9: end if

10: end while

Algorithm 2 Pseudo-code of its transformation pre(q,A).
1: Input: q ∈ R and A ∈ A
2: Initialize: n := e(T(A)), p := q
3: while the buyer plays do
4: Offer the price p to the buyer
5: if the buyer accepts the price then
6: p := pn

7: n := r(n)
8: else
9: n := l(n)

10: end if
11: end while

The following key properties hold for this transformation.

Lemma 1. Let A ∈ CR be a right-consistent pricing
algorithm and q = inf ℘(A) be the infimum of the al-
gorithm prices, then the transformed pricing algorithm
pre(q,A) is both right-consistent and weakly consistent,
i.e., pre(q,A) ∈ WC ∩ CR. Moreover, the algorithm
pre(q,A) is only able to increase prices and it never de-
creases them regardless of any buyer strategy.

Proof. First, for each node n ∈ T(pre(q,A)), the recursion
in Eq. (1) implies that there exists a node m ∈ T(A) s.t.
L(n) ∼= pre

(
pn,L(m)

)
and R(n) ∼= pre

(
pm,R(m)

)
. In

particular, pr(n) = pm, pl(n) = pn, ℘(L(n)) = ℘(L(m)) ∪
{pn}, and ℘(R(n)) = ℘(R(m)) ∪ {pm}. Let us prove
by induction that pn ≤ p ∀p ∈ ℘(T(n)). The basis of
the induction: this condition is satisfied by the root node
e(T(pre(q,A))) due to the choice of q. The inductive step:
assume a node n ∈ T(pre(q,A)) satisfies this condition,
then, for pl(n) and pr(n), we have pl(n) = pn ≤ p ∀p ∈
℘(L(n)) ⊆ ℘(T(n)) and pr(n) = pm ≤ p ∀p ∈ ℘(R(n)) =
℘(R(m)) ∪ {pm}, where we used pm ≤ p ∀p ∈ ℘(R(m))
since the algorithm A is right-consistent.

Second, note that pn ≤ p ∀p ∈ ℘(T(n)) ⊇ ℘(R(n)), i.e.,
the definition of a right-consistent algorithm holds. There-
fore, pre(q,A) ∈ CR and the right-side part of weak con-
sistency holds as well. Third, pl(n) = pn∀n ∈ T(pre(q,A))
as we noted above, and, hence, the left-side part of weak
consistency is satisfied (the case of pl(n) 6= pn in Defini-
tion 2 of WC is never realized). Thus, pre(q,A) ∈WC
and it never decreases prices along any buyer strategy.

4. Weakly Consistent Optimal Pricing
Let us apply the transformation pre to the pricing algorithm
PRRFES (Drutsa, 2017) and refer to the transformed one as
prePRRFES. Formally, the algorithm prePRRFES works in
phases initialized by the phase index l := 0, the first offered
price at the current phase q0 := 0, and the iteration parame-
ter ε0 := 1/2. At each phase l ∈ Z+, it sequentially offers
prices pl,k := ql + kεl, k ∈ Z+ (exploration; in contrast to

PRRFES, it starts from k = 0), where εl := ε2l−1 = 2−2
l

,

l∈N. When a price pl,k is rejected, setting Kl := k ≥ 0:
(1) the algorithm offers this price pl,Kl

for r− 1 ∈ Z+

penalization rounds (if one of them is accepted, prePRRFES
continues offering pl,k, k = Kl + 1, .. following Defini-
tion 4), (2) it offers the price pl,Kl

for g(l)∈Z+ exploitation
rounds (buyer decisions made at them do not affect further
pricing), and (3) prePRRFES goes to the next phase by set-
ting ql+1 := pl,Kl

and l := l + 1. The pseudo-code of
prePRRFES is presented in Alg. B.1 (in Suppl.Mat.). The
algorithm actions described above and code lines in Alg. B.1
that differ from the ones of PRRFES are highlighted in blue.
Since PRRFES is a right-consistent algorithm, see (Drutsa,
2017), Lemma 1 implies that prePRRFES is both right-
consistent and weakly consistent one.

Further in this section, we will show that the learning algo-
rithm prePRRFES being properly configured is, in fact, a
no-regret pricing and, moreover, is optimal with tight strate-
gic regret bound of Θ(log log T ). To show this, we adapt the
methodology used to establishing the optimality of the algo-
rithm PRRFES. Despite the PRRFES and its transformation
prePRRFES look similar, this adaptation is not straightfor-
ward and, in particular, requires additional guarantees on
acceptance of prices during the exploitation rounds.

Following (Mohri & Munoz, 2014; Drutsa, 2017) we assume
that the discounting is geometric γ = {γt−1}∞t=1 from here
on in this subsection. First, let us consider an analogue
of (Drutsa, 2017, Prop.2) that will be useful to upper bound
the strategic regret of the algorithm prePRRFES.

Proposition 1. Let γ = {γt−1}∞t=1 be a discount sequence
with γ ∈ (0, 1), A be a pricing algorithm, n ∈ T(A) be
a starting node in a r-length penalization sequence (see
Def. 4), all prices after r rejections are no lower than pn (i.e.,
pn ≤ pm ∀m ∈ L(lr−1(n))), tn < T , and r > logγ(1−γ2).
If the price pn offered by the algorithm A at the node n is
rejected by the strategic buyer, then the following inequality
on his valuation v holds:

v−pr(n)<ηr,γ(pr(n)−pn), where ηr,γ :=
γr+γ−1

1−γ2−γr
. (2)

Proof sketch. Since the price pn is rejected, the following
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inequality holds, see (Mohri & Munoz, 2014, Lemma 1),

γt
n−1(v − pn) + S(r(n)) < S(lr(n)), (3)

where S(m) denotes the surplus obtained by the buyer when
playing an optimal strategy after reaching a node m ∈ T(A).
The left subtree’s surplus S(lr(n)) can be upper bounded as
follows (using pn ≤ pm ∀m ∈ L(lr−1(n))):

S(lr(n)) ≤
T∑

t=tn+r

γt−1(v − pn) <
γt

n+r−1

1− γ
(v − pn);

while, in contrast to the proof of (Drutsa, 2017, Prop.2),
the right subtree’s surplus S(r(n)) is lower bounded by
γt

n

(v − pr(n)), because, after accepting pn at the round tn,
the buyer is able to earn at least this amount at the round
tn + 1. We plug these bounds in Eq. (3), divide by γt

n−1,
and obtain Eq. (2) after rearrangement.

The full proof is given in Appendix A.1.1 in Supp.Mat. Note
that the inequality in Eq. (2) bounds the deviation of the
buyer’s valuation v from the price offered at some node r(n)
by some increment pr(n) − pn. But, in contrast to (Drutsa,
2017, Prop.2), this bounding occurs when the buyer rejects
the price pn offered previously to the price pr(n) which is
used as the reference price of the valuation’s deviation.

As we show in the proof of Theorem 1, Prop. 1 allows us to
obtain an upper bound for the number of exploring steps at
each phase of the algorithm prePRRFES. However, this is
not enough to directly apply the methodology of the proofs
of (Drutsa, 2017, Th.3, Th.5) to bound the strategic regret,
because, in contrast to the PRRFES, during exploitation
rounds, the algorithm prePRRFES offers the price pl,Kl

that
has not been earlier accepted by the strategic buyer (hence,
there is no evidence to guarantee his acceptance during the
exploitation). Namely, since the buyer’s decision at made
at an exploitation round t does not affect the algorithm’s
pricing in the subsequent rounds t′ > t, the strategic buyer
acts truthfully at this round t, i.e., at = I{pt≤v}. For the
PRRFES, we knew that the price pt was accepted in a previ-
ous round t′′ < t (or pt = 0), but, for the prePRRFES, one
has to specially guarantee the acceptance of the price pt at
the exploitation round t in the following proposition.
Proposition 2. Let γ = {γt−1}∞t=1 be a discount sequence
with γ ∈ (0, 1), A be a pricing algorithm, and n ∈ T(A)
be a starting node in a r-length penalization sequence (see
Def. 4), which is followed by G exploitation rounds offering
the price pn starting from the node lr(n). If r < logγ(1−γ),
G> logγ

(
1−(1−γ)γ−r

)
, T ≥ tn+r+G−1, and the buyer

valuation v is higher than pn and lower than any price in the
right subtree R(n) of the node n, i.e., v < p ∀p ∈ ℘(R(n)),
then the strategic buyer rejects the price pn at the round tn.

Proof sketch. The condition v < p ∀p ∈ ℘(R(n)) implies
that S(r(n)) = 0 and the strategic buyer will thus gain

exactly γt
n−1(v−pn) if he accepts the price pn at the round

tn (S(·) is defined in the proof of Prop. 1). Let us show that
there exists a strategy in L(n) with a larger surplus. Indeed,
if the buyer rejects r times the price pn and accepts this
price G times after that, then he gets the following surplus:

tn+r+G−1∑
s=tn+r

γs−1(v−pn)=(v−pn)1−γG

1−γ
γt

n−1+r>(v−pn)γt
n−1,

here the last inequality holds due to the condition on G.

The proof’s details are presented in Appendix A.1.2 in
Suppl.Mat. Additionally to the claim of Proposition 2, note
that, from the definitions of penalization and exploitation
rounds, it follows that, if the strategic buyer rejects the price
pn at the round tn, he rejects this price pn at the rounds
tn + 1, . . . , tn + r − 1 as well and accepts it at the rounds
tn+r, . . . , tn+r+G−1. Note that, since r ≥ 1 (otherwise,
there is no node n and the right subtree R(n)), the condition
r < logγ(1− γ) makes Prop. 2 meaningful only in the case
of γ > 1/2. This is consistent with a clear intuition that,
having γ ≤ 1/2, the discount γt−1 at a round t is no lower
than the sum of all discounts in all possible subsequent
rounds γt/(1 − γ), and the strategic buyer prefers thus to
purchase a good for a price pt at the t-th round, rather than
many goods for a no lower price in all subsequent rounds.

In order to apply both Prop. 1 and Prop. 2, the number
of penalization rounds r is required to be in the interval
Iγ =

(
logγ(1− γ2), logγ(1− γ)

)
. It easy to see that, for

γ ∈ (1/2, (
√

5− 1)/2), this interval Iγ contains r = 1 (i.e.,
there is no penalization). For γ ∈ ((

√
5 − 1)/2, 1), the

length of the interval Iγ is larger than 1, which guarantees
thus existence of a natural number in Iγ (since r ∈ N). For
such discount rates, the following lemma provides values for
r and G s.t. Prop. 1 and Prop. 2 hold and ηr,γ (from Eq. (2))
is bounded by some positive number κ > 0. The proof is
rather technical and is thus deferred to Appendix A.1.3.

Lemma 2. Let γ̂ := (
√

5 − 1)/2, (a) for a discount rate
γ ∈ (γ̂, 1) and a constant κ>(1− γ)/(γ2+γ − 1), define

rγ,κ := logγ

(
(1− γ)

(
1 +

κ
1 + κ

γ
))

and

Gγ,κ := logγ

(
1−

(
1 +

κ
1 + κ

γ
)−1

γ−1
)

;

(b) for γ ∈ (1/2, γ̂) and a constant κ ≥ (2γ − 1)/(1 −
γ2− γ), define rγ,κ := 1 and Gγ,κ := logγ(2γ− 1). Then
setting the number of penalization rounds r = drγ,κe and
the number of exploitation rounds G ≥ Gγ,κ implies the
conditions of Prop. 1 and 2 as well as ηr,γ ≤ κ.

In the interesting case of γ = γ̂, the interval Iγ is equal to
(1, 2) and does not thus contain any natural number. This
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case is the point in which, on the one hand, we should
apply penalization (i.e., set r ≥ 2) according to Prop. 1 to
control the amount of lies of the buyer, but, on the other
hand, setting r ≥ 2 results in the absence of a strongly more
profitable buyer strategy in the left subtree of the node n in
Prop.2 than to accept a price at this node. We do not known
whether the case of γ = γ̂ is a fundamental point in which
prePRRFES could not be configured to avoid a linear regret,
or it is a cause of insufficient power of our analytical tools.
Further study of this case is left for future work. So, now we
ready to obtain an upper bound for the prePRRFES for the
case γ ∈ (1/2, 1) \ {γ̂} by proving the following theorem.
Theorem 1. Let γ = {γt−1}∞t=1 be a discount sequence
with γ∈(1/2, 1)\{(

√
5 − 1)/2} and let a constant κ sat-

isfy the lower bounds from Lemma 2, where the constants
rγ,κ and Gγ,κ are defined as well. If A is the pricing algo-
rithm prePRRFES with r = drγ,κe and the exploitation rate
g(l) = max{22l , dGγ,κe}, l ∈ Z+, then, for any valuation
v∈ [0, 1] and T ≥ 2, the strategic regret is upper bounded7:

SReg(T,A, v,γ)≤C(log2 log2 T+2)+
dGγ,κe

2
−1,

C := rv +
(1 + κ)

2
(2 + max{2, dGγ,κe}+ κ).

(4)

Proof sketch. Decompose the total regret over T rounds
into the sum of the regrets during each phase:
SReg(T,A, v,γ) =

∑L
l=0Rl, where L is the number of

phases during T rounds. For the regret Rl at each phase
except the last one, i.e., l = 0, . . . , L− 1, we have:

Rl =

Kl−1∑
k=0

(v − pl,k) + rv + g(l)(v − pl,Kl
), (5)

where the first, second, and third terms correspond to the
exploration rounds with acceptance, the reject-penalization
rounds, and the exploitation rounds, respectively. First,
here, we directly used Prop. 2 (via Lemma 2 since g(l) ≥
Gγ,κ) to conclude that pl,Kl

< v and the price pl,Kl
is thus

accepted by the strategic buyer at the exploitation rounds.

Second, rejection of the price pl,Kl
implies v−pl,Kl+1<κεl

by Prop. 1 via Lemma 2 since ηr,γ ≤ κ for r ≥ drγ,κe and
∀t ∈ N. Hence, the valuation v ∈

(
pl,Kl

, pl,Kl
+(1+κ)εl

)
and all accepted prices pl+1,k, ∀k ≤ Kl+1, from the next
phase l + 1 satisfy:

pl+1,k ∈ (ql+1, v) ⊆
(
pl,Kl

, pl,Kl
+(1+κ)εl

)
∀k ≤ Kl+1

since any accepted price has to be lower than the valuation v
for the strategic buyer. This infers Kl+1<(1 + κ)εl/εl+1=

7Note that the seller is not required to know γ precisely: if the
seller knows only that γ ∈ [γ′ − δ, γ′ + δ], then it is easy to get
an upper bound similar to Eq.(4) by properly selecting parameters
G and κ for some δ > 0, when γ′∈(1/2, 1)\{(

√
5− 1)/2}.

(1 + κ)22
l

. Therefore, after some algebra, we have:

Rl ≤
(1 + κ)(2 + κ)

2
+ rv + g(l) · (1 + κ)εl

≤ rv +
(1 + κ)

2
(2 + max{2, dGγ,κe}+ κ)

(6)

for l = 0, . . . , L − 1, where we used the definition of the
exploitation rate g(l) to get g(l) · εl ≤ max{1, dGγ,κe/2}.

The L-th phase differs from the other ones only in possible
absence of some rounds: reject-penalization or exploitation
ones. In this phase, we consider two cases on the actual
number of exploitation rounds gL(L): (a) gL(L) ≥ dGγ,κe
and (b) gL(L) < dGγ,κe. In the case (a), as above, we apply
Prop. 2 to get that pL,KL

< v and the price pL,KL
is thus

accepted by the buyer at the exploitation rounds. This infer
that RL is upper bounded by the right-hand side of Eq. (5)
with l = L and, in turn, by the right-hand side of Eq. (6).
In the case (b), we have no guarantee that pL,KL

< v and,
therefore, pL,KL

may be rejected by the strategic buyer at
the exploitation rounds. Hence, we bound the regret RL
more roughly by (1+κ)(2+κ)

2 + (r + dGγ,κe − 1)v and
use the inequality (dGγ,κe − 1)v −max{1, dGγ,κe/2} ≤
dGγ,κe/2− 1. Finally, all our steps results in the bound:

SReg(T,A, v,γ) =

L∑
l=0

Rl ≤ C(L+ 1) +
dGγ,κe

2
− 1

withC from Eq. (4). To obtain Eq. (4), getL≤ log2 log2 T+
1 via the same technique as in (Drutsa, 2017).

The detailed proof is given in Appendix A.1.4 in Suppl.Mat.
This theorem shows that the learning algorithm prePRRFES
is asymptotically optimal since it has a tight strategic regret
bound of Θ(log log T ). At the same time, Theorem 1 closes
the open research question on the existence of a no-regret al-
gorithm in the class WC (Drutsa, 2017) since prePRRFES
is weakly consistent. Note that the parameter κ can be ad-
justed either to minimize the number of penalization rounds
r or to optimize the constant factor C making the upper
regret bound finer. An attentive reader may also note that
the pricing prePRRFES has the following drawback: this
algorithm being applied against a myopic (truthful) buyer
will incur a linear regret (in contrast to the source PRRFES).
But we feel that this is the price we have to pay in order
to construct a horizon-independent optimal algorithm that
offers prices in a consistent manner (i.e., never revises prices
that was previously reduced as it did by the PRRFES).

On the other hand, it is important to emphasize that our
weakly consistent algorithm has the property: it never de-
creases prices (see Lemma 1). This may seem too drastic to
obtain a no-regret algorithm from WC. But, in the next sec-
tion, we show that this property, in fact, is nearly necessary
for a weakly consistent algorithm to be a no-regret one.
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5. Weakly Consistent Algorithms with Double
Decrease of Prices

In this section, we show that if a weakly consistent algorithm
is able to doubly decrease prices, then it has a linear regret.

Definition 6. A weakly consistent algorithm A is said to
be with double decrease of prices (A in the class WCdd) if
there exists a path ã in the tree T(A) with the corresponding
price sequence {p̃t}∞t=1 such that

∃t̃0, t̃1 ∈ N : t̃0 ≤ t̃1 and p̃t̃1+1 < p̃t̃0 < pe(T(A)). (7)

Theorem 2. Let γ = {γt}∞t=1 be a discount sequence and
A ∈WCdd be a horizon-independent weakly consistent
pricing algorithm with double decrease of prices and with
the first offered price pe(T(A)) ∈ (0, 1). Then there exists a
valuation v ∈ [0, 1] s.t. SReg(T,A, v,γ) = Ω(T ).

Proof. We denote the first offered price as p1 := pe(T(A))8

and let the strategy ã, t̃0, and t̃1 be from Eq. (7). Let us
decompose the set of all paths in the tree T(A) into three
sets S= t S< t S>: (a) S= consists of paths whose price
sequences {pt}∞t=1 are constant (i.e., pt=p1 ∀t∈N); (b) the
price sequence {pt}∞t=1 of a path from S< (S>, resp.) has
the form: ∃t0∈N s.t. pt0+1<pt0 (pt0+1>pt0 , respectively)
and pt=p1, t=1,.., t0. The set S< is non-empty since ã∈S<.

We consider the path â s.t. ât:=ãt ∀t≤t̃1 and ât:=1 ∀t>
t̃1 (it coincides with ã at up to the t̃1-th round) and its
corresponding price sequence {p̂t}∞t=1. Note that â ∈ S<.
Let us denote ∆ = p1 − p̂t̃0 > 0, then, due to the weak
consistency of the algorithm A9, we have p̂t ≤ p̂t̃0 =

p1 −∆, ∀t ≥ t̃1. Consider a buyer with a valuation vε :=
p1 + ε, ε > 0. If the buyer follows the strategy â, then his
surplus can be lower bounded:

Surγ(T,A, vε, â) ≥
∑T
t=t̃1+1 γt(∆ + ε) ∀T > t̃1. (8)

If this buyer follows any strategy a from S>, then one has

Surγ(T,A, vε,a) ≤
∑T
t=1 γtε ∀a ∈ S> ∀T > 0, (9)

because the price sequence corresponding to a satisfies pt ≥
p1 ∀t ∈ N. Let ε0 := min

{
∆ · γt̃1+1/

∑t̃1
t=1 γt, 1− p1

}
,

then, ∀ε ∈ (0, ε0) we have vε ∈ (0, 1) and

ε < ∆ ·
∑T
t=t̃1+1 γt/

∑t̃1
t=1 γt ∀T > t̃1.

Hence, the right-hand side of Eq. (8) is larger than the
one of Eq. (9), which implies that Surγ(T,A, vε,a) <
Surγ(T,A, vε, â) ∀a ∈ S>.

8Note that p1 is the first element in a price sequence of any
buyer strategy for a given A.

9It easy to derive (using the weak consistency) that p̂t ≤
p̂t̃0 ∀t≥ t̃0. Because, otherwise, if ∃t′ : t̃0<t′<t̃1 s.t. p̂t′>p̂t̃0 ,
which implies p̂t≥ p̂t̃0 ∀t>t

′ and contradicts to p̂t̃1<p̂t̃0 .

Thus, we showed that, for T > t̃1, there exists a strategy in
S< (i.e. â) that is better (in terms of discounted surplus) than
any strategy in S> for the strategic buyer with any valuation
vε = p1 + ε s.t. ε ∈ (0, ε0). Hence, the optimal strategy
aOpt ∈ S= ∪ S< for T > t̃1 and, for any strategy a from
this union, the regret Reg(T,A, vε,a) is lower bounded by∑
t:at=0 vε +

∑
t:at=1(vε − p1) ≥ Tε. This implies the

bound for the strategic regret: SReg(T,A, vε,γ) ≥ Tε =
Ω(T ), T > t̃1, since t̃1 and ε are independent of T .

Remark 1. For simplicity, in Def. 6 and Th. 2, we consid-
ered the root node e(T(A)) from which the double decrease
of prices should start. In fact, we can replace it both in
Def. 6 and in Th. 2 (without harm for the proof) by any node
n ∈ T(A) s.t. it is passed by the strategic buyer.

Note that this theorem holds for any discount sequence and
has thus the following corollary that generalizes (Drutsa,
2017, Th.4) to any discounting (the proof is in App. A.2.1).

Corollary 1. For any horizon-independent regular weakly
consistent pricing algorithm A and any discount sequence
γ = {γt}∞t=1, there exists a valuation v ∈ [0, 1] s.t.
SReg(T,A, v,γ) = Ω(T ).

The key intuition behind Theorem 2 consists in the follow-
ing: the strategic buyer can lie few times to decrease offered
prices and, due to (even weak) consistency, receive prices at
least on ε > 0 lower than his valuation v all the remaining
rounds. Note that the buyer is able to mislead a wide range
of weakly consistent algorithms: the set WCdd is signifi-
cantly larger than the set RWC (previously known as the
largest subset of WC with a linear regret). On the other
hand, if we do not allow the buyer to apply this intuition,
one can build an algorithm with a sublinear strategic regret,
as we showed in Section 4.

6. Conclusions
We studied the scenario of repeated posted-price auctions
with a strategic buyer that holds a fixed private valuation and
discounts his cumulative surplus, while the seller applies a
horizon-independent online learning (discrete) algorithm to
set prices. First, we closed the open research question on the
existence of a no-regret horizon-independent weakly con-
sistent algorithm by proposing a novel algorithm that never
decreases offered prices and can be applied against strategic
buyers with a tight strategic regret bound of Θ(log log T ).
Second, we showed that the property of non-decreasing
prices is crucial and, in fact, is nearly necessary for a weakly
consistent algorithm to be a no-regret one. Finally, we in-
troduced non-trivial techniques such as (a) a novel transfor-
mation which maps a right-consistent algorithm to a both
weakly and right- consistent one that is only able to increase
prices; (b) approaches to control and guarantee acceptance
of exploitation prices that have not been earlier accepted.
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