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A. Available Software
To promote reproducible science and enable other re-
searchers to use our method, we provide an open-source
implementation of BOHB and Hyperband. It is available
under https://github.com/automl/HpBandSter. The bench-
marks and our scripts used to produce the data shown in the
paper can be found in the icml_2018 branch.

B. Comparison to other Combinations of
Bayesian optimization and Hyperband

Here we discuss the differences between our method and
the related approaches of Bertrand et al. (2017) and Wang
et al. (2018) in more detail. We note that these works are
independent and concurrent; our work extends our prelim-
inary short workshop papers at NIPS 2017 (Falkner et al.,
2017) and ICLR 2018 (Falkner et al., 2018).

While the general idea of combining Hyperband and
Bayesian optimization by Bertrand et al. (2017) is the same
as in our work, they use a Gaussian process for modeling
the performance. The budget is modeled like any other di-
mension of the search space, without any special treatment.
Based on our experience with Fabolas (Klein et al., 2017),
we expect that the squared exponential kernel might not
extrapolate well, which would hinder performance. Also,
the small evaluation provided by Bertrand et al. (2017) does
not allow strong conclusions about the performance of their
method.

Wang et al. (2018) also independently combined TPE and
Hyperband, but in a slightly different way than we did. In
their method, TPE is used as a subroutine in every itera-
tion of Hyperband. In particular, a new model is built from
scratch at the beginning of every SuccessiveHalving run
(Algorithm 3, line 8 in Wang et al. (2018)). This means
that in later iterations of the algorithm, the model does not
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benefit from any of the evaluations in previous iterations.
In contrast, BOHB collects all evaluations on all budgets
and uses the largest budget with enough evaluations (admit-
tedly a heuristic, but we would argue a reasonable one) as
a base for future evaluations. This way, BOHB aggregates
more knowledge into its models for the different budgets
as the optimization progresses. We believe this to be a cru-
cial part of the strong performance of our method. Empiri-
cally, Wang et al. (2018) did not achieve the consistent and
large speedups across a wide range of applications BOHB
achieved in our experiments.

C. Successive Halving
SuccessiveHalving is a simple heuristic to allocate more
resources to promising candidates. For completeness, we
provide pseudo code for it in Algorithm 1. It is initialized
with a set of configurations, a minimum and maximum
budget, and a scaling parameter η. In the first stage all
configurations are evaluated on the smallest budget (line
3). The losses are then sorted and only the best 1/η con-
figurations are kept in the set C (line 4). For the following
stage, the budget is increased by a factor of η (line 5). This
is repeated until the maximum budget for a single configura-
tion is reached (line 2). Within Hyperband, the budgets are
chosen such that all SuccessiveHalving executions require a
similar total budget.

Algorithm 1: Pseudocode for SuccessiveHalving
used by Hyperband as a subroutine.

input : initial budget b0, maximum budget bmax,
set of n configurations
C = {c1, c2, . . . cn}

1 b = b0
2 while b ≤ bmax do
3 L = {f̃(c, b) : c ∈ C}
4 C = topk(C,L, b|C|/η)c
5 b = η · b

https://github.com/automl/HpBandSter
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Figure 1. Visualization of the two different KDE approaches. The left column shows the true distribution (blue shaded area) from which
16 samples (orange crosses) were drawn. The middle column shows how a KDE that factorizes the PDF (as in TPE) models the density.
The right column demonstrates how the KDE used in BOHB handles the data by factorizing the kernels instead of the PDF. The top row
is a single two dimensional Gaussian probability with a strong correlation between the variables. The example in the bottom row is a
mixture of two such Gaussians.

D. Details on the Kernel Density Estimator
We used the MultivariateKDE from the statsmodels package
(Seabold & Perktold, 2010), which constructs a factorized
kernel, with a one-dimensional kernel for each dimension.
Note that using this product of 1-d kernels differs from the
original TPE, which uses a pdf that is the product of 1-d
pdfs. Figure 1 visualizes the differences for two small prob-
lems. For the continuous parameters a Gaussian kernel is
used, whereas the Aitchison-Aitken kernel is the default
for categorical parameters. We used Scott’s rule for ef-
ficient bandwidth estimation, as preliminary experiments
with maximum-likelihood based bandwidth selection did
not yield better performance but caused a significant over-

head.

E. Performance of all methods on all
surrogates

Figure 2 shows the performance of all methods we evaluated
on all our surrogate benchmarks. Random search is clearly
the worst optimizer across all datasets when the budget is
large enough for GP-BO and TPE to leverage their model.
Hyperband and the two methods based on it (HB-LCNet)
and BOHB improve much more quickly due to the smaller
budgets used. On all surrogate benchmarks, BOHB starts
to outperform HB after the first couple of iterations (some-
times even earlier, e.g., on dataset letter). The same dataset
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Figure 2. Mean performance on the surrogates for all six datasets. As uncertainties, we show the standard error of the mean based on 512
runs (except for GP-BO, which has only 50 runs).

also shows that traditional BO methods can still have an
advantage for very large budgets, since in these late stages
of the optimization process the low fidelity evaluations of
BOHB can cause a constant overhead without any gain.

F. Performance of parallel runs
Figure 3 shows the performance of BOHB when run in
parallel on all our surrogate benchmarks. The speed-ups
are quite consistent, and almost linear for a small number
of workers (2-8). For more workers, more random config-
urations are evaluated in parallel before the first model is
built, which degrades performance. But even for 32 work-
ers, linear speedups are possible (see, e.g., dataset letter, for
reaching a regret of 2× 10−3).

We note that in order to carry out this evaluation of par-

allel performance, we actually simulated the parallel opti-
mization by making each worker wait for the given budget
before returning the corresponding performance value of
our surrogate benchmark. (The case of one worker is an
exception, where we can simply reconstruct the trajectory
because all configurations are evaluated serially.) By using
this approach in connection with threads, each evaluation
of a parallel algorithm still only used 1 CPU, but the run
actually ran in real time. For this reason, we decided to not
evaluate all possible numbers of workers for dataset poker,
for which each run with less than 16 workers would have
taken more than a day, and we do not expect any different
behavior compared to the other datasets.
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Figure 3. Mean performance on the surrogates for all six datasets with different numbers of workers n. As uncertainties, we show the
standard error of the mean based on 128 runs. Because we simulated them in real time to capture the true behavior, poker is too expensive
to evaluate with less than 16 workers within a day.

G. Evaluating the hyperparameters of BOHB
In this section, we evaluate the importance of the individual
hyperparameters of BOHB, namely the number of samples
used to optimize the acquisition function (Figure 4), the
fraction of purely random configuration ρ (Figure 5), the
scaling parameter η (Figure 6), and the bandwidth factor
used to encourage exploration (Figure 7).

Additionally, we want to discuss the importance of η, bmin

and bmax already present in HB. The parameter η controls
how aggressively SH cuts down the budget and the num-
ber of configurations evaluated. Like HB (Li et al., 2017),
BOHB is also quite insensitive to this choice in a reasonable
range. For our experiments, we use the same default value
(η = 3) for HB and BOHB.

More important for the optimization are bmin and bmax,
which are problem specific and inputs to both HB and
BOHB. While the maximum budget is often naturally de-
fined, or is constrained by compute resources, the situation
for the minimum budget is often different. To get substan-
tial speedups, an evaluation with a budget of bmin should
contain some information about the quality of a configura-
tion with larger budgets; for example, when subsampling
the data, the smallest subset should not be one datum, but
rather enough points to fit a meaningful model. This re-
quires knowledge about the benchmark and the algorithm
being optimized.
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Figure 4. Performance on the surrogates for all six datasets for different number of samples

H. Stochastic Counting Ones
We now formally define the stochastic variant of the count-
ing ones function we use and present the results for different
dimensions. The objective function to be minimized can be
written as

f(x) = −

( ∑
x∈Xcat

x +
∑

x∈Xcont

Eb[(Bp=x)]

)
, (1)

where Bp is the Bernoulli distribution with parameter p, and
Eb denotes the expectation estimated using b independent
draws from the distribution.

The problem consists of a deterministic discrete part (the
standard counting ones problem), and a stochastic compo-
nent whose noise is controlled by the budget b. To keep
the noise consistent across different dimensions, we chose
the budgets such that the total number of samples used re-

mains constant. Specifically, we picked bmin = 576/d
and bmax = 93312/d where d = Ncat + Ncont. For
Ncat = Ncont = 4 this results in a minimum of 144 and a
maximum of 11664 samples for each Bernoulli distribution.
BOHB and HB evaluated between these budgets, where as
TPE and SMAC operated always with the maximum budget.

This function has some noteworthy properties:

1. By design, we know the best value, −d, and worst
value, 0. For easier comparison between different
numbers of dimensions, we plot the normalized regret,
which in our case is (f(x) + d)/d.

2. The optimum x = [1]d is at the boundary of the search
space. This could be problematic for both the random
forests in SMAC, and the KDEs in TPE and BOHB.
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Figure 5. Performance on the surrogates for all six datasets for different random fractions

Figure 8 shows the mean performance of all applicable
methods in d = 8, 16, 32 and 64 dimensions for a budget of
4000 full function evaluations. The median performances
are shown in Figure 9.

We draw the following conclusions from the results:

1. Despite its simple definition, this problem is quite chal-
lenging for the methods we applied to it. RS and HB
both suffer from the fact that drawing configurations
at random performs quite poorly in this space. The
model-based approaches SMAC and TPE performed
substantially better, especially with large budgets. We
would like to mention that SMAC and TPE treated
the problem as a blackbox optimization problem; the
results for SMAC could likely be improved further by
treating individual samples as “instances” and using
SMAC’s intensification mechanism to reject poor con-

figurations based on few samples and evaluate promis-
ing configurations with more samples.

2. BOHB struggles to converge for the eight dimensional
example. The most probable reason is the number of
samples required to build a model, which was set to 9
here. This led to a consistently slow convergence of
BOHB. The median plots (Figure 9) show that there
is quite some variability in BOHB’s performance for
this dimensionality. We attribute this at least in part to
the small number of samples used to build the initial
model; combined with the poor performance of ran-
dom configurations, this leads to unstable performance.
To investigate this further, we changed two parameters
of BOHB: first, we increased the minimum number of
points to build a model to 16, which gives the model
a higher change to start from slightly better random
configurations. Second, to increase exploration, we
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Figure 6. Performance on the surrogates for all six datasets for different values of η.

reduced the number of samples to optimize expected
improvement to 16. This increases the chances of
sampling a suboptimal (according to the model) point,
which can help if the model is poor. The results in Fig-
ure 10 show that these simple changes restore BOHB’s
good performance, which means that BOHB might be
robust, but there are still cases where an unlucky com-
bination of budgets and noise in the system can lead to
relatively weak convergence. We nevertheless would
like to point out, that even this case, it still took TPE
200 full function evaluations to catch up with BOHB
(a considerable number for an eight-dimensional prob-
lem).

3. Given a large enough budget, BOHB’s evaluations on
small budgets lead to a constant overhead over only
using the more reliable evaluations on larger budgets.
This slows down convergence.

4. Since the optimization problem is perfectly separable
(there are no interaction effects between any dimen-
sions), we expect TPE’s univariate KDE to perform
better than BOHB’s multivariate one, which might also
explain the relatively slow convergence compared to
TPE towards the end of the trajectories.

I. Surrogates
I.1. Support Vector Machine

We now analyze the results for the SVM surrogate in more
detail. Figure 11 shows the validation error of BOHB and
HB when retraining the configurations using the whole train-
ing data, as well as the actual loss being optimized (labeled
BOHB-loss and HB-loss), i.e. the validation error this con-
figuration achieved being trained on a subset of thet data.
Based on the validation error after retraining, HB seems
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Figure 7. Performance on the surrogates for all six datasets for different bandwidth factors.

to perform slightly better than BOHB, but there is almost
no difference when comparing the losses observed during
optimization. One can see that the interquartile range of
BOHB in the right panel is larger, indicating more variabil-
ity. HB almost always found a configuration achieving the
best error within its first iteration (at around 3000 seconds);
BOHB also achieved this in more than half of its runs, but it
required a second iteration (around 6000 seconds) in a sub-
stantial fraction of runs to find the truly best configuration.
This effect can take place when the number of configura-
tions sampled during the first iteration is large enough to
fully optimize on the smallest budget. In this particular
example, this is due to the low dimensionality of the bench-
mark (two parameters only) and the relatively large number
of configurations that enter the first iteration of Successive
Halving (243, given the budgets and η value).

I.2. Feed Forward Network Surrogates

I.2.1. CONSTRUCTING THE SURROGATES

To build a surrogate, we sampled 10 000 random configu-
rations for each dataset, trained them for 50 epochs, and
recorded their classification error after each epoch, along
with their total training time. We fitted two independent ran-
dom forests that predict these two quantities as a function of
the hyperparameter configuration used. This enabled us to
predict the classification error as a function of time with suf-
ficient accuracy. As almost all networks converged within
the 50 epochs, we extend the curves by the last obtained
value if the budget would allow for more epochs.

The surrogates enable cheap benchmarking, allowing us to
run each algorithm 256 times. Since evaluating a configura-
tion with the random forest is inexpensive, we used a global
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Figure 8. Mean performance of BOHB, HB, TPE, SMAC and RS on the mixed domain counting ones function with different dimensions.
As uncertainties, we show the standard error of the mean based on 512 runs.

optimizer (differential evolution) to find the true optimum.
We allowed the optimizer 10 000 iterations which should be
sufficient to find the true optimum.

Besides these positive aspects of benchmarking with sur-
rogates, there are also some drawbacks that we want to
mention explicitly:

(a) There is no guarantee that the surrogate actually re-
flects the important properties of the true benchmark.

(b) The presented results show the optimized classification
error on the validation set used during training. There
is no test performance that could indicate overfitting.

(c) Training with stochastic gradient descent is an inher-
ently noisy process, i.e. two evaluations of the same
configuration can result in different performances. This
is not at all reflected by our surrogates, making them a
potentially easier to optimize than the true benchmark
they are based on.

(d) By fixing the budgets (see below) and having determin-
istic surrogates, the global minima might be the result
of some small fluctuations in the classification error
in the surrogates’ training data. That means that the
surrogate’s minimizer might not be the true minimizer
of the real benchmark.

Table 1. The hyperparameters and architecture choices for the fully
connected networks.

Hyperparameter Range Log-transform

batch size [23, 28] yes
dropout rate [0, 0.5] no

initial learning rate [10−6, 10−2] yes
exponential decay factor [−0.185, 0] no

# hidden layers {1, 2, 3, 4, 5} no
# units per layer [24, 28] yes

None of these downsides necessarily have substantial im-
plications for comparing different optimizers; they simply
show that the surrogate benchmarks are not perfect models
for the real benchmark they mimic. Nevertheless, we be-
lieve that, especially for development of novel algorithms,
the positive aspects outweigh the negative ones.

I.2.2. DETERMINING THE BUDGETS

To choose the largest budget for training, we looked at
the best configuration as predicted by the surrogate and its
training time. We chose the closest power of 3 (because
we also used η = 3 for HB and BOHB) to achieve that
performance. We chose the smallest budget for HB such
that most configurations had finished at least one epoch.
Table 2 lists the budgets used for all datasets.
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Figure 9. Median performance of BOHB, HB, TPE, SMAC and RS on the mixed domain counting ones function with different dimensions.
As uncertanties we show the interquartile range based on 512 runs.
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Figure 10. Mean (left) and median (right) performance of BOHB, HB, TPE, SMAC and RS on the mixed domain counting ones function
eight dimensions. To show that the poor performance of BOHB is merely product of poor initialization via random search that lead to a
overconfident model that does not converge, we reran BOHB (labeled BOHB-fixed) with a slightly changed setting (see text) showing this
benchmark required more exploration than the default settings provided.
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Figure 11. Results for BOHB and HB on the SVM surrogate benchmark. The two panels show the mean (left) and the median (right) of
the test error (error when retrained using the whole dataset) and the actual training loss (error rate achieved with the subsets used) labeled
HB-loss and BOHB-loss. The apparent advantage of HB over BOHB vanishes when we look the actual losses. This seems to indicate
overfitting due to the low dimensionality of the search space and the large number of configurations sampled for the first iteration.

Table 2. The budgets used by HB and BOHB; random search and
TPE only used the last budget

Dataset Budgets in seconds for HB and BOHB
Adult 9, 27, 81, 243
Higgs 9, 27, 81, 243
Letter 3, 9, 27, 81
Poker 81, 243, 729, 2187

Table 3. The hyperparameters for the Bayesian neural network
task.

Hyperparameter Range Log-transform
# units layer 1 [24, 29] yes
# units layer 2 [24, 29] yes

step length [10−6, 10−1] yes
burn in [0, .8] no

momentum decay [0, 1] no

J. Bayesian Neural Networks
We optimized the hyperparameters described in Table 3
for a Bayesian neural network trained with SGHMC on
two UCI regression datasets: Boston Housing and Protein
Structure. The budget for this benchmark was the number
of steps for the MCMC sampler. We set the minimum
budget to 500 steps and the maximum budget to 10000
steps. After sampling 100 parameter vectors, we computed
the log-likelihood on the validation dataset by averaging
the predictive mean and variances of the individual models.
The performance of all methods for both datasets is shown
in Figure 12.

K. Reinforcement Learning
Table 4 shows the hyperparameters we optimized for the
PPO Cartpole task.

Table 4. The hyperparameters for the PPO Cartpole task.
Hyperparameter Range Log-transform
# units layer 1 [23, 27] yes
# units layer 2 [23, 27] yes

batch size [23, 28] yes
learning rate [10−7, 10−1] yes

discount [0, 1] no
likelihood ratio clipping [0, 1] no
entropy regularization [0, 1] no
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