
The Limits of Maxing, Ranking, and Preference Learning

Moein Falahatgar 1 Ayush Jain 1 Alon Orlitsky 1 Venkatadheeraj Pichapati 1 Vaishakh Ravindrakumar 1

Abstract
We present a comprehensive understanding of
three important problems in PAC preference
learning: maximum selection (maxing), ranking,
and estimating all pairwise preference probabil-
ities, in the adaptive setting. With just Weak
Stochastic Transitivity, we show that maxing re-
quires Ω(n2) comparisons and with slightly more
restrictive Medium Stochastic Transitivity, we
present a linear complexity maxing algorithm.
With Strong Stochastic Transitivity and Stochas-
tic Triangle Inequality, we derive a ranking al-
gorithm with optimalO(n log n) complexity and
an optimal algorithm that estimates all pairwise
preference probabilities.

1. Introduction
1.1. Background and motivation

Maximum selection (maxing) and sorting (ranking) are
fundamental problems in Computer Science with numer-
ous important applications. Deterministic versions of these
problems are well studied.

In practical applications, comparisons are rarely determin-
istic. For example in soccer, when Real Madrid plays
Barcelona the outcome is not always the same. Similarly,
individual preferences in restaurants vary a lot. Other prac-
tical applications are in areas such as social choice (Caplin
& Nalebuff, 1991; Soufiani et al., 2013), web search and in-
formation retrieval (Radlinski & Joachims, 2007; Radlinski
et al., 2008), crowdsourcing (Chen et al., 2013; gif), recom-
mender systems (Baltrunas et al., 2010) and several others.

These practical applications and the intrinsic theoretical in-
terest, has led to significant work on the probabilistic ver-
sion of maxing and ranking. Yet the most general model for
which maxing can be done using near-linear comparisons is
not known. We consider the most general transitive model
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that guarantees the existence of maximum and show that
under this model any maxing algorithm requires quadratic
many comparisons. We also consider a slightly more re-
strictive transitive model and propose a linear complex-
ity maxing algorithm, making it the most general model
known for which linear complexity maxing is possible.
Also, for the most general known model with sub-quadratic
complexity for ranking, we improve the complexity, mak-
ing it orderwise optimal. We also propose an optimal algo-
rithm that can simulate all pairwise comparisons.

1.2. Notation and problem formulation

Without loss of generality, let [n]
def
= {1, 2, ..., n} be the

set of n elements. We consider probabilistic noisy compar-
isons i.e., whenever two elements i and j are compared, i
is returned with an unknown probability pi,j . There are no

“ties” i.e., pj,i = 1 − pi,j . Let p̃i,j
def
= pi,j − 1

2 be the
centered preference probability.

A maximal is an element i that is preferable to every other
element i.e., p̃i,j ≥ 0 ∀j. A ranking is a permutation
σ1, σ2, ..., σn of [n] such that p̃σi,σj ≥ 0 whenever i > j.

But sometimes maximal and ranking might not even ex-
ist. For example, consider the popular Rock-Paper-Scissor
game i.e., p1,2 = p2,3 = p3,1 = 1. Notice that under this
model there is neither a maximal nor a ranking. Hence we
need additional constraints on pairwise probabilities pi,j .

Notice that for ranking to exist, there must exist an order-
ing (�) among elements s.t. whenever i � j, p̃i,j ≥ 0.
The models that have such an ordering are said to satisfy
Weak Stochastic Transitivity (WST). Observe that WST is
sufficient for existence of both maximal and ranking.

More restrictive notions of transitivity are motivated and
used in different contexts. Strong Stochastic Transitivity
(SST) which assumes that whenever i � j � k, p̃i,k ≥
max(p̃i,j , p̃j,k), as its name suggests is a stronger notion of
transitivity that confines the model more than WST, hence
less general. Medium Stochastic Transitivity (MST) (Sko-
repa, 2010) sitting in between WST and SST, assumes that
whenever i � j � k, p̃i,k ≥ min(p̃i,j , p̃j,k). From WST to
MST to SST, the model becomes more restrictive.

Another model restriction used in some of the previous
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works Stochastic Triangle Inequality (STI), assumes that
whenever i � j � k, p̃i,k ≤ p̃i,j + p̃j,k. In this paper we
propose maxing and ranking algorithms for models under
various set of constraints.

There is also a concern with finding an exact maximal and
ranking. Consider the case of n = 2 and p̃1,2 ≈ 0. No-
tice that in this case where n is just 2, finding maximal and
ranking could take arbitrarily many comparisons. Easy fix
to alleviate this problem is to consider Probably Approxi-
mately Correct (PAC) formulation which we also adopt.

An element i is said to be ε-preferable to j if p̃i,j ≥ −ε.
For ε ∈ (0, 1/2), an ε-maximal is an element i that is ε-
preferable to all elements i.e., p̃i,j ≥ −ε ∀j. Given 0 <
ε < 1/2, 0 < δ ≤ 1/2, a PAC maxing algorithm must
output an ε-maximal with probability≥ 1−δ. Similarly, an
ε-ranking is a permutation σ1, σ2, ..., σn of [n] such that σi
is ε-preferable to σj whenever i > j. Given 0 < ε < 1/2,
0 < δ ≤ 1/2, a PAC ranking algorithm must output an
ε-ranking with probability ≥ 1− δ.

1.3. Related work

Researchers initially considered more restrictive mod-
els. (Feige et al., 1994) considered constant noise model
i.e., p̃i,j = α > 0 if i � j and presented a maxing algo-
rithm that usesO

(
n
α2 log 1

δ

)
comparisons and outputs max-

imal with probability ≥ 1 − δ. It also presented a ranking
algorithm that uses O

(
n logn
α2

)
comparisons and outputs

ranking with probability ≥ 1− 1/n.

Another set of widely-studied restrictive models are para-
metric ones. (Szörényi et al., 2015) considered one of the
most popular parametric models, Plackett-Luce (Plackett,
1975; Luce, 2005) and presented PAC maxing and rank-
ing algorithms that useO

(
n
ε2 log n

εδ

)
andO

(
n logn
ε2 log n

εδ

)
comparisons respectively.

Researchers also considered models that are more gen-
eral than parametric models, yet still more restrictive than
WST. (Yue & Joachims, 2011) considered models that sat-
isfy both SST and STI and derived a PAC maxing algo-
rithm that uses O

(
n
ε2 log n

εδ

)
comparisons. Later (Fala-

hatgar et al., 2017b) considered same model and proposed
an optimal PAC maxing algorithm that uses O

(
n
ε2 log 1

δ

)
comparisons. It also proposed a PAC ranking algorithm
that with probability ≥ 1 − 1/n, outputs an ε-ranking us-
ing O

(
n logn(log logn)3

ε2

)
comparisons, (log log n)3 times

the known lower bound. Until now, it was not known if the
additional (log log n)3 factor is necessary for PAC ranking.

(Falahatgar et al., 2017a) considered models that satisfy
only SST but not necessarily STI and proposed an opti-
mal PAC maxing algorithm that uses O

(
n
ε2 log 1

δ

)
compar-

isons. They also showed that there exists a model which
satisfies SST and yet no algorithm can find an ε-ranking for
this model using o(n2) comparisons, establishing a lower
bound of Ω(n2) comparisons once STI property is dropped.

Among other related works we can point out (Busa-
Fekete et al., 2014b; Lee et al., 2014; Dudı́k et al., 2015;
Hüllermeier et al., 2008), who considered models more
general than WST under different definitions of maximum
and ranking. More discussion about these models can be
found in Appendix G. (Busa-Fekete et al., 2014a; Mohajer
et al., 2017) considered the non-PAC version and (Rajku-
mar & Agarwal, 2014; Negahban et al., 2012; 2016; Jang
et al., 2016) considered the non-adaptive version of this
problem. Also (Acharya et al., 2016; Ajtai et al., 2015)
considered the deterministic adversarial version of maxing
and ranking. (Shah et al., 2016b; Chatterjee et al., 2015;
Shah et al., 2016a) studied the problem of estimating pair-
wise probabilities in non-adaptive setting.

2. New results and Outline
Maxing Linear-complexity maxing algorithm under SST
by (Falahatgar et al., 2017a) encourages the search for a
linear-complexity maxing algorithm for models with only
WST properties. Two questions then arise: 1a) Is a lin-
ear complexity PAC maxing algorithm possible for models
with only WST property? 1b) If not, does there exist a
model more general than SST and less general than WST
for which a linear complexity PAC maxing is possible?

We resolve both questions in this paper: 1a) No. Theo-
rem 1 in Section 3 shows that there are WST models for
which any PAC maxing algorithm requires Ω(n2) compar-
isons. 1b) Yes. In Theorem 8 in Section 4, we derive a PAC
maxing algorithm for MST model that uses O

(
n
ε2 log 1

δ

)
comparisons for δ ≥ min(1/n, e−n

1/4

).

Ranking Motivated by the previous results of ranking un-
der SST + STI, three questions arise: 2a) For models
with SST + STI, is the additional (log log n)3 factor nec-
essary for PAC ranking algorithms? 2b) Since the near-
linear complexity of ranking under SST + STI changes to
quadratic complexity by dropping STI (Falahatgar et al.,
2017a), is there a sub-quadratic algorithm for ranking un-
der MST + STI? 2c) For models with SST + STI, since
PAC ranking is possible with near linear complexity, is it
also possible to approximate all pairwise probabilities to
accuracy of ε using near linear number of comparisons?

We essentially resolve all three questions. 2a) No. In
Theorem 9 in Section 5, we improve the PAC ranking al-
gorithm for models with SST + STI removing additional
(log log n)3 factor and hence making it optimal. 2b) No.
Theorem 10 in Section 6 shows that there is a model with
MST+STI, for which any PAC ranking algorithm requires



The Limits of Maxing, Ranking, and Preference Learning

Model Maxing Ranking Finding pi,j
SST with STI Θ

(
n
ε2 log 1

δ

)
Θ
(
n logn
ε2

)∗
Θ
(
nmin(n,1/ε) logn

ε2

)∗
(Falahatgar et al., 2017b) Section 5 Section 7

SST Θ
(
n
ε2 log 1

δ

)
Ω(n2) Ω(n2)

(Falahatgar et al., 2017a) (Falahatgar et al., 2017a)
MST with STI Θ

(
n
ε2 log 1

δ

)∗∗
Ω(n2) Ω(n2)

and Section 4 Section 6
MST

WST with STI Ω(n2) Ω(n2) Ω(n2)
and Section 3 Section 6

WST

Table 1. Comprehensive results for maxing, ranking and finding pi,j

∗: for δ ≥ 1
n , ∗∗: for δ ≥ min(1/n, e−n

1/4

)

Ω(n2) comparisons. 2c) Yes. For models with SST + STI,
in Theorems 11 and 12 in Sections 7, we present an opti-
mal algorithm that uses O

(
nmin(n,1/ε) logn

ε2

)
comparisons

and approximates all pairwise probabilities to accuracy of
ε with probability ≥ 1− 1/n.

We present experiments over simulated data in Section 8
and end with our conclusions in Section 9.

Interpretation Table 1 summarizes all known results for
problems of maxing, ranking, and finding pairwise prob-
abilities under different transitive properties. Notice that
under the most general model WST, all these problems re-
quire quadratic many comparisons and under the most re-
strictive model SST + STI, all problems have optimal al-
gorithms with near-linear complexity. For MST and WST
models adding STI property does not influence complexity
for any problem. But for SST model adding STI property
facilitates near-linear complexity algorithms for PAC rank-
ing and approximating pairwise probabilities.

It is easy to see that once all pairwise probabilities are ap-
proximated to accuracy of ε/2, one can find an ε-maximum
and an ε-ranking. Hence approximating pairwise proba-
bilities is harder than PAC ranking and lower bound for
PAC ranking implies a lower bound for problem of ap-
proximating pairwise probabilities. Therefore in Table 1
lower bounds for finding pij follow from lower bounds for
ranking. Further in Appendix B.1, under WST model, we
present a trivial algorithm that with probability ≥ 1 − δ,
estimates all pairwise probabilities to accuracy of ε us-
ing O

(
n2

ε2 log n
δ

)
comparisons. Hence upper bound of

O
(
n2

ε2 log n
δ

)
follows for all problems.

3. PAC maxing for WST
We show the lower bound of Ω(n2) for maxing under WST
by presenting an example for which any algorithm requires

Ω(n2) comparisons to output a 1/4-maximum for δ ≤ 1/8.

To establish the lower bound, we reduce the problem of
finding a 1/4-maximum to finding the left most piece of
a linear jigsaw puzzle. We consider the following model
with n elements S = {a1, a2, . . . , an} : p̃ai,ai+1

= 1
2∀i <

n, and p̃ai,aj = µ(0 < µ < 1/n10),∀j > i + 1. This
model satisfies WST since there exists an underlying order
�, ai � aj if i < j (because p̃ai,aj > 0) and a1 is the only
1/4-maximum under this model.

Observe that ai is always preferred to ai+1, but for every
non consecutive pair, comparison output is almost a fair
coin flip. We make the problem simpler by giving the extra
information of whether two non consecutive elements are
being compared. Notice that this only makes the problem
easier, namely, complexity for modified problem is smaller
than that of original problem.

The modified problem is similar to a linear jigsaw puzzle
where if we compare two pieces we will know if pieces are
adjacent or not and if adjacent, which piece is on the left,
the goal is to find the left most piece. We show that w.h.p.,
any algorithm neither finds more than n/32 connections (a
set of neighbors) nor asks Ω(n) comparisons for the left
most piece. We use this to show the lower bound. The
proof is in Appendix A.

Theorem 1. There exists a model that satisfies WST for
which any algorithm requires Ω(n2) comparisons to find a
1/4-maximum with probability ≥ 7/8.

4. PAC maxing for MST
Outline In this section, we propose OPT-MAX, a linear
complexity maxing algorithm for MST. In the process, we
present two other suboptimal maxing algorithms SOFT-
SEQ-ELIM, NEAR-OPT-MAX and use them as build-
ing blocks in OPT-MAX. SOFT-SEQ-ELIM finds an ε-
maximum with quadratic complexity. Its performance de-
pends on the starting element (anchor). NEAR-OPT-MAX
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first finds a good anchor and then uses SOFT-SEQ-ELIM,
guaranteeing near linear comparison complexity. OPT-
MAX builds on NEAR-OPT-MAX and finds an ε-maximum
in linear-complexity for δ ≥ min(1/n, e−n

1/4

).

4.1. SOFT-SEQ-ELIM

Before presenting SOFT-SEQ-ELIM, we first present the
subroutine COMPARE we use to compare two elements.

COMPARE COMPARE takes 5 parameters : two elements
i, j that need to be compared, lower bias εl, upper bias
εu, confidence δ and deems if p̃i,j < εl or p̃i,j > εu. It
compares i and j for 8

(εu−εl)2 log 2
δ times. Let p̂i,j be the

fraction of times i won and ˆ̃pi,j = p̂i,j − 1/2. If ˆ̃pi,j <
3εl
4 + εu

4 , then COMPARE deems p̃i,j < εl (returns 1), if
ˆ̃pi,j >

εl
4 + 3εu

4 , then COMPARE deems p̃i,j > εu (returns
3) and for other ranges of ˆ̃pi,j , COMPARE not able to take
a decision, returns 2.

Lemma 2 bounds comparisons used by COMPARE and
proves its correctness. COMPARE and its analysis is pre-
sented in Appendix C.2.

Lemma 2. For εu > εl, COMPARE(i, j, εl, εu, δ) uses ≤
8

(εu−εl)2 log 2
δ comparisons and if p̃i,j < εl, then w.p.≥

1− δ, it returns 1, else if p̃i,j > εu, w.p.≥ 1− δ, it returns
3. Further if p̃i,j ≤ (εl + εu)/2, w.p.≥ 1 − δ, it does not
return 3 and if p̃i,j > (εl + εu)/2, w.p.≥ 1− δ, it does not
return 1.

SOFT-SEQ-ELIM SOFT-SEQ-ELIM takes 5 parameters:
input set S, starting anchor element r, lower bias εl, up-
per bias εu and confidence δ. SOFT-SEQ-ELIM happens
in rounds. In each round, it compares the current anchor
a with remaining elements one by one using COMPARE.
Due to probabilistic nature, we cannot exactly compare if
p̃e,a > εu vs p̃e,a ≤ εu. Hence we compare if p̃e,a > εu vs
p̃e,a < εl. For an element e, if COMPARE deems p̃e,a < εl,
then SOFT-SEQ-ELIM eliminates that element and if COM-
PARE deems p̃e,a > εu, then SOFT-SEQ-ELIM updates
current anchor element to e and eliminates a. This pro-
cess is continued until the current anchor element is not
updated after comparing with all remaining elements and
then SOFT-SEQ-ELIM outputs final anchor element.

If p̃e,a < εl or p̃e,a > εu, COMPARE deems correctly. If
εl ≤ p̃e,a ≤ εu, then COMPARE can sometimes fail to out-
put any decision and in that case, SOFT-SEQ-ELIM neither
eliminates that element nor updates the anchor element, it
just moves to next remaining element in S.

Theoretically, performance of SOFT-SEQ-ELIM strongly
depends on the starting anchor element r. To define a
good anchor element, similar to (Falahatgar et al., 2017a),
an element a is called an (ε,m)-good anchor if a is

Algorithm 1 SOFT-SEQ-ELIM

1: inputs
2: Set S, element r, lower bias εl, upper bias εu, confi-

dence δ
3: Q = S \ {r}
4: while Q 6= ∅ do
5: r′ = r, Q′ = ∅
6: for c ∈ Q do
7: k = COMPARE(c, r, εl, εu,

2δ
|S|2 )

8: if k == 1 then
9: Q′ = Q′

⋃
{c}.

10: else if k == 3 then
11: r ← c
12: Q′ = Q′

⋃
{c}

13: break
14: end if
15: end for
16: if r == r′ then
17: break
18: end if
19: Q = Q \Q′
20: end while
21: return r

not ε-preferable to at most m elements, i.e., |{e : e ∈
S and p̃e,a > ε}| ≤ m. We show that every element for
which initial anchor r is εl-preferable is deemed bad and
gets eliminated after its first comparison round and hence
comparisons spent on all such elements is O(|S|). Since
initial anchor r is an (εl,m)-good anchor element, there
are only m elements for which r is not εl-preferable. We
later show that only these elements can become anchors,
leading to at most m changes of anchors. Therefore each
such element gets compared in at mostm rounds and hence
we can bound total comparison rounds by O(|S| + m2).
Lemma 3 bounds comparisons used by SOFT-SEQ-ELIM
and proves its correctness. Proof is in Appendix C.3.

Lemma 3. If r is an (εl,m)-good anchor element,
w.p.≥ 1 − δ, SOFT-SEQ-ELIM(S, r, εl, εu, δ) uses

O
(
|S|+m2

(εu−εl)2 log |S|δ

)
comparisons and outputs r̂, an εu

maximum of S, such that either r̂ = r or p̃r̂,r > εl+εu
2 .

Corollary 4 bounds comparisons used by SOFT-SEQ-ELIM
for any starting anchor. Proof follows from Lemma 3

Corollary 4. For any r, w.p.≥ 1 − δ,
SOFT-SEQ-ELIM(S, r, εl, εu, δ) uses O

(
|S|2

(εu−εl)2 log |S|δ

)
comparisons and outputs r̂, an εu maximum of S, such that
either r̂ = r or p̃r̂,r > εl+εu

2 .

Now we build on SOFT-SEQ-ELIM and propose a near lin-
ear algorithm NEAR-OPT-MAX.
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4.2. NEAR-OPT-MAX

NEAR-OPT-MAX(S, ε, δ) w.p.≥ 1 − δ, uses

O
(
|S|
ε2

(
log |S|δ

)2)
comparisons and outputs an ε-

maximum of S.

Since complexity of SOFT-SEQ-ELIM depends on the ini-
tial anchor element, if we can pick a good initial anchor
element, then we can reduce the number of comparisons.
One way to pick a good initial anchor element is to find an
ε/2-maximum of a randomly picked subset.

Lemma 5 shows that an ε-maximum of a randomly picked
subset is a good anchor element. Proof in Appendix C.4.

Lemma 5. If r is an ε-maximum of a set Q, formed by
picking m elements randomly from S, then w.p.≥ 1 − δ, r
is an

(
ε, |S|m log |S|δ

)
-good anchor element of S.

NEAR-OPT-MAX(S, ε, δ) first picks a random subset Q of

size
√
|S| log 4|S|

δ and uses SOFT-SEQ-ELIM to find an
ε/2-maximum of Q.

By Lemma 5, w.p.≥ 1 − δ/4, an ε/2-maximum of Q will

be an (ε/2,
√
|S| log 4|S|

δ )-good anchor element. NEAR-
OPT-MAX then uses SOFT-SEQ-ELIM with ε/2-maximum
of Q as initial anchor to find an ε-maximum of S. Since
the initial anchor is provably good, we are able to bound
the comparisons.

Algorithm 2 NEAR-OPT-MAX

1: inputs
2: Set S, bias ε, confidence δ

3: Form a set Q by selecting
√
|S| log 4|S|

δ random ele-
ments from S without replacement.

4: a← random element from Q, Q = Q \ {a}
5: r ← SOFT-SEQ-ELIM

(
Q, a, 0, ε2 ,

δ
4

)
, S = S \ {r}

6: return SOFT-SEQ-ELIM(S, r, ε/2, ε, δ/2)

Lemma 6 bounds the comparisons used by
NEAR-OPT-MAX and proves its correctness.

Lemma 6. With probability ≥ 1 − δ,

NEAR-OPT-MAX(S, ε, δ) uses O
(
|S|
ε2

(
log |S|δ

)2)
comparisons and outputs an ε-maximum of S.

We build on NEAR-OPT-MAX and derive an optimal algo-
rithm for δ ≥ min(1/|S|, e−|S|1/4).

4.3. Optimal linear Algorithm

We first present an algorithm that is optimal for low ranges
of δ i.e., min(e−|S|

1/4

, 1/|S|) ≤ δ ≤ 1
|S|1/3 .

4.3.1. LOW RANGES OF δ

We first find a good anchor, this time using NEAR-OPT-
MAX and then use SOFT-SEQ-ELIM with NEAR-OPT-
MAX output as initial anchor.

OPT-MAX-LOW picks a random subset of size |S|3/4 and
finds an ε/2-maximum of this set using NEAR-OPT-MAX.
We later show that output is an (ε/2,O(

√
|S|))-good an-

chor element of S. OPT-MAX-LOW then uses SOFT-SEQ-
ELIM with the previous output as initial anchor to find an
ε-maximum of S. Since initial anchor is good, we are able
to bound comparisons used by OPT-MAX-LOW.

Observe that in OPT-MAX-LOW, we call SOFT-SEQ-ELIM
three times in total: two times during NEAR-OPT-MAX
and once to produce the final output. Each successive call
of SOFT-SEQ-ELIM acts on higher size, namely first we
find ε/4-maximum in a small set and using this element
as anchor, then we find ε/2-maximum in a larger set and
finally using this new element as anchor, we find an ε-
maximum of the whole set S.

Algorithm 3 OPT-MAX-LOW

1: inputs
2: Set S, bias ε, confidence δ
3: Form a set Q by selecting |S|3/4 random elements

from S without replacement
4: r ← NEAR-OPT-MAX(Q, ε2 ,

δ
3 )

5: return SOFT-SEQ-ELIM(S, r, ε2 , ε,
δ
3 )

Lemma 7 bounds comparisons used by OPT-MAX-LOW
and proves its correctness. Proof is in Appendix C.6.

Lemma 7. For 1
|S|1/3 ≥ δ ≥ min(1/|S|, e−|S|1/4), w.p.≥

1− δ, OPT-MAX-LOW(S, ε, δ) uses O( |S|ε2 log 1
δ ) compar-

isons and outputs r, an ε-maximum

4.3.2. HIGHER RANGES OF CONFIDENCE δ

For low ranges of confidence δ
(
δ ≤ 1

|S|1/3

)
, notice that

log 1
δ and log |S|δ are of same order and hence if we use

SOFT-SEQ-ELIM with a good anchor, we can guarantee
complexity of O

(
|S|
ε2 log |S|δ

)
= O

(
|S|
ε2 log 1

δ

)
.

However, for high values of δ, this is not the case. We
solve this problem by pruning S to a smaller set of size
|S|/ log |S| such that it contains all good elements and then
use SOFT-SEQ-ELIM. Due to space constraint, we present
PRUNE, the pruning algorithm, OPT-MAX-MEDIUM, and
OPT-MAX-HIGH, linear complexity maxing algorithms for
higher ranges of confidence in Appendix C.8.

4.4. Full Algorithm
In Theorem 8 we bound comparisons used by OPT-MAX
and prove its correctness. Proof follows from Lemmas 7
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Algorithm 4 OPT-MAX

inputs
Set S, bias ε, confidence δ

if δ ≤ 1
|S|1/3 then

return OPT-MAX-LOW(S, ε, δ)
end if
if δ ≤ 1

log |S| then
return OPT-MAX-MEDIUM(S, ε, δ)

end if
return OPT-MAX-HIGH(S, ε, δ)

and corresponding Lemmas 19 and 20 for OPT-MAX-
MEDIUM and OPT-MAX-HIGH given in Appendix C.8.

Theorem 8. For δ ≥ min(1/|S|, e−|S|1/4), w.p.≥ 1 −
δ, OPT-MAX(S, ε, δ) uses O

(
|S|
ε2 log 1

δ

)
comparisons and

outputs an ε-maximum of S.

5. Ranking for SST+STI
(Falahatgar et al., 2017b) provides a ranking algorithm that
w.p.≥ 1 − 1/|S|, uses O

(
|S|
ε2 log |S|(log log |S|)3

)
com-

parisons and outputs an ε-ranking of input set S.

We build on their algorithm BINARY-SEARCH-RANKING,
improving two components which lead to additional
(log log |S|)3 factor, thereby proposing an optimal ε-
ranking algorithm that uses O

(
|S|
ε2 log |S|

)
comparisons.

In Appendix 5, we outline the algorithm proposed in (Fala-
hatgar et al., 2017b), pointing out the two components
that lead to additional factor, and present ideas that im-
prove over these components. For detailed explanation of
BINARY-SEARCH-RANKING we refer readers to (Falahat-
gar et al., 2017b). Now we explain the high-level idea of
how we improve over these components.

The two components that we improve upon share the prop-
erty that each is being called for Ω(|S|/(log |S|)3) times
and at each time finds a correct output w.p.≥ 1− 1/|S|5.

Instead of finding a correct output w.p.≥ 1− 1/|S|5 in one
shot, and incurring high complexity, we propose the fol-
lowing. First use the component to find a correct output
w.p.≥ 1 − 1/ log |S|, then check if the output is correct or
not. If the output is deemed to be not correct, run the com-
ponent again, finding a correct output w.p.≥ 1− 1/|S|6.

Thus to show the potency of this idea, it suffices to show:
One, the second run is only invoked a few times and two,
the complexity of checking whether an output is correct is
not high. Our main contribution is RANK-CHECK algo-
rithm that checks if an ordered set is ε-ranked or not 3ε-
ranked. We present RANK-CHECK in Appendix D.3

Theorem 9. BINARY-SEARCH-RANKING(S, ε) (Falahat-
gar et al., 2017b) with new improved components presented
here, w.p.≥ 1−1/|S|, usesO

(
|S| log |S|

ε2

)
comparisons and

outputs an ε-ranking of S.

6. Lower bound for ranking for MST+STI
In this section we show that there exists a model with both
MST and STI properties under which any PAC ranking al-
gorithm requires quadratic many comparisons. Consider
the model S = {a1, a2, ..., an} s.t. a1 is preferable to
a2 i.e., p̃a1,a2 = 1/2 and comparison between any other
pair is almost a fair coin flip i.e., p̃ai,aj = µ ∀i < j and
{i, j} 6= {1, 2} for some µ < 1/n10. This model satisfies
both MST and STI. Any permutation which has a1 coming
after a2 is a 1/4-ranking. But since comparison between
any pair other than (a1, a2) is essentially a fair coin toss,
any strategy that does not compare a1 and a2 will not have
them in correct order in the output w.p.≈ 1/2 and hence
won’t be a 1/4-ranking. Therefore this problem is simi-
lar to finding a single biased coin among

(
n
2

)
coins which

needs Ω(n2) comparisons.

Theorem 10 bounds the complexity required for ε-ranking
of models with MST and STI. Proof is in Appendix E.

Theorem 10. There exists a model with MST and STI prop-
erties for which any algorithm requires Ω(n2) comparisons
to output a 1/4-ranking w.p.≥ 7/8.

7. Finding pairwise probabilities for SST+STI
Theorem 9 shows that for a model satisfying both SST and
STI, an ε-ranking can be found using O

(
|S| log |S|

ε2

)
com-

parisons. In this section we answer the question whether
under same model we can approximate all pairwise proba-
bilities to accuracy of ε using almost same complexity.

We first show a lower bound of Ω
(
|S|min(|S|,1/ε)

ε2 log |S|
)

utilizing a model for which Ω(|S|min(|S|, 1/ε)) pairwise
probabilities need to be approximated using comparisons.
Later we present APPROX-PROB that uses comparisons
only for O(|S|min(|S|, 1/ε)) pairs and hence obtain or-
derwise same upper bound as lower bound.

7.1. Lower Bound

We show that any algorithm requires
Ω
(
|S|min(|S|,1/ε) log |S|

ε2

)
comparisons to approximate

all pairwise probabilities to ε accuracy.

We prove the lower bound by using the model: (4k+4)ε ≤
p̃ai+k,ai ≤ (4k + 8)ε for 1 ≤ k ≤ min(n − i, b 1

16ε − 2c)
and p̃ai+k,ai = 1/4 for k > min(n− i, b 1

16ε − 2c).

It can be shown that this model satisfies both SST and STI.
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Under this model, the only way to approximate unfixed
pairwise probabilities is by comparing those pairs. Since
pairwise probabilities are not fixed for Ω(nmin(n, 1/ε))
pairs, any algorithm needs to approximate those many
probabilities to accuracy of ε, hence the lower bound.

Theorem 11 bounds the required complexity to approxi-
mate all pairwise probabilities. Proof is in Appendix F.1
Theorem 11. For ε < 1/48, there exists a model that sat-
isfies both SST and STI for which any algorithm requires
Ω
(
|S|min(|S|,1/ε)

ε2 log |S|
)

comparisons to approximate all

pairwise probabilities to ε accuracy w.p. ≥ 3/4.

7.2. Upper Bound

Here we propose an algorithm to approximate all pairwise
probabilities to an accuracy of ε.

The proposed algorithm, first finds an ε/8-ranking of the
input set S and then approximates pairwise probabilities.
By Theorem 9, w.p.≥ 1− 1

|S|2 we can find an ε/8-ranking

of the input set S using O
(
|S| log |S|

ε2

)
comparisons. We

present APPROX-PROB that given an ε/8-ranked set, ap-
proximates all pairwise probabilities to an accuracy of ε.

APPROX-PROB APPROX-PROB takes an ε/8-ranked or-
dered set S i.e., p̃S(i),S(j) ≤ ε/8 ∀i < j and bias ε and
approximates all pairwise probabilities to an accuracy of ε.

Note that it is enough to approximate p̃S(j),S(i) for j ≥ i
since p̃S(i),S(j) = −p̃S(j),S(i). For all i > 1, APPROX-

PROB compares S(i) and S(1), 16 log |S|4
ε2 times and ap-

proximates p̃S(i),S(1) by ˆ̃pS(i),S(1), the fraction of times
S(i) won rounded off to the nearest multiple of ε. Since
for perfectly ranked ordered set p̃S(i+1),S(1) ≥ p̃S(i),S(1),
if ˆ̃pS(i+1),S(1) < ˆ̃pS(i),S(1), then APPROX-PROB corrects
ˆ̃pS(i+1),S(1), setting it equal to ˆ̃pS(i),S(1). It can be shown
that p̃S(i),S(1) is approximated to an accuracy of 7ε

8 .

APPROX-PROB continues this process by approximating
p̃S(i),S(2) for i ≥ 2 by increasing i one at a time.
For a perfectly ranked set, p̃S(i−1),S(2) ≤ p̃S(i),S(2) ≤
p̃S(i),S(1) and hence if ˆ̃pS(i−1),S(2) = p̃S(i),S(1), APPROX-
PROB does not use comparisons to approximate p̃S(i),S(2),
instead assigns ˆ̃pS(i),S(2) = ˆ̃pS(i−1),S(2). Whenever
ˆ̃pS(i−1),S(2) 6= p̃S(i),S(1), APPROX-PROB approximates
p̃S(i),S(2) by comparing S(i) and S(2). It can be shown
that p̃S(i),S(2) is approximated to accuracy of ε.

APPROX-PROB continues this process for S(3), then S(4)
and so on until S(n). Notice that whenever ˆ̃pS(i−1),S(j) =
ˆ̃pS(i),S(j−1), APPROX-PROB does not use comparisons to
approximate p̃S(i),S(j) but simply assigns ˆ̃pS(i),S(j) =
ˆ̃pS(i−1),S(j). We show this in fact happens at many places

and only O(|S|min(|S|, 1/ε)) pairwise probabilities are
approximated using comparisons. This enables obtaining
orderwise same upper bound as the lower bound.

Algorithm 5 APPROX-PROB

1: inputs
2: Ordered Set S, bias ε
3: ˆ̃pS(1),S(1) = 0
4: for i from 2 to |S| do
5: Compare S(1) and S(i) for 16

ε2 log |S|4 times

6: ˆ̃pS(i),S(1) =
[

fraction of times S(i) won
ε − 1

2

]
ε

7: if ˆ̃pS(i),S(1) < ˆ̃pS(i−1),S(1) then
8: ˆ̃pS(i),S(1) = ˆ̃pS(i−1),S(1)
9: end if

10: end for
11: for j from 2 to |S| do
12: ˆ̃pS(j),S(j) = 0
13: for k from j + 1 to |S| do
14: if ˆ̃pS(k−1),S(j) = ˆ̃pS(k),S(j−1) then
15: ˆ̃pS(k),S(j) = ˆ̃pS(k−1),S(j)
16: else
17: Compare S(j) and S(k) for 16

ε2 log |S|4 times

18: ˆ̃pS(k),S(j) =
[

fraction of times S(k) won
ε − 1

2

]
ε

19: end if
20: end for
21: end for

Theorem 12 shows the correctness of APPROX-PROB and
bounds its comparisons. Proof is in Appendix F.3

Theorem 12. Given an ε/8-ranked ordered set S i.e.,
p̃S(i),S(j) ≤ ε/8 ∀i < j, APPROX-PROB(S, ε) uses
O( |S|min(|S|,1/ε)

ε2 log |S|) comparisons and w.p.≥ 1− 1
|S|2

approximates all pairwise probabilities to accuracy of ε.

8. Experiments
In this section, we compare the performance of our max-
ing algorithms with previous work on synthetic data. All
results presented here are averaged over 1000 runs.

We compare our maxing algorithms SOFT-SEQ-
ELIM, NEAR-OPT-MAX, and OPT-MAX with SEQ-
ELIMINATE (Falahatgar et al., 2017a), KNOCK-
OUT (Falahatgar et al., 2017b), MallowsMPI (Busa-
Fekete et al., 2014a), AR (Heckel et al., 2016) and
BTM-PAC (Yue & Joachims, 2011). KNOCKOUT and
BTM-PAC are PAC maxing algorithms for models with
both SST and STI properties. SEQ-ELIMINATE is a
PAC maxing algorithm for SST model. MallowsMPI,
originally designed for Mallows model, finds a condorcet
winner which exists under WST. AR is a maxing algorithm
that finds Borda winner that is same as condorcet winner
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Figure 1. Maxing Algorithms for model with SST and STI

under WST. In all experiments, we use maxing algorithms
to find a 0.05-maximum with δ = 0.1.

We first consider the model pi,j = 0.6 ∀i < j same as
in (Yue & Joachims, 2011; Falahatgar et al., 2017b;a) that
satisfies both SST and STI properties. Note that i = 1
is the only 0.05-maximum under this model. Figure 1
presents number of comparisons used by each maxing algo-
rithm. Observe that compared to other algorithms, BTM-
PAC uses too many comparisons even for n = 15. The
reason might be BTM-PAC is mainly intended for reduc-
ing regret in the conventional bandits setting. The bar for
BTM-PAC complexity for n = 100 is not fully shown in
the figure to better scale the other complexity bars. Com-
parison complexity of AR is high for n = 100 mainly be-
cause AR eliminates elements based on Borda scores and
Borda scores are very close to each other for large n. We
drop BTM-PAC and AR henceforth.

Now we consider a model that satisfies MST but not SST,
i.e., p5i+l,5i+k = 0.6 ∀i < n/5 − 1, 1 ≤ l < k ≤ 5 and
p5i+l,5j+k = 0.52 ∀i < j < n/5 − 1, 0 < l, k ≤ 5. No-
tice that under this model elements are divided into groups
of five where within each group |p̃i,j | = 0.1 and for ele-
ments in two different groups |p̃i,j | = 0.02, hence there is a
0.05-maximum in each group. Figure 2 demonstrates com-
parison complexity of algorithms under this model. SEQ-
ELIMINATE uses fewer comparisons, but it fails to out-
put a 0.05-maximum with probability 0.21 for n = 25 and
0.19 for n = 100. Hence SEQ-ELIMINATE fails once
SST is not satisfied. This is because when you compare a
0.05-maximum of a group with an element in other group,
0.05-maximum can get eliminated with probability ≈ 0.5.
Hence with lots of groups SEQ-ELIMINATE fails. Other
algorithms find a 0.05-maximum in all runs. We drop SEQ-
ELIMINATE henceforth.

Now we consider a model that does not satisfy STI but sat-
isfies MST i.e., n = 10 and p1,j = 1/2 + q̃ ∀j ≤ n/2,
p1,j = 1 ∀j > n/2 and pi,j = 1/2 + q̃ ∀1 < i < j,
q̃ < 0.05. Under this model any i ≤ 5 is a 0.05-maximum.
Figure 3 shows the average comparison complexity of al-
gorithms under this model. KNOCKOUT uses fewer com-
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Figure 2. Maxing Algorithms for model with MST but not SST
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Figure 3. Maxing algorithms for model without STI

parisons, but fails to output a 0.05-maximum with probabil-
ity 0.12 for q̃ = 0.001 and 0.25 for q̃ = 0.0001, hence fails
to meet the confidence requirement once STI is dropped.
Other algorithms find a 0.05-maximum in all runs.

It is interesting to note that MallowsMPI uses more com-
parisons as q̃ decreases, whereas the complexity of other
algorithms remains almost same. This is because Mal-
lowsMPI tries to find absolute maximum which is not al-
ways practical. Further note that the performance of SOFT-
SEQ-ELIM is better than NEAR-OPT-MAX, and NEAR-
OPT-MAX is better than OPT-MAX. This is because the
bias gap for SOFT-SEQ-ELIM, NEAR-OPT-MAX and OPT-
MAX is ε, ε/2 and ε/4 respectively, resulting in higher con-
stants for NEAR-OPT-MAX and OPT-MAX. While the the-
oretical order complexity is higher for SOFT-SEQ-ELIM,
in practice it can find a good anchor quickly and seems to
have near-linear order complexity.

9. Conclusion
We studied the problem of maxing, ranking, and estimating
comparison probabilities under different stochastic transi-
tivity constraints. We showed that under WST, maxing
needs quadratic comparisons. We also presented a linear-
complexity algorithm for maxing under MST. We also pro-
posed an optimal ranking algorithm for SST models with
Stochastic Triangle Inequality, closing (log log n)3 gap.
For the same model, we proposed an optimal algorithm for
estimating the comparison probabilities.
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Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker, K.
Label ranking by learning pairwise preferences. Artifi-
cial Intelligence, 172(16-17):1897–1916, 2008.

Jang, M., Kim, S., Suh, C., and Oh, S. Top-k ranking from
pairwise comparisons: When spectral ranking is optimal.
arXiv preprint arXiv:1603.04153, 2016.

Lee, D. T., Goel, A., Aitamurto, T., and Landemore, H.
Crowdsourcing for participatory democracies: Efficient
elicitation of social choice functions. In Second AAAI
Conference on Human Computation and Crowdsourc-
ing, 2014.

Luce, R. D. Individual choice behavior: A theoretical anal-
ysis. Courier Corporation, 2005.

Mohajer, S., Suh, C., and Elmahdy, A. Active learning for
top-k rank aggregation from noisy comparisons. In In-
ternational Conference on Machine Learning, pp. 2488–
2497, 2017.

Negahban, S., Oh, S., and Shah, D. Iterative ranking from
pair-wise comparisons. In NIPS, pp. 2474–2482, 2012.

Negahban, S., Oh, S., and Shah, D. Rank centrality: Rank-
ing from pairwise comparisons. Operations Research,
2016.

Plackett, R. L. The analysis of permutations. Applied
Statistics, pp. 193–202, 1975.

Radlinski, F. and Joachims, T. Active exploration for learn-
ing rankings from clickthrough data. In Proceedings of
the 13th ACM SIGKDD, pp. 570–579. ACM, 2007.

Radlinski, F., Kurup, M., and Joachims, T. How does click-
through data reflect retrieval quality? In Proceedings of
the 17th ACM conference on Information and knowledge
management, pp. 43–52. ACM, 2008.

Rajkumar, A. and Agarwal, S. A statistical convergence
perspective of algorithms for rank aggregation from pair-
wise data. In Proc. of the ICML, pp. 118–126, 2014.

Shah, N., Balakrishnan, S., Guntuboyina, A., and Wain-
wright, M. Stochastically transitive models for pairwise
comparisons: Statistical and computational issues. In
International Conference on Machine Learning, pp. 11–
20, 2016a.

http://www.gif.gf/


The Limits of Maxing, Ranking, and Preference Learning

Shah, N. B., Balakrishnan, S., and Wainwright, M. J.
Feeling the bern: Adaptive estimators for bernoulli
probabilities of pairwise comparisons. arXiv preprint
arXiv:1603.06881, 2016b.

Skorepa, M. Decision making: a behavioral economic ap-
proach. Palgrave Macmillan, 2010.

Soufiani, H. A., Chen, W., Parkes, D. C., and Xia, L. Gen-
eralized method-of-moments for rank aggregation. In
Advances in Neural Information Processing Systems, pp.
2706–2714, 2013.
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