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Abstract

We show that Entropy-SGD (Chaudhari et al.,
2017), when viewed as a learning algorithm,
optimizes a PAC-Bayes bound on the risk of
a Gibbs (posterior) classifier, i.e., a random-
ized classifier obtained by a risk-sensitive per-
turbation of the weights of a learned classifier.
Entropy-SGD works by optimizing the bound’s
prior, violating the hypothesis of the PAC-Bayes
theorem that the prior is chosen independently of
the data. Indeed, available implementations of
Entropy-SGD rapidly obtain zero training error
on random labels and the same holds of the Gibbs
posterior. In order to obtain a valid generaliza-
tion bound, we rely on a result showing that data-
dependent priors obtained by stochastic gradi-
ent Langevin dynamics (SGLD) yield valid PAC-
Bayes bounds provided the target distribution of
SGLD is e-differentially private. We observe that
test error on MNIST and CIFARI10 falls within
the (empirically nonvacuous) risk bounds com-
puted under the assumption that SGLD reaches
stationarity. In particular, Entropy-SGLD can be
configured to yield relatively tight generalization
bounds and still fit real labels, although these
same settings do not obtain state-of-the-art per-
formance.

1. Introduction

Optimization is central to much of machine learning, but
generalization is the ultimate goal. Despite this, the gen-
eralization properties of many optimization-based learning
algorithms are poorly understood. The standard example is
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stochastic gradient descent (SGD), one of the workhorses
of deep learning, which has good generalization perfor-
mance in many settings, even under overparametrization
(Neyshabur et al., 2014), but rapidly overfits in others
(Zhang et al., 2017). Can we develop high performance
learning algorithms with provably strong generalization
guarantees? Or is there a limit?

In this work, we study an optimization algorithm called
Entropy-SGD (Chaudhari et al., 2017), which was designed
to outperform SGD in terms of generalization error when
optimizing an empirical risk. Entropy-SGD minimizes an
objective f : R” — R indirectly by approximating stochas-
tic gradient ascent on the so-called local entropy

F(w) ZC(t) +log Eg .y, [e ™/ V)]
N—————
J exp(—f(Wix))Ax(dx)

where 7 > 0 is an inverse temperature, C(7) is an additive
constant, and .#; denotes a zero-mean isotropic multivari-
ate normal distribution on R” whose scale depends on 7.

Our first contribution is connecting Entropy-SGD to re-
sults in statistical learning theory, showing that maximiz-
ing the local entropy corresponds to minimizing a PAC-
Bayes bound (McAllester, 1999) on the risk of the so-
called Gibbs posterior. The distribution of w+ & is the
PAC-Bayesian “prior”, and so optimizing the local entropy
optimizes the bound’s prior. This connection between lo-
cal entropy and PAC-Bayes follows from a result due to
Catoni (2007, Lem. 1.1.3) in the case of bounded risk. (See
Theorem 3.1.) In the special case where Tf is the empir-
ical cross entropy, the local entropy is literally a Bayesian
log marginal density. The connection between minimiz-
ing PAC-Bayes bounds under log loss and maximizing log
marginal densities is the subject of recent work by Ger-
main et al. (2016). Similar connections have been made
by Zhang (2006a;b); Griinwald (2012); Griinwald & Mehta
(2016).

Despite the connection to PAC-Bayes, as well as theoret-
ical results by Chaudhari et al. suggesting that Entropy-
SGD may be more stable than SGD, we demonstrate that
Entropy-SGD (and its corresponding Gibbs posterior) can
rapidly overfit, just like SGD. We identify two changes,
motivated by theoretical analysis, that prevent overfitting.
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The first change relates to the stability of the optimized
prior mean, with respect to changes to the data. The PAC-
Bayes theorem requires that the prior be independent of the
data, and so by optimizing the prior mean, Entropy-SGD
invalidates the bound. Indeed, the bound does not hold
empirically. While a PAC-Bayes prior may not be chosen
based on the data, it can depend on the data distribution.
This suggests that if the prior depends only weakly on the
data, it may be possible to derive a valid bound and control
overfitting.

Indeed, Dziugaite & Roy (2018) recently formalized this
idea using differential privacy (Dwork, 2006; Dwork et al.,
2015b) under the assumption of bounded risk. Using ex-
isting results connecting statistical validity and differential
privacy (Dwork et al., 2015b, Thm. 11), they show that an
e-differentially private prior yields a valid, though looser,
PAC-Bayes bound.

Achieving strong differential privacy can be computation-
ally intractable. Motivated by this obstruction, Dziugaite
& Roy relax the privacy requirement in the case of Gaus-
sian PAC-Bayes priors parameterized by their mean vec-
tor. They show that convergence in distribution to a dif-
ferentially private mechanism suffices for generalization.
This allows one to use stochastic gradient Langevin dy-
namics (SGLD; Welling & Teh, 2011), which is known to
converge weakly to its target distribution, under regularity
conditions. We will refer to the Entropy-SGD algorithm
as Entropy-SGLD when the SGD step on local entropy is
replaced by SGLD.

The one hurdle to using data-dependent priors learned by
SGLD is that we cannot easily measure how close we are
to converging. Rather than abandoning this approach, we
take two steps: First, we run SGLD far beyond the point
where it appears to have converged. Second, we assume
convergence, but then view/interpret the bounds as being
optimistic. In effect, these two steps allow us to see the po-
tential and limitations of using private data-dependent pri-
ors to study Entropy-SGLD.

Empirically, we find that the resulting PAC-Bayes bounds
are quite tight but still conservative. On MNIST, when the
limiting privacy of Entropy-SGLD is tuned to contribute
no more than 2&% x 100 ~ 0.2% to the generalization error,
the test-set error of the learned network is 3—8%, which
is roughly 5-10 times higher than state-of-the-art test-set
error, which for MNIST is between 0.2-1%.!

The second change pertains to the stability of the stochastic
gradient estimate made on each iteration of Entropy-SGD.
This estimate is made using SGLD. (Hence Entropy-SGD

IThese numbers must be interpreted carefully—the simple
fact that the deep-learning tool chain was developed using MNIST
likely implies that generalization and test set bounds are biased.

is SGLD within SGD.) Chaudhari et al. make a subtle but
critical modification to the noise term in the SGLD update:
the noise is divided by a factor that ranges from 103 to 10%.
(This factor was ostensibly tuned to produce good empir-
ical results.) Our analysis shows that, as a result of this
modification, the Lipschitz constant of the objective func-
tion is approximately 10°—108 times larger, and the conclu-
sion that the Entropy-SGD objective is smoother than the
original risk surface no longer stands. This change to the
noise also negatively impacts the differential privacy of the
prior mean. Working backwards from the desire to obtain
tight generalization bounds, we are led to divide the SGLD
noise by a factor of only /m, where m is the number of
data points. (For MNIST, /m = 16.) The resulting bounds
are nonvacuous and tighter than those recently published by
Dziugaite & Roy (2017), although it must be emphasized
that the bounds are optimistic because we assume SGLD
has converged. The extent to which it has not converged
may inflate the bound.

We begin by introducing sufficient background so that we
can make a formal connection between local entropy and
PAC-Bayes bounds. We discuss additional related work
in Appendix F. We then introduce several existing learn-
ing bounds that use differential privacy, including the PAC-
Bayes bounds outlined above that use data-dependent pri-
ors. In Section 5, we present experiments on MNIST and
CIFAR10, which provide evidence for our theoretical anal-
ysis. We close with a short discussion.

2. Preliminaries: Supervised learning,
Entropy-SGD, and PAC-Bayes

We consider the batch supervised learning setting, where
we are given a sample zy,...,2, drawn ii.d. from an un-
known probability distribution & on a space Z =X x Y of
labeled examples. Given a family of classifiers, indexed
by weight vectors w € R”, and a bounded loss function
£:RP xZ — R. the risk and empirical risk are

Rs(Q)= 5, Xiy E (6w,z).

Our goal is to learn a classifier with small risk, taking ad-
vantage of the fact that Ry (W) = Eg._gm[Rs(W)]. We con-
sider randomized (Gibbs) classifiers, formalized as prob-
ability distributions Q € ., (R”) on the space of weight
vectors. The (expected) risk of a randomized classifier is

Ry(Q)= E (Ry(w) = E (E (£(w,2). (1

Ry (W) E (((w.2):

We will sometimes refer to elements of R” and .#) (R”) as
classifiers and randomized classifiers, respectively.

Our focus is the case of neural network that output prob-
ability vectors p(w,x) = (p(w,x)1,...,p(W,x)g) over K
classes on input x when the weights are w. Zero—one (0-1)
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loss is £(w, (x,y)) = 1 if y = argmax;, p(w,x); and O other-
wise. We also use cross entropy loss as a differentiable sur-
rogate. Cross entropy loss is £(w, (x,y)) = —log p(W,x),.
Note that cross entropy loss is merely bounded below. We
use a bounded modification (Appendix C.2). We will often
refer to the (empirical) 0—1 risk as the (empirical) error.

2.1. Entropy-SGD

Entropy-SGD is a gradient-based learning algorithm pro-
posed by Chaudhari et al. (2017) as an alternative to
stochastic gradient descent on the empirical risk surface
Rg. The authors argue that Entropy-SGD has better gen-
eralization performance. Part of that argument is a theoret-
ical analysis of the smoothness of the local entropy surface
that Entropy-SGD optimizes in place of the empirical risk
surface, as well as a uniform stability argument that they
admit rests on assumptions that are violated, but to a small
degree empirically. As we have mentioned in the intro-
duction, Entropy-SGD’s modifications to the noise term in
SGLD result in much worse smoothness. We will modify
Entropy-SGD in order to stabilize its learning and control
overfitting.

Entropy-SGD is stochastic gradient ascent applied to the
optimization problem arg maxy gy Fy,-(W;S), where

Fyz(w;S) = log/ exp(—tRs(W) — T%Hw’ —w|3)dw’.
RP

gyz (W) )
The objective Fy,f(-;S) is known as the local entropy, and
can be viewed as the log partition function of the unnor-
malized probability density function ;,VTS (We will denote
the corresponding distribution by G;XT .) Assuming that one
can exchange differentiation and integration, it is straight-
forward to verify that

VaFre(w;S) = E_ (ty(w—w)), 3)

WGy

and then the local entropy F%T(-;S) is differentiable, even
if the empirical risk Ry is not. Indeed, Chaudhari et al.
show that the local entropy and its derivative are Lipschitz.
Chaudbhari et al. argue informally that maximizing the local
entropy leads to “flat minima” in the empirical risk surface,
which several authors (Hinton & van Camp, 1993; Hochre-
iter & Schmidhuber, 1997; Baldassi et al., 2015;2016) have
argued is tied to good generalization performance (though
none of these papers gives generalization bounds, vacuous
or otherwise). Chaudhari et al. propose approximate SGD
on the local entropy, replacing the gradient VyFy :(w;S)
with a Monte Carlo estimate Ty(w — ), with it} = wy and
Rj+1 = aw’+ (1 — a)p;, where W}, wj,... are (approxi-
mately) i.i.d. samples from G‘;IS and o € (0,1) defines a
weighted average. Obtaining samples from G‘,’,VTS is likely
intractable when the dimensionality of the weight vector

Algorithm 1 One outerloop step of Entropy-SG(L)D

Input:
w e RP > Current weights
sez" > Data
V:RPxZ—R > Loss
7.B,v,n,n'",L.K > Parameters

Output: Weights w moved along stochastic gradient

1: procedure ENTROPY-SG(L)D-STEP

2 Wl +—w

3 foric {1,....L} do > Run SGLD for L iterations.

4 nn'/i

5: (2j,5---12jx) < sample minibatch of size K

6 dw' « — LYK VoW, z;,) — yT(W —w)

7 w W+ In/dw' +/n/N(0,1,)

8 U+ (I—a)u+aw

> C.f. Eq. (3).

n/ﬁ N(Ovlﬂ)

Entropy-SGLD only

9: W WA InTy(w—p) +
10: return w

is large. The authors assume the empirical risk is differ-
entiable and use Stochastic Gradient Langevin Dynamics
(SGLD; Welling & Teh, 2011), which simulates a Markov
chain whose long-run distribution converges to G‘}',f’TS.Z The
final output of Entropy-SGD is the deterministic predictor
corresponding to the final weights w* achieved by several
epochs of optimization.

Algorithm 1 gives a complete description of the stochastic
gradient step performed by Entropy-SGD. If we rescale the
learning rate, ' + $1/7, lines 6 and 7 are equivalent to

6 dw — — LYK VoUW, z;) —v(W —w)

7. W wHnldw +/n/\/2/TN(0,I,)

Notice that the noise term is multiplied by a factor of
V/2/t. A multiplicative factor e—called the “thermal
noise”, but playing exactly the same role as \/2/717 here—
appears in the original description of the Entropy-SGD al-
gorithm given by Chaudhari et al.. However, € does not
appear in the definition of local entropy used in their sta-
bility analysis. Our derivations highlight that scaling the
noise term in SGLD update has a profound effect: the ther-
mal noise exponentiates the density that defines the local
entropy. The smoothness analysis of Entropy-SGD does
not take into consideration the role of &, which is critical
because Chaudhari et al. take € to be as small as 1073 and
10—, Indeed, the conclusion that the local entropy surface
is smoother no longer holds. We will see that T controls the
stability (and then the generalization error) of our variant
of Entropy-SGD.

2 Chaudhari et al. take L = 20 steps of SLGD, using a constant
step size 17; = 0.2 and weighting & = 0.75.
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2.2. KL divergence and the PAC-Bayes theorem

Let Q,P € . (R?), assume Q is absolutely continuous
with respect to P, and write ‘% :R? — R, U{eo} for some
Radon-Nikodym derivative of Q with respect to P. Then
the Kullback—Liebler divergence from Q to P is

o d
KL(0IIP) [10g 52 d0.

Let ), denote the Bernoulli distribution on {0,1} with
mean p. For p,q € [0, 1], we abuse notation and define
l1-q
1-p

def

KL(qllp) £ KL(%,||%,) = qlog g +(1—q)log

We now present a PAC-Bayes theorem. The first such re-
sult was established by McAllester (1999). We focus on the
setting of bounding the generalization error of a (random-
ized) classifier on a finite discrete set of labels K. We will
use the following variation of a PAC-Bayes bound, where
we consider bounded loss functions.

Theorem 2.1 (Linear PAC-Bayes Bound; McAllester
2013; Catoni 2007). Fix A > 1/2 and assume the loss takes
values in an interval of length Ly, For every 6 > 0,
meN, 9 € .#(RFxK), and P € .4(RP), with prob-
ability at least 1 — &, for every Q € ., (RP),

Ro(0) < - (R5(0)+ 222 (kL(@l|P) + 10 5)).

27 mn 87y

The (PAC-Bayes) prior P in the bound is data independent.
Later, we introduce bounds for data-dependent priors.

3. Maximizing local entropy minimizes a
PAC-Bayes bound

We now present our first contribution, a connection be-
tween the local entropy and PAC-Bayes bounds. We begin
with some notation for Gibbs distributions. For a measure
P on R? and function g : R? — R, let P[g] denote the expec-
tation [ g(h)P(dh) and, provided P[g] < oo, let P, denote the
probability measure on R”, absolutely continuous with re-

spect to P, with Radon—Nikodym derivative %‘? (h) = [;<[Z]) .
A distribution of the form Py is generally referred
to as a Gibbs distribution. In the special case where P is a

probability measure, we call P, a “Gibbs posterior”.

xp(—1Rs)
Theorem 3.1 (Maximizing local entropy optimizes a
PAC-Bayes bound’s prior). Assume the loss takes values in
an interval of length Lyay, let T = 7 L":m_ for some A >1/2,
Then the set of weight w maximizing the local entropy
Fy:(W;S) equals the set of weights W minimizing the right
hand side of Eq. (4) for Q = G;VTS = Pexp(fﬂés) and P a mul-
tivariate normal distribution with mean w and covariance
matrix (Ty) "',

See Appendix A for the proof. The theorem requires
the loss function to be bounded, because the PAC-Bayes

bound we have used applies only to bounded loss functions.
Germain et al. (2016) described PAC-Bayes generalization
bounds for unbounded loss functions, though it requires
that one make additional assumptions about the distribu-
tion of the empirical risk, which we would prefer not to
make. (See Griinwald & Mehta (2016) for related work on
excess risk bounds and further references).

4. Data-dependent PAC-Bayes priors

Theorem 3.1 reveals that Entropy-SGD is optimizing a
PAC-Bayes bound with respect to the prior. As a result, the
prior P depends on the sample S, and the hypotheses of the
PAC-Bayes theorem (Theorem 2.1) are not met. Naively,
it would seem that this interpretation of Entropy-SGD can-
not explain its ability to generalize. Using tools from dif-
ferential privacy, Dziugaite & Roy (2018) show that if the
prior term is optimized in a differentially private way, then
a PAC-Bayes theorem still holds, at the cost of a slightly
looser bound. We will assume basic familiarity with dif-
ferential privacy. (See Dziugaite & Roy (2018) for a basic
summary.) We borrow the notation &7 : Z ~» T for a (ran-
domized) algorithm with an input in Z and outputin 7.

The key result is due to Dwork et al. (2015b, Thm. 11).

Theorem 4.1. Let m € N, let &/ : Z" ~ T, let 9 be a
distribution over Z, let B € (0,1), and, for each t € T,
fix a set v(t) C Z™ such that Ps..gm(S € v(t)) < B. If &
is e-differentially private for € < \/In(1/B)/(2m), then

Ps.gm(S € v(</(S))) < 3+/B.

Using Theorem 4.1, one can compute tail bounds on the
generalization error of fixed classifiers, and then, provided
that a classifier is learned from data in a differentially pri-
vate way, the tail bound holds on the classifier, with less
confidence. The following two tail bounds are examples of
this idea due to Oneto et al. (2017, Lem. 2 and Lem. 3).

Theorem 4.2. Let m € N, let &/: Z" ~ RP be &-
differentially private, and let § > 0. Then |Ry(</(S)) —

1

Rg(o7 (S))| < &4 m™2 with probability at least 1 — 8 over
S~ 9™, where € =max{€, /L log %} The same holds for
the upper bound /(6Rs(<7 (S)))(€ + m*%) +6(82+m™1).

4.1. An e-differentially private PAC-Bayes bound

The PAC-Bayes theorem allows one to choose the prior
based on the data-generating distribution 2, but not on the
data S ~ 2. Using differential privacy, one can consider
a data-dependent prior Z(S).

Theorem 4.3 (Dziugaite & Roy 2018). Under 0-1 loss, for
everyd >0, meN, 9 € .4 (Rk x K), and e-differentially
private data-dependent prior &: Z™ ~ #(RP), with
probability at least 1 — & over S ~ 9™, for every Q €
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M1 (RP),

KL(Rs(0Q)|IR2(Q))
< KL(QHW(S))+ln2\/ﬁ+2max{ln%, me?} @)

m
Note that the bound holds for any posterior Q, including

one obtained by optimizing a different PAC-Bayes bound.
Inverting KL(Rs(Q)||R%(Q)) allows one to obtain a two-
sided confidence interval for R»(Q). Note that, in re-
alistic scenarios, & is large enough relative to € that an
e-differentially private prior £2(S) contributes 2¢> to the
generalization error. Therefore, € must be much less than
one to not contribute a nontrivial amount to the general-
ization error. As discussed by Dziugaite & Roy, one can
match the m~! rate by which the KL term decays choosing
€ € O(m~'/?). Our empirical studies use this rate.

4.2. Differentially private data-dependent priors

We have already explained that the weights learned by
Entropy-SGD can be viewed as the mean of a data-
dependent prior Z(S). By Theorem 4.3 and the fact that
post-processing does not decrease privacy, it would suffice
to establish that the mean is e-differentially private in order
to obtain a risk bound on the corresponding Gibbs posterior
classifier.

The standard (if idealized) approach for optimizing a data-
dependent objective in a private way is to use the exponen-
tial mechanism (McSherry & Talwar, 2007). In the context
of maximizing the local entropy, the exponential mecha-
nism corresponds to sampling exactly from the “local en-
tropy (Gibbs) distribution” Poyy(g F, . (5))» Where B >0and
P is some measure on R?. (It is natural to take P to be
Lebesgue measure, or a multivariate normal distribution,
which would correspond to L2 regularization of the local
entropy.) The following result establishes the privacy of a
sample from the local entropy distribution:

Theorem 4.4. Let v,7 > 0, and assume the range of the

loss is contained in an interval of length Ly,,,. One sample
ZﬁLﬂ’llL‘(T -

Jfrom the local entropy distribution Pey, (g Fyo(s8) 18 =

differentially private.

See Appendix B for proof. Sampling from exponential
mechanisms exactly is generally intractable. We therefore
rely on the following result due to Dziugaite & Roy (2018),
which allows us to use SGLD to produce an approximate
sample and obtain the same bound up to a term that de-
pends on the degree of convergence. Let R§1(~) denote risk
with respect to 0-1 loss and let Ry (+) denote risk with re-
spect to the bounded version of cross-entropy described by
Dziugaite & Roy (2018). (For completeness, the bounded
version is defined in Appendix C.2.1.)

Theorem 4.5 (SGLD PAC-Bayes Bound). Let T > 0 and
T e RGP, For weRP and S € Z", let Py = N (W,X),

Oy = (Pw)exp(—cky), and assume Rs(-) is bounded. Then,
for every € > 0and 8,8 € (0,1), with probability at least
1—6—06 overS ~ 2™ and a sequence wWi,W», ... (such
as produced by SGLD) converging in distribution (condi-
tionally on S) to an e-differentially private vector w*(S),
there exists N € N, such that, for alln > N,

KL(Rs (03 )IIR5'(0y,))
- KL( ‘f,”HPwn)+1n2\/ﬁ+2max{1n%, me?} e
€.

m

Remark 4.6. Raginsky et al. (2017) give conditions that
suffice to imply that SGLD converges in distribution. Note
that the number of required iterations N of SGLD may de-
pend on the sample S, €, and §. See (Dziugaite & Roy,
2018) for details and improved bounds. N

In summary, we optimize the local entropy Fy (-;S) using
SGLD, repeatedly performing the update

W W 3mg(W) +/n/BN(0,1),

where at each round g(w) is an estimate of the gradient
VwFy:(w;S). (Recall the identity Eq. (3).) As in Entropy-
SGD, we construct biased gradient estimates via an inner
loop of SGLD. Ignoring error from these biased gradients,
we obtain a data-dependent prior that yields a valid PAC-
Bayes bound. The only change to Entropy-SGD is the ad-
dition of noise in the outer loop. We call the resulting algo-
rithm Entropy-SGLD. (See Algorithm 1.)

As we run SGLD longer, we obtain a tighter bound that
holds with probability no less than some value approach-
ing 1 — 8. In practice we may not know the rate at which
this convergence occurs. In our experiments, we use very
long runs to approximate near-convergence and then only
interpret the bounds as being optimistic. We return to these
issues in Sections 5 and 6.

5. Numerical evaluations on MNIST

PAC-Bayes bounds for Entropy-SGLD are data-dependent
and so the question of their utility is an empirical one that
requires data. In this section, we perform an empirical
study of SGD, SGLD, Entropy-SGD, and Entropy-SGLD
on the MNIST and CIFAR10 data sets, using both convo-
lutional and fully connected architectures, and comparing
several numerical generalization bounds to test errors esti-
mated based on held-out data.

The PAC-Bayes bounds we use depend on the privacy of
a sample from the local entropy distribution. (Bounds for
SGLD depend on the privacy of a sample from the Gibbs
posterior.) For the local entropy distribution, the degree €
of privacy is determined by the product of the 7 and 8 pa-
rameters of the local entropy distribution. (Thermal noise
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Figure 1: Results on the CONV network on two-class MNIST. (left column) Training error (under 0-1 loss) for SGLD on
the empirical risk — TR under a variety of thermal noise +/2/7 settings. SGD corresponds to zero thermal noise. (top-left)
The large markers on the right indicate test error. The gap is an estimate of the generalization error. On true labels, SGLD
finds classifiers with relatively small generalization error. At low thermal noise settings, SGLD (and its zero limit, SGD),
achieve small empirical risk. As we increase the thermal noise, the empirical 0—1 error increases, but the generalization
error decreases. At 0.1 thermal noise, risk is close to 50%. (bottom-left) On random labels, SGLD has high generalization
error for thermal noise values 0.01 and below. (True error is 50%). (top-middle) On true labels, Entropy-SGD, like SGD
and SGLD, has small generalization error. For the same settings of thermal noise, empirical risk is lower. (bottom-middle)
On random labels, Entropy-SGD overfits for thermal noise values 0.005 and below. Thermal noise 0.01 produces good
performance on both true and random labels. (right column) Entropy-SGLD is configured to approximately sample from
an e-differentially private mechanism with € ~ 0.0327 by setting T = /m, where m is the number of training samples.
(top-right) On true labels, the generalization error for networks learned by Entropy-SGLD is close to zero. Generalization

bounds are relatively tight. (bottom-right) On random label, Entropy-SGLD does not overfit. See Fig. 3 for SGLD bounds
at same privacy setting.

is 4/2/7.) In turn, € increases the generalization bound.
For a fixed 3, theory predicts that 7 affects the degree of
overfitting. We see this empirically. No bound we compute
is violated more frequently than it is expected to be. The
PAC-Bayes bound for SGLD is expanded by an amount &’
that goes to zero as SGLD converges. We assume SGLD
has converged and so the bounds we plot are optimistic. We
discuss this point below in light of our empirical results,
and then return to this point in the discussion.

The weights learned by SGD, SGLD, and Entropy-SGD are
treated differently from those learned by Entropy-SGLD. In
the former case, the weights parametrize a neural network
as usual, and the training and test error are computed using
these weights. In the latter case, the weights are taken to
be the mean of a multivariate normal prior, and we evaluate

the training and test error of the associated Gibbs posterior
(i.e., a randomized classifier). We also report the perfor-
mance of the (deterministic) network parametrized by these
weights (the “mean” classifier) in order to give a coarse
statistic summarizing the local empirical risk surface.

Following Zhang et al. (2017), we study these algorithms
on MNIST with the original (“true”) labels, as well as on
random labels. Parameter 7 that performs very well in one
setting often does not perform well in the other. Random
labels mimic data where the Bayes error rate is high, and
where overfitting can have severe consequences.
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5.1. Details

We use a two-class variant of MNIST (LeCun et al., 2010).3
(Due to space issues, see Appendices D and E for experi-
ments on the standard multiclass MNIST dataset and CI-
FARI10.) Some experiments involve random labels, i.e., la-
bels drawn independently and uniformly at random at the
start of training. We study three network architectures, ab-
breviated FC600, FC1200, and CONV. Both FC600 and
FC1200 are 3-layer fully connected networks, with 600 and
1200 units per hidden layer, respectively. CONV is a con-
volutional architecture. All three network architectures are
taken from the MNIST experiments by Chaudhari et al.
(2017), but adapted to our two-class version of MNIST.*
Let S and Sy denote the training and test sets, respectively.
For all learning algorithms we track

(i) Rg'(w) and Rg ' (W), i.e., the training/test error for w.
We also track

(ii) estimates of Rg"(G‘;,ﬁ’{g) and Rg;:t(G;f), i.e., the mean
training and test error of the local Gibbs distribution,
viewed as a randomized classifier (“Gibbs”)

and, using the bound stated in Theorem 4.4, we compute

(iii) a PAC-Bayes bound on R;‘(G;’,VTS) using Theorem 4.3
(“PAC-bound”);

(iv) the mean of a Hoeffding-style bound on RY,(W'),
where the underlying loss is the ramp loss with slope
10° and W' ~ Poyy(, () using the first bound of
Theorem 4.2 (“H-bound”);

(v) anupper bound on the mean of a Chernoff-style bound
on R7,(W'), where W' ~ Pox(r, . (.s))» using the second
bound of Theorem 4.2 (“C-bound”).

We also compute H- and C- bounds for SGLD, viewed as a

, .
sampler for w' ~ Pexp(_ Ry)> where P is Lebesgue measure.

In order to get privacy guarantees for SGLD and Entropy-
SGLD, we modify the cross entropy loss function to be
bounded following Dziugaite & Roy (2018). (See Ap-
pendix C.2.1). With the choice of f =1 and T = \/m,
and the loss function taking values in an interval of
length Ly, = 4, the local entropy distribution is an &-
differentially private mechanism with € ~ 0.0327. See Ap-
pendix C.2 for additional details. Note that, in the calcu-
lation of (iii), we do not account for Monte Carlo error in

our estimate of R¢(w). The effect is small, given the large

3 The MNIST handwritten digits dataset (LeCun et al., 2010)
consists of 60000 training set images and 10000 test set images,
labeled 0-9. We transformed MNIST to a two-class (i.e., binary)
classification task by mapping digits 0—4 to label 1 and 5-9 to
label —1.

4 We adapt the code provided by Chaudhari et al., with

some modifications to the training procedure and straightforward
changes necessary for our binary classification task.

number of iterations of SGLD performed for each point in
the plot. Recall that

RYGY) = B, (RS (W),

~GYy
and so we may interpret the bounds in terms of the perfor-
mance of a randomized classifier or the mean performance
of a randomly chosen classifier.

5.2. Results

Key results for the convolutional architecture (CONV) ap-
pear in Fig. 1. Results for FC600 and FC1200 appear in
Fig. 2 of Appendix C. (Training the CONV network pro-
duces the lowest training/test errors and tightest general-
ization bounds. Results and bounds for FC600 are nearly
identical to those for FC1200, despite FC1200 having three
times as many parameters.)

The left column of Fig. 1 presents the performance of
SGLD for various levels of thermal noise /2 /7 under both
true and random labels. (Assuming SGLD is close to weak
convergence, we may also use SGLD to directly perform
a private optimization of the empirical risk surface. The
level of thermal noise determines the differential privacy
of SGLD’s stationary distribution and so we expect to see
a tradeoff between empirical risk and generalization error.
Note that, algorithmically, SGD is SGLD with zero thermal
noise.) SGD achieves the smallest training and test error
on true labels, but overfits the worst on random labels. In
comparison, SGLD’s generalization performance improves
with higher thermal noise, while its risk performance wors-
ens. At 0.05 thermal noise, SGLD achieves reasonable but
relatively large risk but almost zero generalization error on
both true and random labels. Other thermal noise settings
have either much worse risk or generalization performance.

The middle column of Fig. 1 presents the performance of
Entropy-SGD for various levels of thermal noise y/2/7 un-
der both true and random labels. As with SGD, Entropy-
SGD’s generalization performance improves with higher
thermal noise, while its risk performance worsens. At the
same levels of thermal noise, Entropy-SGD outperforms
the risk and generalization error of SGD. At 0.01 thermal
noise, Entropy-SGD achieves good risk and low general-
ization error on both true and random labels. However, the
test-set performance of Entropy-SGD at 0.01 thermal noise
is still worse than that of SGD. Whether this difference is
due to SGD overfitting to the MNIST test set is unclear and
deserves further study.

The right column of Fig. 1 presents the performance of
Entropy-SGLD with T = y/m on true and random labels.
(This corresponds to approximately 0.09 thermal noise.)
On true labels, both the mean and Gibbs classifier learned
by Entropy-SGLD have approximately 2% test error and
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essentially zero generalization error, which is less than pre-
dicted by the bounds evaluated. The differentially private
PAC-Bayes risk bounds are roughly 3%. As expected by
the theory, Entropy-SGLD, properly tuned, does not overfit
on random labels, even after thousands of epochs.

We find that the PAC-Bayes bounds are generally tighter
than the H- and C-bounds. All bounds are nonvacuous,
though still loose. The error bounds reported here are
tighter than those reported by Dziugaite & Roy (2017).
However, the bounds are optimistic because they do not in-
clude the additional term which measure how far SGLD is
from its weak limit. Despite the bounds being optimistically
tight, we see almost no violations in the data. (Many viola-
tions would undermine our assumption.) While we observe
tighter generalization bounds than previously reported, and
better test error, we are still far from the performance of
SGD. The optimistic picture we get from the bounds sug-
gests we need to develop new approaches. Weaker notions
of stability with respect to the training data/privacy may be
necessary to achieve further improvement in generalization
error and test error.

6. Discussion

Our work reveals that Entropy-SGD can be understood as
optimizing a PAC-Bayes generalization bound in terms of
the bound’s prior. Because the prior must be independent of
the data, the bound is invalid, and, indeed, we observe over-
fitting in our experiments with Entropy-SGD when the ther-
mal noise /2/7 is set to 0.0001 as suggested by Chaudhari
et al. for MNIST.

PAC-Bayes priors can, however, depend on the data distri-
bution. This flexibility seems wasted, since the data sam-
ple is typically viewed as one’s only view onto the data
distribution. However, using results combining differential
privacy and PAC-Bayes bounds, we arrive at an algorithm,
Entropy-SGLD, that minimizes its own PAC-Bayes bound
(though for a surrogate risk). Entropy-SGLD performs an
approximately private computation on the data, extracting
information about the underlying distribution, without un-
dermining the statistical validity of its PAC-Bayes bound.
The cost of using the data is a looser bound, but the gains
in choosing a better prior make up for the loss. (The gains
come from the KL term being much smaller on the account
of the prior being better matched to the data-dependent pos-
terior.)

Our bounds based on Theorem 4.5 are optimistic because
we do not include the &’ term, assuming that SGLD has es-
sentially converged. We do not find overt evidence that our
approximation is grossly violated, which would be the case
if we saw the test error repeatedly falling outside our con-
fidence intervals. We believe that it is useful to view the

bounds we obtain for Entropy-SGLD as being optimistic
and representing the bounds we might be able to achieve
rigorously should there be a major advance in private op-
timization. (No analysis of the privacy of SGLD takes ad-
vantage of the fact that it mixes weakly, in part because
it’s difficult to characterize how much it has converged in
any real-world setting after a finite number of steps.) On
the account of using private data-dependent priors (and
making optimistic assumptions), the bounds we observe
for Entropy-SGLD are significantly tighter than those re-
ported by Dziugaite & Roy (2017). However, despite our
bounds potentially being optimistic, the test set error we
are able to achieve is still 5-10 times worse than that of
SGD. Differential privacy may be too conservative for our
purposes, leading us to underfit. We are able to achieve
good generalization on both true and random labels under
0.01 thermal noise, despite this value of noise being too
large for tight bounds. Identifying the appropriate notion
of privacy/stability to combine with PAC-Bayes bounds is
an important problem.

Despite Entropy-SGLD having much stronger generaliza-
tion guarantees, Entropy-SGLD learns much more slowly
than Entropy-SGD, the test error of Entropy-SGLD is far
from state of the art, and the PAC-Bayes bounds, while
much tighter than existing bounds, are still quite loose. It
seems possible that we may be facing a fundamental trade-
off between the speed of learning, the excess risk, and the
ability to produce a certificate of one’s generalization er-
ror via a rigorous bound. Characterizing the relationship
between these quantities is an important open problem.
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