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Abstract

We study the problem of off-policy evaluation
(OPE) in reinforcement learning (RL), where the
goal is to estimate the performance of a policy
from the data generated by another policy(ies). In
particular, we focus on the doubly robust (DR)
estimators that consist of an importance sampling
(IS) component and a performance model, and
utilize the low (or zero) bias of IS and low vari-
ance of the model at the same time. Although the
accuracy of the model has a huge impact on the
overall performance of DR, most of the work on
using the DR estimators in OPE has been focused
on improving the IS part, and not much on how to
learn the model. In this paper, we propose alter-
native DR estimators, called more robust doubly

robust (MRDR), that learn the model parameter
by minimizing the variance of the DR estimator.
We first present a formulation for learning the DR
model in RL. We then derive formulas for the
variance of the DR estimator in both contextual
bandits and RL, such that their gradients w.r.t. the
model parameters can be estimated from the sam-
ples, and propose methods to efficiently minimize
the variance. We prove that the MRDR estima-
tors are strongly consistent and asymptotically
optimal. Finally, we evaluate MRDR in bandits
and RL benchmark problems, and compare its
performance with the existing methods.

1. Introduction

In many real-world decision-making problems, in areas such
as marketing, finance, robotics, and healthcare, deploying
a policy without having an accurate estimate of its perfor-
mance could be costly, unethical, or even illegal. This is
why the problem of off-policy evaluation (OPE) has been
heavily studied in contextual bandits (e.g., Dudı́k et al. 2011;
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Swaminathan et al. 2017) and reinforcement learning (RL)
(e.g., Precup et al. 2000a; 2001; Paduraru 2013; Mahmood
et al. 2014; Thomas et al. 2015a; Li et al. 2015; Jiang & Li
2016; Thomas & Brunskill 2016), and some of the results
have been applied to problems in marketing (e.g., Li et al.
2011; Theocharous et al. 2015), healthcare (e.g., Murphy
et al. 2001; Hirano et al. 2003), and education (e.g., Man-
del et al. 2014; 2016). The goal in OPE is to estimate the
performance of an evaluation policy, given a log of data gen-
erated by the behavior policy(ies). The OPE problem can be
viewed as a form of counterfactual reasoning to infer causal
effects of a new treatment from historical data (e.g., Bottou
et al. 2013; Shalit et al. 2017; Louizos et al. 2017).

Three different approaches to OPE in RL can be identified
in the literature. 1) Direct Method (DM) which learns a
model of the system and then uses it to estimate the perfor-
mance of the evaluation policy. This approach often has
low variance but its bias depends on how well the selected
function class represents the system and on whether the
number of samples is sufficient to accurately learn this func-
tion class. There are two major problems with this approach:
(a) Its bias cannot be easily quantified, since in general it is
difficult to quantify the approximation error of a function
class; (b) It is not clear how to choose the loss function for
model learning without the knowledge of the evaluation pol-
icy (or the distribution of the evaluation policies). Without
this knowledge, we may select a loss function that focuses
on learning the areas that are irrelevant for the evaluation
policy(ies). 2) Importance Sampling (IS) that uses the IS
term to correct the mismatch between the distributions of
the system trajectory induced by the evaluation and behavior
policies. Although this approach is unbiased (under mild as-
sumptions) in case the behavior policy is known, its variance
can be very large when there is a big difference between the
distributions of the evaluation and behavior policies, and
grows exponentially with the horizon of the RL problem.
3) Doubly Robust (DR) which is a combination of DM
and IS, and can achieve the low variance of DM and no (or
low) bias of IS. The DR estimator was first developed in
statistics (e.g., Cassel et al. 1976; Robins et al. 1994; Robins
& Rotnitzky 1995; Bang & Robins 2005) to estimate from
incomplete data with the property that is unbiased when
either of its DM or IS estimators is correct. It was brought
to our community, first in contextual bandits by Dudı́k et al.
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(2011) and then in RL by Jiang & Li (2016). Thomas &
Brunskill (2016) proposed two methods to reduce the vari-
ance of DR, with the cost of introducing a bias, one to select
a low variance IS estimator, namely weighted IS (WIS),
and one to blend DM and IS together (instead of simply
combining them as in the standard DR approach) in a way
to minimize the mean squared error (MSE).

In this paper, we propose to reduce the variance of DR in
bandits and RL by designing the loss function used to learn
the model in the DM part of the estimator. The main idea
of our estimator, called more robust doubly robust (MRDR),
is to learn the parameters of the DM model by minimizing
the variance of the DR estimator. This idea has been inves-
tigated in statistics in the context of regression when the
labels of a subset of samples are randomly missing (Cao
et al., 2009). We first present a novel formulation for the
DM part of the DR estimator in RL. We then derive formu-
las for the variance of the DR estimator in both bandits and
RL in a way that its gradient w.r.t. the model parameters can
be estimated from the samples. Note that the DR variances
reported for bandits (Dudı́k et al., 2011) and RL (Jiang &
Li, 2016) contain the bias of the DM component, which is
unknown. We then propose methods to efficiently minimize
the variance in both bandits and RL. Furthermore, we prove
that the MRDR estimator is strongly consistent and asymp-
totically optimal. Finally, we evaluate the MRDR estimator
in bandits and RL benchmark problems, and compare its
performance with DM, IS, and DR approaches.

2. Preliminaries

In this paper, we consider the reinforcement learning (RL)
problem in which the agent’s interaction with the system is
modeled as a Markov decision process (MDP). Note that the
contextual bandit problem is a special case with horizon-1
decision-making. In this section, we first define MDPs and
the relevant quantities that we are going to use throughout
the paper, and then define the off-policy evaluation problem
in RL, which is the main topic of this work.

2.1. Markov Decision Processes

A MDP is a tuple hX ,A, Pr, P, P0, �i, where X and A are
the state and action spaces, Pr(x, a) is the distribution of
the bounded random variable r(x, a) 2 [0, Rmax] of the
immediate reward of taking action a in state x, P (·|x, a) is
the transition probability distribution, P0 : X ! [0, 1] is the
initial state distribution, and � 2 [0, 1) is the discounting
factor. A (stationary) policy ⇡ : X ⇥ A ! [0, 1] is a
stochastic mapping from states to actions, with ⇡(a|x) being
the probability of taking action a in state x. We denote by
P

⇡ the state transition of the Markov chain induced by
policy ⇡, i.e., P⇡(xt+1|xt) =

P
a2A ⇡(a|xt)P (xt+1|xt, a).

We denote by ⇠ = (x0, a0, r0, . . . , xT�1, aT�1, rT�1, xT )
a T -step trajectory generated by policy ⇡, and by

R0:T�1(⇠) =
PT�1

t=0 �
t
rt the return of trajectory ⇠. Note

that in ⇠, x0 ⇠ P0, and 8t 2 {1, . . . , T � 1}, at ⇠
⇡(·|xt), xt+1 ⇠ P (·|xt, at), and rt ⇠ Pr(·|xt, at). These
distributions together define P

⇡
⇠ , i.e., the distribution of

trajectory ⇠. We evaluate a policy ⇡ by the expecta-
tion of the return of the T -step trajectories it generates,
i.e., ⇢⇡T = E⇠⇠P⇡

⇠

⇥
R0:T�1(⇠)

⇤
. If we set T to be of order

O
�
1/(1� �)

�
, then ⇢

⇡
T would be a good approximation of

the infinite-horizon performance ⇢⇡1. Throughout the paper,
we assume that T has been selected such that ⇢⇡T ⇡ ⇢

⇡
1,

and thus, we refer to ⇢
⇡ = ⇢

⇡
T as the performance of policy

⇡. We further define the value (action-value) function of a
policy ⇡ at each state x (state-action pair (x, a)), denoted
by V

⇡(x) (Q⇡(x, a)), as the expectation of the return of
a T -step trajectory generated by starting at state x (state-
action pair (x, a)), and then following policy ⇡. Note that
⇢
⇡ = Ex⇠P0

⇥
V

⇡(x)
⇤
.

Note that the contextual bandit setting is a special case of
the setting described above, where T = 1, and as a result,
the context is sampled from P0 and there is no dynamic P .

2.2. Off-policy Evaluation Problem

The off-policy evaluation (OPE) problem is when we are
given a set of T -step trajectories D = {⇠(i)}ni=1 indepen-

dently generated by the behavior policy ⇡b,1 and the goal is
to have a good estimate of the performance of the evaluation

policy ⇡e. We consider the estimator ⇢̂⇡e good if it has low
mean square error (MSE), i.e.,

MSE(⇢⇡e , ⇢̂
⇡e)

4
= EP

⇡b
⇠

⇥
(⇢⇡e � ⇢̂

⇡e)2
⇤
. (1)

We make the following standard regularity assumption:
Assumption 1 (Absolute Continuity). For all state-action

pairs (x, a) 2 X ⇥A, if ⇡b(a|x) = 0 then ⇡e(a|x) = 0.

In order to quantify the mismatch between the behavior
and evaluation policies in generating a trajectory, we de-
fine cumulative importance ratio as follows. For each
T -step trajectory ⇠ 2 D, the cumulative importance ra-

tio from time step t1 to time step t2, where both t1 and
t2 are in {0, . . . , T}, is !t1,t2 = 1 if t1 > t2, and is
!t1,t2 =

Qt2
⌧=t1

⇡e(a⌧ |x⌧ )
⇡b(a⌧ |x⌧ )

, otherwise. In case the behav-
ior policy ⇡b is unknown, we define b!t1,t2 exactly as !t1,t2 ,
with ⇡b replaced by its approximation b⇡b. Under Assump-
tion 1, it is easy to see that ⇢⇡e = EP⇡e

⇠
[
PT�1

t=0 �
t
rt] =

EP
⇡b
⇠
[
PT�1

t=0 �
t
!0:trt]. Similar equalities hold for the

value and action-value functions of ⇡e, i.e., V ⇡e(x) =

EP⇡e
⇠

[
PT�1

t=0 �
t
rt|x0 = x] = EP

⇡b
⇠
[
PT�1

t=0 �
t
!0:trt|x0 =

x] and Q
⇡e(x, a) = EP⇡e

⇠
[
PT�1

t=0 �
t
rt|x0 = x, a0 = a] =

EP
⇡b
⇠
[
PT�1

t=0 �
t
!0:trt|x0 = x, a0 = a].

1The results of this paper can be easily extended to the case
that the trajectories are generated by multiple behavior policies.
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3. Existing Approaches to OPE

The objective of MRDR is to learn the model part of a DR
estimator by minimizing its variance. MRDR is a variation
of DR with a DM loss function derived from minimizing the
DR’s variance and is built on top of IS and DM. Therefore,
before stating our main results in Section 4, we first provide
a brief overview of these popular approaches.

3.1. Direct Estimators

The idea of the direct method (DM) is to first learn a model
of the system and then use it to estimate the performance of
the evaluation policy ⇡e. In the case of bandits, this model
is the mean reward of each pair of context and arm, and in
RL it is either the mean reward r(x, a) and state transition
P (·|x, a), or the value (action-value) V (x) (Q(x, a)) func-
tion. In either case, if we select a good representation for the
quantities that need to be learned, and our dataset2 contains
sufficient number of the states and actions relevant to the
evaluation of ⇡e, then the DM estimator has low variance
and small bias, and thus, has the potential to outperform the
estimators resulted from other approaches.

As mentioned in Section 1, an important issue that has been
neglected in the previous work on off-policy evaluation
in RL is the loss function used in estimating the model
in DM. As pointed out by Dudı́k et al. (2011), the direct
approach has a problem if the model is estimated without
the knowledge of the evaluation policy. This is because the
distribution of the states and actions that are visited under
the evaluation policy should be included in the loss function
of the direct approach. In other words, if upon learning a
model, we have no information about the evaluation policy
(or the distribution of the evaluation policies), then it is
not clear how to design the DM’s loss function (perhaps a
uniform distribution over the states and actions would be the
most reasonable). Therefore, in this paper, we assume that
the evaluation policy is known prior to learning the model.3

In their DM and DR experiments, both Jiang & Li (2016)
and Thomas & Brunskill (2016) learn the MDP model,
r(x, a) and P (·|x, a), although all the model learning dis-
cussion in Thomas & Brunskill (2016) is about the reward
of the evaluation policy ⇡e at every step t along the T -step
trajectory, i.e., r⇡e(x, t). More generally, in off-policy actor-
critic algorithms (such as the Reactor algorithm proposed
in Gruslys et al. 2017), where one can view the gradient
estimation part as an off-policy evaluation problem, the DM
state-action value function model is learned by minimiz-
ing the Bellman residual in an off-policy setting (Precup
et al., 2000b; Munos et al., 2016; Geist & Scherrer, 2014).

2Note that we shall use separate datasets for learning the model
in DM and evaluating the policy.

3Our results can be extended to the case that the distribution of
the evaluation policies is known prior to learning the model.

However, neither of these three approaches incorporate the
design of the DM loss function into the primary objective,
perhaps because they consider the setting in which the model
is learned independently.

Our approach to DM in RL: In this paper, we propose to
learn Q

⇡e , the action-value function of the evaluation policy
⇡e, and then use it to evaluate its performance as

⇢̂⇡e
DM =

1
n

nX

i=1

X

a2A

⇡e(a|x(i)
0 ) bQ⇡e(x(i)

0 , a;�⇤
n).

We model Q⇡e using a parameterized class of functions
with parameter � 2 R and learn � by solving the following
weighted MSE problem

�⇤ 2 arg min
�2R

E(x,a)⇠µ⇡e

h�
Q⇡e(x, a)� bQ⇡e(x, a;�)

�2i
, (2)

where µ⇡e is the �-discounted horizon-T state-action occu-
pancy of ⇡e, i.e., µ⇡e(x, a) = 1��

1��T

PT�1
t=0 �

tEP⇡e
⇠

⇥
1{xt

= x, at = a}
⇤

and 1{·} is the indicator function. Since the
actions in the data set D are generated by ⇡b, we rewrite the
objective function of the optimization problem (2) as

T�1X

t=0

�tEP
⇡b
⇠

h
!0:t

�
R̄t:T�1(⇠)� bQ⇡e(xt, at;�)

�2i
, (3)

where R̄t:T�1(⇠) =
PT�1

⌧=t �
⌧�t

!t+1:⌧r(x⌧ , a⌧ ) is the
Monte Carlo estimate of Q

⇡e(xt, at). The proof of the
equivalence of the objective functions (2) and (3) can be
found in Appendix A. We obtain �

⇤
n by solving the sample

average approximation (SAA) of (3), i.e.,

�⇤
n 2 arg min

�2R

T�1X

t=0

�t · 1
n

nX

i=1

!(i)
0:t

⇥
R̄t:T�1(⇠

(i))

� bQ⇡e(x(i)
t , a(i)

t ;�)
⇤2
. (4)

Since the SAA estimator (4) is unbiased, for large enough n,
�
⇤
n ! �

⇤ almost surely. We define the bias of our DM esti-
mator at each state-action pair as �(x, a) = bQ⇡e(x, a;�)�
Q

⇡e(x, a). Note that in contextual bandits with determin-
istic evaluation policy, the SAA (4) may be written as the
weighted least square (WLS) problem

�⇤
n 2 1

n

nX

i=1

1{⇡e(xi) = ai}
⇡b(ai|xi)

�
r(xi, ai)� bQ(xi, ai;�)

�2
, (5)

with weights 1/⇡b(ai|xi) for the actions consistent with ⇡e.

3.2. Importance Sampling Estimators

Another common approach to off-policy evaluation in RL is
to use importance sampling (IS) to estimate the performance
of the evaluation policy, i.e.,

⇢̂⇡e
IS =

1
n

nX

i=1

!(i)
0:T�1

T�1X

t=0

�tr(i)t =
1
n

nX

i=1

!(i)
0:T�1R

(i)
0:T�1, (6)
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where !
(i)
0:T�1 and r

(i)
t are the cumulative importance ratio

and reward at step t of trajectory ⇠
(i) 2 D, respectively,

and R
(i)
0:T�1 = R0:T�1(⇠(i)). Under Assumption 1, the IS

estimator (6) is unbiased.

A variant of IS that often has less variance, while still unbi-
ased, is step-wise importance sampling (step-IS), i.e.,

⇢̂⇡e
step-IS =

1
n

nX

i=1

T�1X

t=0

�t!(i)
0:t r(i)t .

If the behavior policy ⇡b is unknown, which is the case
in many applications, then either ⇡b or the importance
ratio ! = ⇡e/⇡b needs to be estimated, and thus, IS
may no longer be unbiased. In this case, the bias
of IS and step-IS are

���EP⇡e
⇠

⇥
�0:T�1(⇠)R0:T�1(⇠)

⇤��� and
���
PT�1

t=0 �tEP⇡e
⇠

⇥
�0:t(⇠)rt

⇤���, respectively, where �0:t(⇠) =

1 � �0:t(⇠) = 1 �
Qt

⌧=0
⇡b(a⌧ |x⌧ )
b⇡b(a⌧ |x⌧ ) , with b⇡b being our ap-

proximation of ⇡b (see the proofs in Appendix B). Note that
when ⇡b is known, i.e., b⇡b = ⇡b, we have �0:t = 0, and the
bias of both IS and step-IS would be zero.

Although the unbiasedness of IS estimators is desirable for
certain applications such as safety (Thomas et al., 2015b),
their high variance (even in step-wise case), which grows ex-
ponentially with horizon T , restricts their applications. This
is why another variant of IS, called weighted importance

sampling (WIS), and particularly its step-wise version, i.e.,

⇢̂⇡e
WIS =

nX

i=1

!(i)
0:T�1Pn

i=1 !
(i)
0:T�1

T�1X

t=0

�tr(i)t =
nX

i=1

!(i)
0:T�1R

(i)
0:T�1Pn

i=1 !
(i)
0:T�1

,

⇢̂⇡e
step-WIS =

nX

i=1

T�1X

t=0

�t !(i)
0:t r(i)tPn
i=1 !

(i)
0:t

,

is considered more practical, especially where being biased
is not crucial. The WIS estimators are biased but consistent
and have lower variance than their IS counterparts.

3.3. Doubly Robust Estimators

Doubly robust (DR) estimators that combine DM and IS
were first developed for regression (e.g., Cassel et al. 1976),
brought to contextual bandits by Dudı́k et al. (2011), and to
RL by Jiang & Li (2016) and Thomas & Brunskill (2016).
The DR estimator for RL is defined as

⇢̂⇡e
DR(�) =

1
n

nX

i=1

T�1X

t=0

h
�t!(i)

0:tr
(i)
t (7)

� �t�!(i)
0:t

bQ⇡e(x(i)
t , a(i)

t ;�)� !(i)
0:t�1

bV ⇡e(x(i)
t ;�)

�i
.

Eq. 7 clearly shows that a DR estimator contains both the
cumulative importance ratio ! (IS part) and the model es-
timates bV ⇡e and bQ⇡e (DM part). Note that the IS part of

the DR estimator (7) is based on step-wise IS. Thomas &
Brunskill (2016) derived a DR estimator whose IS part is
based on step-wise WIS. In this paper, we use step-wise IS
for the IS part of our DR-based estimators, but our results
can be easily extended to other IS estimators.

The bias of a DR estimator is the product of that of
DM and IS, and thus, DR is unbiased whenever either
IS or DM is unbiased. This is what the term “doubly
robust” refers to. The bias of the DR estimator (7) is
|EP⇡e

⇠
[
PT�1

t=0 �
t
�0:t�1(⇠)�t(⇠)�(xt, at)]| (see the proofs

in Appendix C), and thus, it would be zero if either �(xt, at)
or �t(⇠) is zero. As discussed in Section 3.2, if ⇡b is known,
�t = 0 and the DR estimator (7) is unbiased. Throughout
this paper, we assume that ⇡b is known, and thus, DR is
unbiased as long as it uses unbiased variants of IS. How-
ever, our proposed estimator described in Section 4 can be
extended to the case that ⇡b is unknown.

4. More Robust Doubly Robust Estimators

In this section, we present our class of more robust doubly
robust (MRDR) estimators. The main idea of MRDR is to
learn the DM parameter of a DR estimator, � 2 R, by min-
imizing its variance. In other words, MRDR is a variation
of DR with a DM loss function derived from minimizing
the DR’s variance. As mentioned earlier, we assume that the
behavior policy ⇡b is known, and thus, both IS (step-IS) and
DR estimators are unbiased. This means that our MRDR
estimator is also unbiased, and since it is the result of mini-
mizing the DR’s variance, it has the lowest MSE among all
the DR estimators.

4.1. MRDR Estimators for Contextual Bandits

Before presenting MRDR for RL, we first formulate it in the
contextual bandit setting. We follow the setting of Dudı́k
et al. (2011) and define the DR estimator as

⇢̂⇡e
DR(�) =

1
n

nX

i=1

⇡e(ai|xi)
b⇡b(ai|xi)

�
r(xi, ai)� bQ(xi, ai;�)

�

+ bV ⇡e(xi;�),

(8)

where bQ(x, a;�) ⇡ Q(x, a) = EPr [r(x, a)] and bV ⇡e(x;�) =

Ea⇠⇡e [ bQ(x, a;�)]. We further define the DM bias �(x, a) =
bQ(x, a;�)�Q(x, a), and error in learning the behavior policy
�(x, a) = 1� �(x, a) = 1� ⇡b(a|x)

b⇡b(a|x)
. Proposition 1 proves the

bias and variance of DR for stochastic evaluation policy ⇡e.
Note that the results stated in Theorems 1 and 2 in Dudı́k
et al. (2011) are only for deterministic ⇡e.

Proposition 1. The bias and variance of the DR estima-

tor (8) for stochastic ⇡e may be written as
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Bias(⇢̂⇡e
DR
) =

����⇢
⇡e � EP

⇡b
⇠

[⇢̂⇡e
DR
]

���� =
���EP⇡e

⇠

⇥
�(x, a)�(x, a)

⇤��� ,

nVP
⇡b
⇠

(⇢̂⇡e
DR
) = EP

⇡b
⇠

h
b!(x, a)2

�
r(x, a)�Q(x, a)

�2i

+ VP0

⇣
E⇡e

⇥
Q(x, a) + �(x, a)�(x, a)

⇤⌘

+ EP0,⇡e

h
!(x, a)

�
1� �(x, a)

�2
�(x, a)2

� E⇡e

⇥�
1� �(x, a)

�
�(x, a)

⇤2i
.

Proof. See Appendix D.

As expected from a DR estimator, Proposition 1 shows
that (8) is unbiased if either its DM part is unbiased, � = 0,
or its IS part is unbiased, � = 0. When the behavior policy
⇡b is known, and thus, �(x, a) = 0 for all x and a, the
variance of (8) in Proposition 1 may be written as

nVP
⇡b
⇠

(⇢̂⇡e
DR) = EP

⇡b
⇠

h
!(x, a)2

�
r(x, a)�Q(x, a)

�2i (9)

+ VP0

⇥
V ⇡e(x)

⇤
+ EP0,⇡e

h
!(x, a)�(x, a)2 � E⇡e

⇥
�(x, a)

⇤2i
.

Unfortunately, the variance formulation (9) is not suitable
for our MRDR method, because its derivative w.r.t. � con-
tains a term �(x, a) = bQ(x, a) � Q(x, a) that cannot be
estimated from samples as the true expected reward Q is
unknown. To address this issue, we derive a new formula-
tion of the variance in Theorem 1, whose derivative does
not contain such terms.
Theorem 1. The variance of the DR estimator (8) for

stochastic ⇡e may be written as the following two forms:

nVP
⇡b
⇠

(⇢̂⇡e
DR
) = EP

⇡b
⇠

h
!(x, a)

⇣
E⇡e

h
!(x, a0) bQ(x, a0;�)2

i

� bV ⇡e(x;�)2 � 2r(x, a)
�
!(x, a) bQ(x, a;�)� bV ⇡e(x;�)

�⌘

+ !(x, a)2r(x, a)2 � E⇡e [r(x, a)]
2
i
+ VP0

�
E⇡e [r(x, a)]

�
,

(10)

nVP
⇡b
⇠

(⇢̂⇡e
DR
) =

J(�)
z }| {
EP

⇡b
⇠

⇥
!(x, a)q�(x, a, r)

>⌦⇡b(x)q�(x, a, r)
⇤

+ C, (11)

where ⌦⇡b(x) = diag
⇥
1/⇡b(a|x)

⇤
a2A � ee> is a positive

semi-definite matrix (see Proposition 6 in Appendix D fot the

proof) with e = [1, . . . , 1]>; q�(x, a, r) = D⇡e(x)Q̄(x;�) �
I(a)r a row vector with D⇡e(x) = diag

⇥
⇡e(a|x)

⇤
a2A, row

vector Q̄(x;�) =
⇥ bQ(x, a;�)

⇤
a2A, and the row vector of

indicator functions I(a) =
⇥
1{a0 = a}

⇤
a02A; and finally

C = VP0

�
E⇡e [r(x, a)]

�
� EP

⇡b
⇠

⇥
E⇡e [r(x, a)]

2
⇤
+ EP

⇡b
⇠

h�
1 +

!(x, a)� 1
⇡2
b (a|x)

�
!(x, a)r(x, a)2

i
.

Proof. See Appendix D.

The significance of the variance formulations of Theorem 1
is 1) the variance of the DR estimator has no dependence
on the unknown term �, and thus, its derivative w.r.t. � is
computable, 2) the expectation in (11) is w.r.t. P⇡b

⇠ , which
makes it possible to replace J(�) with its unbiased SAA

Jn(�) =
1
n

nX

i=1

!(xi, ai)q�(xi, ai, ri)
>⌦⇡b(xi)q�(xi, ai, ri),

where D = {(xi, ai, ri)}ni=1 is the data set generated
by the behavior policy ⇡b, such that the optimizer of
Jn(�) converges to that of J(�) almost surely, and 3)

J(�) in (11) is a convex quadratic function of q� , which
in case that bQ(x, a;�) is smooth, makes it possible to
efficiently optimize Jn(�) with stochastic gradient de-
scent. Moreover, when r�

bQ(x, a;�) can be explicitly
written, we can obtain �

⇤
n 2 argmin� Jn(�), by solv-

ing the first order optimality condition
Pn

i=1 !(xi, ai)
q�(xi, ai, ri)>⌦⇡b(xi)D⇡e(xi)r�Q̄(xi;�) = 0.

In case the evaluation policy is deterministic, the variance
nVP

⇡b
⇠
(⇢̂⇡e

DR) in (10) becomes

J(�)
z }| {

EP
⇡b
⇠

h1{⇡e(x) = a}
⇡b(a|x)

· 1� ⇡b(a|x)
⇡b(a|x)

�
r(x, a)� bQ(x, a;�)

�2i

+ VP0

�
E⇡e [r(x, a)]

�
.

This form of J(�) allows us to find the model parameter of
MRDR by solving the WLS

�⇤
n 2 argmin

�
Jn(�) =

1
n

nX

i=1

1{⇡e(xi) = ai}⇥

1� ⇡b(ai|xi)
⇡b(ai|xi)2

�
r(xi, ai)� bQ(xi, ai;�)

�2
.

(12)

Comparing this WLS with that in the DM approach in Sec-
tion 5, we note that MRDR changes the weights from 1/⇡b

to (1 � ⇡b)/⇡2
b , and this way increases the penalty of the

samples whose actions are the same as those suggested by
⇡e, but have low probability under ⇡b, and decreases the
penalty of the rest of the samples.

4.2. MRDR Estimators for Reinforcement Learning

We now present our MRDR estimator for RL. We begin
with the DR estimator for RL given by (7). Similar to the
bandits case reported in Section 4.1, we first derive a for-
mula for the variance of the estimator (7), whose derivative
can be easily estimated from trajectories generated by the
behavior policy. We then use this variance formulation as
the objective function to find the MRDR model parameter.

Theorem 2. The variance of the DR estimator in (7) can

be written as
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nVP
⇡b
⇠

(⇢̂⇡e
DR
) =

T�1X

t=0

EF0:t�1


�2t!2

0:t�1VFt:T�1

⇣
!t

�
R̄t:T�1

� bQ⇡e(xt, at;�)
�⌘

+ bV ⇡e(xt;�) + Ct

�
(13)

+ EF0:t

h
�2t�2!2

0:t�1VFt+1:T�1(R̄t:T�1 | Ft)
i
,

where Ft1:t2 is the filtration induced by the se-

quence {xt1 , at1 , rt1 , . . . , xt2 , at2 , rt2} ⇠ P⇡b
⇠ , R̄t:T�1 =

r(xt, at) + �
PT�1

⌧=t+1 �
⌧�(t+1)!t+1:jr(x⌧ , a⌧ ), and Ct =

EFt:T�1

h
!2
t

�
R̄t:T�1 � EFt+1:T�1 [R̄t:T�1]

�2 � 2!2
t R̄t:T�1

�
R̄t:T�1 � EFt+1:T�1 [R̄t:T�1]

�i
is a �-independent term.

Proof. The proof is by mathematical induction and is re-
ported in Appendix E.

As opposed to the DR variance reported in Jiang & Li
(2016), ours in (13) has no dependence on the DM bias
�, which contains the unknown term Q

⇡e , and plus, all its
expectations are over P⇡b

⇠ . This allows us to easily compute
the MRDR model parameter from the gradient of (13).

Let’s define �
⇤ 2 argmin�2R VP

⇡b
⇠

�
⇢̂
⇡e
DR(�)

�
as the

minimizer of the DR variance. We may write �
⇤

using the variance formulation of Theorem 2, and
after dropping the �-independent terms, as �

⇤ 2
argmin�2R

PT�1
t=0 EF0:t�1

h
�
2t
!
2
0:t�1VFt

⇣
!t

�
R̄t:T�1 �

bQ⇡e(xt, at;�)
�
+ bV ⇡e(xt;�)

⌘i
. Similar to the derivation

of (11) for bandits, we can show that

�⇤ 2 arg min
�2R

J(�) =
T�1X

t=0

�2tEF0:t�1

⇥
!2
0:t�1 · !t· (14)

q�(xt, at, R̄t:T�1)
>⌦⇡b(xt)q�(xt, at, R̄t:T�1)

⇤
.

As shown in Proposition 6, J(�) is a quadratic convex
function of q� , which means that if the approximation
bQ⇡e(·, ·;�) is smooth in �, then this problem can be ef-
fectively solved by gradient descent. Since the expectation
in (14) is w.r.t. P⇡b

⇠ , we may use the trajectories in D (gen-
erated by ⇡b), replace J(�) with its unbiased SAA, Jn(�),
and solve it for �, i.e.,

�⇤
n 2 arg min

�2R
Jn(�) =

nX

i=1

T�1X

t=0

�2t(!(i)
0:t�1)

2 · !(i)
t · (15)

q�(x
(i)
t , a(i)

t , R̄(i)
t:T�1)

>⌦⇡b(x
(i)
t )q�(x

(i)
t , a(i)

t , R̄(i)
t:T�1).

Since Jn(�) is strongly consistent, �⇤
n ! �

⇤ almost surely.
If we can explicitly write r�

bQ(x, a;�), then �
⇤
n is the

solution of equation 0 =
Pn

i=1

PT�1
t=0 �

2t(!(i)
0:t�1)

2
!
(i)
t

q�(x
(i)
t , a

(i)
t , R̄

(i)
t:T�1)

>⌦⇡b(x
(i)
t )D⇡e(x

(i)
t )r�Q̄(x(i)

t ;�) .

In case the evaluation policy is deterministic, we can further
simplify Jn(�) and derive the model parameter for MRDR
by solving the following WLS problem:

Jn(�) =
1
n

nX

i=1

T�1X

t=0

�2t(!(i)
0:t�1)

2!(i)
t 1{⇡e(x

(i)
t ) = a(i)

t }

1� ⇡b(a
(i)
t |x(i)

t )

⇡b(a
(i)
t |x(i)

t )2

�
R̄(i)

t:T�1 � bQ⇡e(x(i)
t , a(i)

t ;�)
�2
. (16)

The intuition behind the weights in WLS (16) is 1) to adjust
the difference between the occupancy measures of the be-
havior and evaluation policies, and 2) to increase the penalty
of the policy discrepancy term 1{⇡e(xt) = at}.

4.3. Other Properties of the MRDR Estimators

Strong Consistency Similar to the analysis in Thomas
& Brunskill (2016) for weighted DR, we prove (in Ap-
pendix F) that the MRDR estimators are strongly consistent,
i.e., limn!1 ⇢̂

⇡e
MRDR,n(�

⇤
n) = ⇢

⇡e almost surely. This im-
plies that MRDR is a well-posed OPE estimator.

Asymptotic Optimality The MRDR estimator, by con-
struction, has the lowest variance among the DR estimators
of the form (7). On the other hand, the semi-parametric
theory in multivariate regression (Robins et al., 1994) states
that without extra assumption on the data distribution, the
class of unbiased, consistent, and asymptotically normal

OPE estimators is asymptotically equivalent to the DR es-
timators in (7). Utilizing this result, we can show that the
MRDR estimators are asymptotically optimal (i.e., have
minimum variance) in this class of estimators.

MRDR Extensions Similar to Thomas & Brunskill
(2016), we can derive the weighted MRDR estimator by
replacing the IS part of the MRDR estimator in (7) with
(per-step) weighted importance sampling. This introduces
bias, but potentially reduces its variance, and thus, its MSE.

Throughout the paper, we assumed that the data has been
generated by a single behavior policy. We can extend our
MRDR results to the case that there are more than one
behavior policy by replacing the IS part of our estimator with
fused importance sampling (Peshkin & Shelton, 2002).

5. Experiments

In this section, we demonstrate the effectiveness of the pro-
posed MRDR estimation by comparing it with other state-
of-the art methods from Section 3 on both contextual bandit
and RL benchmark problems.

5.1. Contextual Bandit

Using the 9 benchmark experiments described in Dudı́k et al.
(2011), we evaluate the OPE algorithms using the standard
classification data-set from the UCI repository. Here we
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follow the same procedure of transforming a classification
data-set into a contextual bandit dataset. For the sake of
brevity, detailed descriptions of the experimental setup will
be deferred to the appendix.

Given a deterministic policy ⇡, which is a logistic regression
model trained by the classification data set, we discuss three
methods of transforming it into stochastic policies. The
first one, which is known as friendly softening, constructs a
stochastic policy with the following smoothing procedure:
Given two constants ↵ and �, and a uniform (continuous)
random variable u 2 [�0.5, 0.5]. For each a 2 {1, . . . , l},
whenever ⇡(x) = a, the stochastic policy ⇡↵,�(x) returns
a with probability ↵ + � ⇥ u, and it returns k, which is
a realization of the uniform (discrete) random variable in
{1, . . . , l} \ {a} with probability 1�(↵+�⇥u)

l�1 . The second
one, which is known as adversarial softening, constructs a
stochastic policy ⇡↵,�(x) from policy ⇡ in a similar fash-
ion. Whenever ⇡(x) = a, ⇡↵,�(x) returns k 6= a with
probability ↵+ � ⇥ u, and it returns k̃, which is a realiza-
tion of the uniform (discrete) random variable in {1, . . . , l}
with probability 1�(↵+�⇥u)

l . The third one, which is the
neutral policy, is a uniformly random policy. We will use
these methods to construct behavior and evaluation policies.
Table 1 summarizes their specifications.

Here we compare the MRDR method with the direct method
(DM), the importance sampling (IS) method and two doubly
robust (DR) estimators. The model parameter of the DM
estimator is obtained by solving the SAA of the following
problem: �DM 2 argmin�2R E(x,a)⇠P

⇡b
⇠
[(Q⇡e(x, a) �

bQ⇡e(x, a;�))2], which means all samples are weighted ac-
cording to data, without consideration of the visiting dis-
tribution induced by the evaluation policy. The model pa-
rameters of the DR estimator is optimized based on the DM
methodologies described in (2). Besides the standard DR
estimator we also include another alternative that is known
as DR0, which heuristically uses the model parameter from
the vanilla DM method (which is called DM0 and assigns
uniform weights over samples).

Below are results over the five behavior policies and
five algorithms on the benchmark datasets. Due to the
page limit, only the results of Vehicle, SatImage, PenDig-
its and Letter are included in the main paper, see Ap-
pendix G for the remaining results. We evaluate the accu-
racy of the estimation via root mean squares error (RMSE):qPN

j=1(⇢̂
⇡e
j � ⇢⇡e)2/N , where b⇢⇡e

j is the estimated value
from the j-th dataset. Furthermore, we perform a 95% sig-
nificance test only on MRDR and DR, with bold numbers
indicating the corresponding method outperforms its coun-
terpart significantly.

In the contextual bandit experiments, it is clear that in most
cases the proposed MRDR estimator is superior to all alter-

native estimators (statistical) significantly. Similar to the
results reported in Dudı́k et al. (2011), the DM method in-
curs much higher MSE than other methods in all of the
experiments. This is potentially due to the issue of high
bias in model estimation when the sample-size is small. In
general the estimation error is increasing across rows from
top to bottom. This is expected due to the increasing diffi-
culties in the OPE tasks that is accounted by the increasing
mis-matches between behavior and evaluation policies. Al-
though there are no theoretical justifications, in most cases
the performance of DR estimators (with the DM method
described in Section 3.1) is better than that of DR0. This
also illustrates the benefits of optimizing the model parame-
ter based on the knowledge of trajectory distribution P

⇡e
⇠ ,

which is generated by the evaluation policy.

Table 1. Behavior and Evaluation Policies
Policy ↵ �

Evaluation Policy 0.9 0

Behavior Policies

Friendly I 0.7 0.2
Friendly II 0.5 0.2

Neutral - -
Adversary I 0.3 0.2
Adversary II 0.5 0.2

Table 2. Vehicle
Behavior Policy DM IS DR MRDR DR0

Friendly I 0.3273 0.0347 0.0217 0.0202 0.0224

Friendly II 0.3499 0.0517 0.0331 0.0318 0.0356

Neutral 0.4384 0.087 0.0604 0.0549 0.0722

Adversary I 0.405 0.0937 0.0616 0.0516 0.0769

Adversary II 0.405 0.1131 0.0712 0.0602 0.0952

Table 3. SatImage
Behavior Policy DM IS DR MRDR DR0

Friendly I 0.2884 0.0128 0.0071 0.0063 0.0073

Friendly II 0.3328 0.0191 0.0107 0.0087 0.0119

Neutral 0.3848 0.0413 0.0246 0.0186 0.0335

Adversary I 0.3963 0.0459 0.027 0.0195 0.0383

Adversary II 0.4093 0.0591 0.0364 0.0262 0.0521

Table 4. PenDigits
Behavior Policy DM IS DR MRDR DR0

Friendly I 0.4014 0.0103 0.0056 0.0037 0.0059

Friendly II 0.4628 0.0159 0.0092 0.0056 0.0194

Neutral 0.564 0.0450 0.0314 0.0138 0.0412

Adversary I 0.5861 0.0503 0.0366 0.0172 0.0472

Adversary II 0.5641 0.0646 0.0444 0.0188 0.0611

Table 5. Letter
Behavior Policy DM IS DR MRDR DR0

Friendly I 0.392 0.0074 0.0056 0.0044 0.0057

Friendly II 0.4146 0.0102 0.0077 0.0054 0.0083

Neutral 0.4713 0.0467 0.0363 0.0315 0.0456

Adversary I 0.46 0.0587 0.0455 0.0385 0.0575

Adversary II 0.4728 0.0714 0.055 0.0481 0.0703
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5.2. Reinforcement Learning

In this section we present the experimental results of OPE
in reinforcement learning. We first test the OPE algorithms
on the standard domains ModelWin, ModelFail, and 4⇥ 4
Maze, with behavior and evaluation policies used in Thomas
& Brunskill (2016). The schematic diagram of the domains
is shown in Figure 1. To demonstrate the scalability of the
proposed OPE methods, we also test the OPE algorithms
on the following two domains with continuous state space:
Mountain Car and Cart Pole. To construct the stochastic be-
havior and evaluation policies, we first compute the optimal
policy using standard RL algorithms such as SARSA and
Q-learning. Then these policies are constructed by applying
friendly softening to the optimal policy with specific values
of (↵,�). For both domains, the evaluation policy is con-
structed using (↵,�) = (0.9, 0.05), and the behavior policy
is constructed analogously using (↵,�) = (0.8, 0.05). De-
tailed explanations of the experimental setups can be found
in Appendix G. In the following experiments we set the
discounting factor to be � = 1.

For both ModelFail and ModelWin domains, the number of
training trajectories is set to 64, for Maze, Mountain Car,
and Cart Pole domains this number is set to 1024. The
number of trajectories for sampling-based part of estimators
varies from 32 to 512 for the ModelWin, ModelFail, and
Cart Pole domains, and varies from 128 to 2048 for the
Maze and Mountain Car domains.

Figure 1. Environments from Thomas & Brunskill (2016). Top
left: ModelFail; Bottom left: ModelWin; Right: Maze

In all of the above experiments, we compare results of
MRDR with DM, IS, DR, and DR0 estimations by their
corresponding MSE values. Similarly, the bold numbers
represent cases when the performance of the MRDR esti-
mator is statistically significantly better than that of the DR
estimator. Similar to the contextual bandit setting, except
for the ModelWin domain that is known to be in favor of the
DM estimator (Thomas & Brunskill, 2016), in most cases
MRDR estimator has significantly lower MSE than the other
methods. Furthermore, when we increase the number of the
evaluation trajectories, the accuracy of all the estimators in
all the experiments is improved. Similar to the contextual
bandit setting, significant performance improvement can be
observed when one switches from DR0 to DR in the RL
experiments.

Table 6. ModelFail
Sample Size DM IS DR MRDR DR0

32 0.07152 1.37601 0.18461 0.1698 1.16084

64 0.07152 1.07213 0.1314 0.11405 0.9046

128 0.07152 0.752 0.09901 0.08188 0.63571

256 0.07152 0.55955 0.06565 0.05527 0.47211

512 0.07152 0.39533 0.04756 0.03819 0.33391

Table 7. Modelwin
Sample Size DM IS DR MRDR DR0

32 0.06182 0.78452 1.55244 1.46778 1.51858

64 0.06182 1.03207 1.13856 0.98433 1.40758

128 0.06182 0.90166 1.4195 1.27891 1.52634

256 0.06182 0.78507 1.03575 0.79849 1.10332

512 0.06182 0.55647 0.89655 0.66791 0.97128

Table 8. 4⇥ 4 Maze
Sample Size DM IS DR MRDR DR0

128 1.77598 6.68579 0.70465 0.57042 0.70969

256 1.77598 3.50346 0.69886 0.58871 0.70211

512 1.77598 2.64257 0.60124 0.58879 0.60338

1024 1.77598 1.45434 0.5201 0.4666 0.52148

2048 1.77598 0.89668 0.3932 0.31274 0.39425

Table 9. Mountain Car
Sample Size DM IS DR MRDR DR0

128 17.80368 23.11318 16.14661 14.96227 19.46953

256 14.62359 14.82684 13.89212 12.48327 22.80573

512 13.22012 8.26484 8.01421 7.89474 7.96849

1024 10.24318 3.26843 3.03239 3.1359 9.16269

2048 10.91577 2.50591 2.75933 2.17138 8.25527

Table 10. Cart Pole
Sample Size DM IS DR MRDR DR0

32 86.81935 70.58151 12.13028 16.45905 10.84913

64 87.00547 75.86198 14.82026 14.16847 15.69192

128 84.40824 77.38233 18.55218 15.38549 19.15905

256 83.31824 64.75034 9.96921 8.36612 9.36373

512 84.09259 65.72996 6.88534 4.60712 6.9962

6. Conclusions

In this paper, we proposed the class of more-robust doubly-
robust (MRDR) estimators for off-policy evaluation in RL.
In particular, we proposed a principled method to calculate
the model in DR estimator, which aims at minimizing its
variance. Furthermore, we showed that our estimator is con-
sistent and asymptotically optimal in the class of unbiased,
consistent and asymptotically normal estimators. Finally,
we demonstrated the effectiveness of our MRDR estimator
in bandits and RL benchmark problems.

Future work includes extending the MRDR estimator to the
cases 1) when there are multiple behavior policies, 2) when
the action set has a combinatorial structure, e.g., actions
are in the form of slates (Swaminathan et al., 2017), and 3)

when the behavior policy is unknown.



More Robust Doubly Robust Off-policy Evaluation

References

Bang, H. and Robins, J. Doubly robust estimation in missing
data and causal inference models. Biometrics, 61:962–
972, 2005.
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