Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator

A. Planning with a model

This section briefly reviews some parameterizations and solution methods for the classic LQR and related problems from
control theory.

Finite horizon LQR. First, consider the finite horizon case. The basic approach is to view it as a dynamic program with the
value function :ctTPtxt, where

P1=Q+A"PA—- ATP,B(R+ BTP,B)"'BTP,A,
which in turn gives the optimal control
Ut = —Kt;vt = —(R + BTPt+1B)_lBTPt+1AIEt,

(recursions run backward in time).

Another approach is to view the LQR problem as a linearly-constrained Quadratic Program in all z; and u; (where the
constraints are given by the dynamics, and the problem size equals the horizon). The QP is clearly a convex problem, but this
observation is not useful by itself as the problem size grows with the horizon, and naive use of quadratic programming scales
badly. However, the special structure due to the linearity of the dynamics allows for simplifications and a control-theoretic
interpretation as follows: the Lagrange multipliers in the QP can be interpreted as “co-state” variables, and they follow a
recursion that runs backwards in time known as the “adjoint system” dynamics. Using Lagrange duality, one can show that
this approach is equivalent to solving the Riccati recursion mentioned above.

Popular use of the LQR in control practice is often in the receding horizon LQR, (Camacho & Bordons, 2004; Rawlings &
Mayne, 2009): at time ¢, an input sequence is found that minimizes the T-step ahead LQR cost starting at the current time,
then only the first input in the sequence is used. The resulting static feedback gain converges to the infinite horizon optimal
solution as horizon 7" becomes longer.

Infinite horizon LQR. Here, the constrained optimization view (QP) is not informative as the problem is infinite dimen-
sional; however the dynamic programming viewpoint readily extends. Suppose the system A, B is controllable (which
guarantees the optimal cost is finite). It turns out that the value function and the optimal controller are static (i.e., do not
depend on t) and can be found by solving the Algebraic Riccati Equation (ARE) given in (1). The optimal K can then be
found from equation (2).

The main computational step is solving the ARE, which is extensively studied (e.g. (Lancaster & Rodman, 1995)). One
approach due to (Kleinman, 1968) (for continuous time) and (Hewer, 1971) (for discrete time) is to simply run the
recursion Py, 41 = Q+ AT PLA— AT P, B(R+ BT P, B) ' BT P, A where P; = (Q, which converges to the unique positive
semidefinite solution of the ARE (since the fixed-point iteration is contractive). Other approaches are direct and based
on linear algebra, which carry out an eigenvalue decomposition on a certain block matrix (called the Hamiltonian matrix)
followed by a matrix inversion (Lancaster & Rodman, 1995).

Direct computation of the control input has also been considered in the optimal control literature, e.g., gradient updates in
function spaces (Polak, 1973). For the linear quadratic setup, direct iterative computation of the feedback gain has been
examined in (Martensson & Rantzer, 2009), and explored further in (Martensson, 2012) with a view towards distributed
implementations. There methods are presented as local search heuristics without provable guarantees of reaching the optimal
policy.

SDP formulation. The LQR problem can also be expressed as a semidefinite program (SDP) with variable P, as given in
(Balakrishnan & Vandenberghe, 2003) (section 5, equation (34), this is for a continuous-time system but there are similar
discrete-time versions). This SDP can be derived by relaxing the equality in the Riccati equation to an inequality, then using
the Schur complement lemma to rewrite the resulting Riccati inequality as linear matrix inequality. The objective in the case
of LQR is the trace of the positive definite matrix variable, and the optimization problem (for the continuous time system) is
given as
maximize zl Pxg

ATP+PA+Q PB
BTP 1
where the optimization variable is P This SDP and its dual, and system-theoretic interpretations of its optimality conditions,
have been explored in (Balakrishnan & Vandenberghe, 2003). Note that while the optimal solution P* of this SDP is the

(10)

subject to >0, P>0,
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unique positive semidefinite solution to the Riccati equation, which in turn gives the optimal policy K*, other feasible P (not
equal to P*) do not necessarily correspond to a feasible, stabilizing policy K. This means that the feasible set of this SDP is
not a convex characterization of all P that correspond to stabilizing K. Thus it also implies that if one uses any optimization
algorithm that maintains iterates in the feasible set (e.g., interior point methods), no useful policy can be extracted from the
iterates before convergence to P*. For this reason, this convex formulation is not helpful for parametrizing the space of
policies K in a manner that supports the use of local search methods (those that directly lower the cost function of interest
as a function of policy K), which is the focus of this work.

B. Non-convexity of the set of stabilizing State Feedback Gains

In this section we prove Lemma 2. Let K(A, B) denote the set of state feedback gains K such that A — BK is stable, i.e.,
its eigenvalues are inside the unit circle in the complex plane. This set is generally nonconvex. A concise counterexample to
convexity is provided here. Let A and B be 3 x 3 identity matrices and

1 0 -10 1 =10 0
Ki=|-11 0 and Ky = 0 1 0
0 0 1 -1 0 1

Then the spectra of A — BK; and A — BK> are both concentrated at the origin, yet two of the eigenvalues of A — BK
with K = (K3 + K3)/2, are outside of the unit circle in the complex plane.

C. Analysis: the exact case

This section provides the analysis of the convergence rates of the (exact) gradient based methods. First, some helpful lemmas
for the analysis are provided.

Throughout, it is convenient to use the following definition:
Ex = (R+B"PxB)K — B PgA.
The policy gradient can then be written as:

VC(K)=2((R+B"PxkB)K — B'PxA) Xk = 2Ex Xk

C.1. Helper lemmas

Define the value Vi (), the state-action value Q i (x, u), and the advantage Ag (z,u). Vi (z,1) is the cost of the policy
starting with zo = = and proceeding with K onwards:

oo

Vi (z) = Z (2] Q¢ +u/ Ruy)

t=0
= .TJTPKl‘ .

Q k (z,u) is the cost of the policy starting with xy = x, taking action up = u and then proceeding with K onwards:
Qx(x,u) == 2" Qr +u' Ru+ Vi (Az + Bu)

The advantage A (z,u) is:

Ak (z,u) = Qr(x,u) — Vi (x).
The advantage can be viewed as the change in cost starting at state « and taking a one step deviation from the policy K.
The next lemma is identical to that in (Kakade & Langford, 2002; Kakade, 2003) for Markov decision processes.

Lemma 10. (Cost difference lemma) Suppose K and K' have finite costs. Let {x,} and {u}} be state and action sequences
generated by K', i.e. starting with x{, = x and using uy, = —K'z}. It holds that:

Vi (.1,‘) — VK(.’L‘) = ZAK(mga u;) .
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Also, for any x, the advantage is:

Ag(z,K'z) =22 (K' - K) Egaz 42" (K' — K)'(R+ B"PxB)(K' — K)z. a1

Proof. Let c; be the cost sequence generated by K. Telescoping the sum appropriately:

Vier(z) = V() = Y d— Vi(z)
t=0

= S0+ Vi) — Viela}) — Vie(a)

t=0
= > (ch + Vi (2}41) — Vie(x}))

t=0
= > Ax(@},up)
t=0
which completes the first claim (the third equality uses the fact that z = z9 = ).
For the second claim, observe that:
Vi(z)=2" (Q+ K "RK)z+2"(A— BK) Px(A— BK)z
And, foru = K'z,
Ag(z,u) = Qr(z,u) — Vi(x)
= 2" (Q+(K')'RK')z+ 2" (A— BK')" Px(A— BK')z — Vi(z)
= 2" (Q+ (K —-K+K)'RK' —K+K))z+
t'(A—BK — B(K' = K))"Px(A - BK — B(K' — K))z — Vi()
= 22 (K'-K)" (R+B"PxB)K — B"PxA)z +
t'(K'—K)"(R+ B"PxB)(K' — K))z,

which completes the proof. O

This lemma is helpful in proving that C'(K) is gradient dominated.
Lemma 11. (Gradient domination, Lemma 3 and Corollary 5 restated) Let K* be an optimal policy. Suppose K has finite
cost and pn > 0. It holds that:
C(K) — C(K*) < | S+ || Te(Ex (R + BT Pk B) ' Ek)
- I8k
o Umin(R)
[Zk-||
o Omin (EK)20min(R)

IS5 oo g™
< iy T (VC(K)TVC(K))

Tr(Ej Ex)

Tr(VCO(K)TVCO(K))

For a lower bound, it holds that:

C(K) - C(K*) > K

B e — N A )]

Proof. From Equation 11 and by completing the square,
Qx(z, K'z) — Vi ()
= 2Tr(zx' (K — K)"Eg) + Tr(za" (K' — K)T(R+ B" P B)(K' — K))
= Tr(zz" (K'- K+ (R+ BTPKB)*lEK)T (R+B'PxB) (K'— K+ (R+ B"PxkB) 'Ex))
—Tr(zz  E(R+ B' PxB) 'Ek)
—Tr(zz ER(R+ B'PxB) 'Ek) (12)

v
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with equality when K’ = K — (R + BT Px B) ' Ek.

Let x; and u; be the sequence generated under K. Using this and Lemma 10,

O(K)-C(K") = -EY Ax(zf,u))

IN

EY Tr(z;(x}) Eg(R+ B PxB) ' Ex)
t

Tr(Sx-E(R+ B Pk B) ' Fk)
||EK* ||TI‘(EI—E(R + BTPKB)ilEK)
ISk-[(R+ B' PxB)™"|| Tr(E Ex)
12k~
CTmin(-R)
(|2
Umin(R)
. e
o Umin(ZK)Qo'min (R)

[Zx-] T
() VO TVO(K)

IN A

IN

Tr(EfEx)

Tr(Z' VC(K)'VC(K)S )

Tr(VCO(K)'VCO(K))

<

which completes the proof of the upper bound. Here the last step is because X ¢ = E[zoz4 .

For the lower bound, consider K’ = K — (R + BT Py B)~! Ex where equality holds in Equation 12. Let x} and / be the
sequence generated under K. Using that C(K*) < C(K'),

C(K)-C(K") = C(K)-C(K')
= _EZAK(‘(E;U;&)
t
= EY Tr(zj(z}) Ej(R+ B PxB) 'Ek)
t
> Tr(XxEg(R+ B'PxB) 'Ek)
H T
> ————Tr(EgxFE
2 R+ B Prp] " FrER)
which completes the proof. O

Recall that a function f is said to be smooth (or C'-smooth) if for some finite 3, it satisfies:

17() — F0) = V)@ )l < S~y (13)

for all z, y (equivalently, it is smooth if the gradients of f are continuous).

Lemma 12. (“Almost” smoothness, Lemma 6 restated) C(K) satisfies:
C(K') - C(K) = —2Tx(Sr/(K — K') ' Eg) + Tr(Sx/ (K — K')T(R+ B" Px B)(K — K'))
To see why this is related to smoothness (e.g. compare to Equation 13), suppose K’ is sufficiently close to K so that:

Ygr~ Yk +O(|K - K'|) (14)

and the leading order term 2Tr(X g/ (K’ — K) T Ex ) would then behave as Tr((K’ — K)"VC(K)). The challenge in the
proof (for gradient descent) is quantifying the lower order terms in this argument.

Proof. The claim immediately results from Lemma 10, by using Equation 11 and taking an expectation. O



Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator

The next lemma spectral norm bounds on Py and X g are helpful:

Lemma 13. It holds that:

C(K)

C(K
I1Pal < S, il < (K)

Umin(Q)

Proof. For the first claim, C'(K) is lower bounded as:
C(K) = Epyopg Pxzo > || P ||omin(Ezoz )
Alternatively, C'(K') can be lower bounded as:
C(K) = Te(Sx (Q + K" RK)) 2 Tr(Sk)0min(@Q) 2 12k [|owmin(Q) 4

which proves the second claim. O

C.2. Gauss-Newton Analysis

The next lemma bounds the one step progress of Gauss-Newton.

Lemma 14. (Lemma 8 restated) Suppose that:
K' =K —n(R+ B"PxB)"'VCO(K)2!,.
Ifn <1, then

O(K") — O(K7) < (1 _ ”E”I‘j”) (C(K) — O(K™)

Proof. Observe K' = K — (R + BT PxB) "' Ex. Using Lemma 12 and the condition on 7,

C(K) = C(K) = —2Tx(SwEL(R+ BT PcB)"'Ex) + 1’ Tx(Sw B (R + BT Pic B) ' Ex)
< —nTr(Cx ER(R+ B'PxB) 'Ey)
< —omin(Sx)Tr(Ef (R + B PxB) ' Ek)
< —nuTr(EL(R+ BT PkB) 'Ek)
1 .
< —UT(C(K) - C(K)),
1Zk- ||
where the last step uses Lemma 11. O

With this lemma, the proof of the convergence rate of the Gauss Newton algorithm is immediate.

Proof. (of Theorem 7, Gauss-Newton case) The theorem is due to that = 1 leads to a contraction of 1 — % at every
step.

C.3. Natural Policy Gradient Descent Analysis

The next lemma bounds the one step progress of the natural policy gradient.
Lemma 15. Suppose:
K' = K —nVO(K)X!

and that n < It holds that:

1
|R+BT Pk B|"

CK") = (") < (1= na(B) 1 ) (CK) = C)
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Proof. Since K’ = K — nEk, Lemma 12 implies:
C(K') - O(K) = —20Tr(2x E Exc) + *Tr(Sx Efe (R + B Pk B)E)
The last term can be bounded as:

Tr(SgEf(R+ B PxkB)Ek) = Tr((R+ B' Px B)Ex X Ef;)
<||[R+ BT PxB||Tr(Ex Xk Ff)
=||R+ B PxB|Trx(Xx EfEx) .

Continuing and using the condition on 7,

C(K')-C(K) < —-2nTr(Sx/ELEx)+n?|R+ B PxB||Tr(Xx B Ex)
< —Tr(Cx ELExk)
< _namin(EK/)Tr(E[—EEK)
< —nuTr(Ef Ek)
MO min R *
< I o) o))
Xkl
using Lemma 11. O

With this lemma, the proof of the natural policy gradient convergence rate can be completed.

Proof. (of Theorem 7, natural policy gradient case) Using Lemma 13,

1 1 1
> > 3
IR+ BT P Bl — (1Bl + [BI?IPxll — | r| + LELEEE

The proof is completed by induction: C'(K7) < C(Kj), since Lemma 15 can be applied. The proof proceeds by arguing
that Lemma 15 can be applied at every step. If it were the case that C(K;) < C(K)), then

1 1 1
< < <
= |R| + EECED = gy IBECGE) = R+ BT Py, Bl

n

and by Lemma 15:

H Umin(R)
ISk ||R|| + [BIECEKD)
"

C(Kip1) - C(K7) < (1 )(C(Kt)C(K*))

which completes the proof. ]

C.4. Gradient Descent Analysis

As informally argued by Equation 14, the proof seeks to quantify how X g+ changes with . Then the proof bounds the one
step progress of gradient descent.

3k PERTURBATION ANALYSIS

This subsections aims to prove the following:
Lemma 16. (X perturbation) Suppose K' is such that:

Umin(Q)/”'
(F)IIB[ (I[A = BK[|+1)

K — K| <
IK' — Kl < 45

It holds that:
|K — K'|

C(K) > IB|| (]A - BK|| + 1)
)

Y — 2 <4
ISk — Skl < (amm@ -
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The proof proceeds by starting with a few technical lemmas. First, define a linear operator on symmetric matrices, 7 (-),
which can be viewed as a matrix on (d‘gl) dimensions. Define this operator on a symmetric matrix X as follows:

iA BEK)'X[(A— BK)T]!
t=0

Also define the induced norm of 7 as follows:

[T (X))l

[Tl = sup
x [IX]

where the supremum is over all symmetric matrices X (whose spectral norm is non-zero).

Also, define
Yo = Exoxzg

Lemma 17. (7x norm bound) It holds that
C(K)

Tl < ——~—
|| KH o ,Uo'min(Q)

Proof. For a unit norm vector v € R< and unit spectral norm matrix X,
o0
v (Te(X))v = Y v'(A-BK)'X[(A- BK) '

ST - BE) e (4 - BE)X)
t=0

= Y (5% (A - BK) e (A - BK)'sy* 2y Xz ?)

t=0

< Zﬂ [26*(A = BE)T'ow T (A4 = BE)'5?) 3 /2 X5

—1/2 —1/2
= 122X 2| (0T Tk (So)o)
1

< —Tk(®
e 517k (50)l

= )ikl
I

using that Tx (2¢) = X . The proof is completed using the upper bound on ||X || in Lemma 13.

Also, with respect to K, define another linear operator on symmetric matrices:

Fr(X)=(A—-BK)X(A—-BK)"

15)

Let I to denote the identity operator on the same space. Define the induced norm || - || of these operators as in Equation 15.

Note these operators are related to the operator 7T as follows:

Lemma 18. When (A — BK) has spectral radius smaller than 1,

Tk = (I — ‘/—"K)il

Proof. When (A — BK) has spectral radius smaller than 1, Tk is well defined and is the solution of Tx

Therefore Trc o (I — Fx) =Tand Tx = (I — Fg) 7!

=1+ 7Tk o Fk.

O



Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator

Since,
Y =T (Xo) = 1 - Fr) (Zo).

The proof of Lemma 16 seeks to bound:
Ik = Zxell = 1Tk = T ) (o)l = (A = Fr) ™ = T = Fr) 7 (S0l

The following two perturbation bounds are helpful in this.
Lemma 19. It holds that:

1P — Frerll < 2| A= BKJ|| BI[| K — K'|| + |B|*|l £ — K||*.

Proof. Let A = K — K'. For every matrix X,
(Fx — Fr/)(X) = (A— BK)X(BA)" + (BA)X(A— BK)" — (BA)X(BA)T.

The operator norm of Fx — Fx- is the maximum possible ratio in spectral norm of (Fx — Fk+)(X) and X. Then the
claim follows because ||AX| < [|A|||| X]|- O

Lemma 20. If
[Tr [ Fre = Frell <1/2,

then

| (T = Txr) (2)]] 2| Tk 1 Frx — Fre ||| T (2)]]-

2| Tx 1P| Fre — Frcr ||Z])-

INIA

Proof. Define A =1— Fg,and B = Fg' — Fg. In this case A~! = T and (A — B)~! = Tx. Hence, the condition
I Tx | Fx — Fr|| < 1/2 translates to the condition ||A~|[|B]| < 1/2.

Observe:
AT =A=-B)HE) =1-1-AToB) AT (E) =1~ (I-AoB) ) (Tx(X)).
Since I- At oB) =1+ A oBo(I-AoB),
A=A oB) | <1+ AT o Bl|[I- AT o B) Y < 1+1/2[(I- AT o B)!
which implies ||(I —.A~! o B)~!|| < 2. Hence,
M= (I-AteB) Y =[A T oBo(I-AoB) | < AT BT - A" o B)~ | = 2[A7|B].

and so
M- (I—A"oB) | <2 A~ YIBIl = 2| Tkl Fx — Frrl -

Combining these two,

I (Tie = Tier) D) < [T = T = AT o By O[T (D) < 20Tk |1Fx — Frellll T (D)]I-

This proves the main inequality. The last step of the inequality is just applying definition of the norm of Tx: || Tk (X)]| <
[T NI O

With these Lemmas, the proof is completed as follows:
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Proof. (of Lemma 16) First, the proof shows || Tx ||| Fx — Fx-|| < 1/2, which is the desired condition in Lemma 20. First,
observe that under the assumed condition on ||K — K||, implies that

Umin(Q)M < lamin(Q),U/
(K) (A= BK|+1) = 4 C(K)

B||IIK'— K| < <
18]/ I's 77 <

1
4
using that %ﬁg)” < 1 due to Lemma 13. Using Lemma 19,

1Fec = Freoll < (2014 = BBl = K'[| + || BII*| K — K'|[*)
<2|B[(IA-BK| +1)[IK - K’ (16)

Using this and Lemma 17,

C(K) 1
1Tl Fx = Frell < —==2|B|| (|A - BK|| + 1) |[K - K'|| < 5
O—mln(Q):U/ 2
where the last step uses the condition on | K — K’||.
Thus,
1k = Skl < 20T M1 Fxe = Frer [T (Zo) |
C(K) C(K)
<2— = QB[ (|A-BK|+ 1) |K - K'||) ——==
Tmin(Q) 1 Omin(Q)
using Lemmas 13 and 19. O
GRADIENT DESCENT PROGRESS
Equipped with these lemmas, the one step progress of gradient descent can be bounded.
Lemma 21. Suppose that
K' =K -nVC(K),
where )
min 1 min
0 < = min (0 (Q)u) 7 o (Q)T . (7
16 C(K) IBII[[VC(K)|[(1+ |A—BK|) " 2C(K)||R+ B Pk B|
It holds that:

2

CK") = (") < (1= noa(B) b ) (CLK) = C)

Proof. By Lemma 12,

C(K') — C(K)
—Tr(Cx Yk ERFr) + *Tr(Sx 2k Sk Ef (R + BT Pk B)Eg)

< TSk ExExSk) + 20|Sk — Sk | Tr(Sx Ex Ek)
+102||2k |[|R + BT P B|Tr(Xx Xk Ef Exc)
Y — %
< —UTr(SkELExSk) + QnMTr(zKE}EKzK)
Umin(ZK)
+102 |2k |[|R + BT Pk B|Tr(Sx Ejr Ex X k)
Y — %
= —om(1- P = 2l Disw IR + BT Py B|| ) To(VC(K)TVO(K))
Umin(EK) 2
2O'i R Y — 2% %
< —pgtglD (1 BBy ik 4 57 ReBI ) (C0) - Cl00)
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where the last step uses Lemma 11.
By Lemma 16,

ISk — Skl C(K)
S < (U(Q)u) IB (|4 — BE| + 1)) |[VC(K)|| < 1/4

using the assumed condition on 7.
Using this last claim and Lemma 13,

) _|Ewl, CK)
Umin(Q) 4 Umin(Q)

125l < 12k = Sxell + 125 < 5 +

4C(K)

30'min(Q

[ — Zk|
w

using the condition on 7).

and so || Zx/| <

3 Hence,

4C0(K
gHZK’HHR-F B'PxB||>1-1/4— Q#\\RjLBTPKBH >1/2

1= 2 3Umin (Q)

In order to prove a gradient descent convergence rate, the following bounds are helpful:
Lemma 22. It holds that

IVC(E)| <

C(K) ¢ IR + BT P B||(C(K) — C(K*))
Umin(Q) M

and that:

1K < ! B BT Peal

min

1 \/||R+BTPKB||(C(K) —O(K
(R)

Proof. Using Lemma 13,

VORI < ToEx B Ex i) < [0 PTER Er) < (oo ) TH(ER B

Umin(Q
By Lemma 11,

< IR+ BT Px B||(C(K) — C(K*))

Tr(Eg Ex) "

which proves the first claim.

Again using Lemma 11,

IK| < |(R+ B"PxB)"'|[|(R+B' Pk B)K|
1
< ———|(R+B"PxkB)K
< (Bt BTPBIK]
1
S O (R) (ll(R+BTPKB)K_BTPKA“+||BTPKA||)
_ Bkl BT Pk A
Umin(R) Umin(R)
B Tr(EfEx) ||BT PgA|
o Jmin(R) Umin(R)
_ V(C(K) - C(K"))|R+ BT Pk B L+ | BT Px Al
\/ﬁamin(R) Umin(R)

which proves the second claim.
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With these lemmas, the proof of the gradient descent convergence rate follows:

Proof. (of Theorem 7, gradient descent case) First, the following argues that progress is made at ¢ = 1. Based on Lemma 13

and Lemma 22, by choosing 7 to be an appropriate polynomial in m, m, m, ”%2”, Omin(R), omin(Q) and p, the

stepsize condition in Equation 17 is satisfied. Hence, by Lemma 21,

2

C(1) ~ O*) < (1= nomal R L) (CUa) = O

which implies that the cost decreases at ¢ = 1. Proceeding inductively, now suppose that C'(K;) < C(Kj), then the
stepsize condition in Equation 17 is still satisfied (due to the use of C'(Kj) in bounding the quantities in Lemma 22). Thus,
Lemma 21 can again be applied for the update at time ¢ 4 1 to obtain:

2
Clliesn) = () = (1= nowa (R ) (O = ).

[
Provided
ISl C(Ko) — O
— 2 Og 9
N? Omin (1) €
then C(Kr) — C(K*) < ¢, and the result follows. O

D. Analysis: the Model-free case

This section shows how techniques from zeroth order optimization allow the algorithm to run in the model-free setting with
only black-box access to a simulator. The dependencies on various parameters are not optimized, and the notation h is
used to represent different polynomial factors in the relevant factors (%, AL B 1R, 1/ omin(R)). When the
polynomial also depend on dimension d or accuracy 1/e, this is specified as parameters (h(d, 1/¢)).

The section starts by showing how the infinite horizon can be approximated with a finite horizon.

D.1. Approximating C'(K) and X ;- with finite horizon

This section shows that as long as there is an upper bound on C(K), it is possible to approximate both C'(K') and ¥(K)
with any desired accuracy.

Lemma 23. For any K with finite C(K), let E%) = E[Zf;é zix) | and CO(K) = E[Ef;é z} Qr; + u; Ru;] =
(=W, Q+ KTRK). If
d-C*(K)

(> =
5/1072,”‘”(@)

then | SV — S| < e. Also, if
o d-C2E)(IQI+ IRIIKP)

14
o euo'?nin (Q)

then C(K) > CY(K) > C(K) —e.

Proof. First, the bound on X g is proved. Define the operators Tx and Fx as in Section C.4, observe X = T (3g) and
2% =Sk — (Fr)(=
% k — (Fk) (Ek).

If X =Y, then Fx(X) = Fx(Y), this follows immediately from the form of F (X) = (A+ BK)X(A+ BK)". If X
is PSD then W X W T is also PSD for any V.

Now, since

-1 -1 -

Ztr(}"‘Z(EO)) - tr(z Fi(20)) < tr(z F(S0)) = tr(Sk) < icg
=0 =0 =0 min
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(Here the last step is by Lemma 13), and all traces are nonnegative, then there must exists 7 < £ such that tr(]-'f‘((Eo)) <
d-C(K)

éo’?nin(Q) :
. C(K)
Also, since X < T (o)) >0,
, C(K) 4 d- C2(K)
tr(Fle (k) < ——————tr(Fr(Xo)) < ———+=.
K ,U/Umzn(Q) K 0 ‘gﬂogmn(Q)
Therefore as long as
dC*(K
0> #
El”Lamin(Q)

it follows that: _ '
ISk — =2 < 1=k — 22| = |FL(Ex)]| < e

Here the first step is again because of all the terms are PSD, so using more terms is always better. The last step follows
because Fj; (X ) is also a PSD matrix so the spectral norm is bounded by trace. In fact, it holds that tr(Xx — E%)) is
smaller than e.

Next, observe CO)(K) = (E%), Q+ K"RK) and C(K) = (Xk,Q + K" RK), therefore
C(K) = CO(K) < (S = S (IQI + [ RIIK?).

Therefore if
S d-C2E) QI+ IRIIKP)

B 6#‘772nm (Q) ’

then tr(Xx — E%)) < ¢/(IQ]l + | R|I|IK||?) and hence C(K) — CY)(K) < .

14

D.2. Perturbation of C(K') and VC(K)

The next lemma show that the function value and its gradient are approximate preserved if a small perturbation to the policy
K is applied.

Lemma 24. (C perturbation) Suppose K' is such that:

r . O'min(Q)/J
1% K<ml“<4c<K>||B<||A—BK||+1>’K)
then:
C(K") — O(K)|
, [ CE) ,
< 6|K|| 1R Elzo] (M@)) (KNIBIIA - BE] + KB + 1) |K - K|

Proof. As in the proof of Lemma 19, the assumption implies that | Tk ||| Fx — Fk|| < 1/2, and, from Equation 16, that
IFx = Frell < 2Bl (|A = BK|| + 1) |[K — K'||
First, observe:

C(K') - C(K)

IN

Tr(Exoz) )| Tie (@ + (K') ' RK') — T (Q + K" RE) |
Ellzol*|| Tk (Q + (K') T RK') = T (Q + K RK)||
= Elxol*| Pxr — Pll-
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To bound the difference we just need to bound || Px+ — Py||. For that we have

PK/ — PK
1T (Q+ (K")TRK') — T (Q + KT RK)|

< [Tk (Q+ (K')TRK') = Tie(Q + (K') T RK')
—(Tk(@+ K"RK) — Tx(Q + (K') T RK")) |
= |Tx(Q+ (K')"RK') = T (Q + (K'Y TRK") — T o (K" RK — (K') T RK")||
< 2T lPIIFx — Frollll(K)TRE| + | Tee ||| KT RK — (K') T RK')||
< 2||TklPIIFx — Froll (I(K')TRK') = KTRK| + | KT RK)]))
+| Tk l|KTRK — (K')TRK")||
< |Tklll(K")"RK') — K" RK|| + 2| Tk ||*| Fx — Fr || K T RK||

HITx | KT RE — (K')T RE)]|
= 2TxllI(K")"RK') — KT RK|| + 2||Tx|*|Fx — Fr | KT RE]|

For the first term,

2|k |I(K") " RE") = KT RK| < 2||Tx|| UK RINE" — K|l + | BI|| K" — K1)
<2/ Tl GIE(IRIIK" - K])

using the assumption that || K’ — K|| < || K||. For the second term,
2| T |I?I1Fx — Fro [l KT RE| < 2I|Tx||* 2]| Bl (I|A — BE|| + 1) || K — K'|| || K[| R
Combining the two terms completes the proof.

The next lemma shows the gradient is also stable after perturbation.

Lemma 25. (VCy perturbation) Suppose K' is such that:

K' — K|| < min Tmin (@)1 K )
1K= Kl < QCMWBGM—BKwﬂw

then there is a polynomial hgyqq in %, Elllzoll®], |4, | B, | R|

IVC(K') = VO(K)| < hgraal K" = K.

1
y m such that

Also,
IVC(K') = VC(K)|F < hgradl K" — K[|

Proof. Recall VO(K) = 2Ex Y ir where Exx = (R + BT PxB)K — BT Px A. Therefore

Let’s first look at the second term. By Lemma 11,

Tr(ELEx) < IR+ B' PgB||(C(K) — C(K*))
< ; 7

then by Lemma 16

aK>Ynmmm—BKw4HK_KW

Y — Xkl <4
|| K KH o (O'min(Q) 19

Therefore the second term is bounded by

8( C(K) )2 (IR + BT Pk B||(C(K) — C(K")| Bl (1A = BK| +1)

K- K'|.
-0 2 I I
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Next we bound the first term. Since K’ — K is small enough, ||k || < ||Zk| + Uc_cliég).
For Ex+ — E, we first need a bound on Px+ — Pk . By the previous lemma,
CE) \* 2 C(K) :
Pk — Pr| =6 () K[ [IRIIBI (A= BK[| +1) + { — = ) IK[[IIR] | |1 K — K.
K [ Omin(Q) 1 Tmin(Q)

Therefore
Ejy —Ex = R(K' — K) + B" (Pg/ — Px)A+ B" (Pg: — Px)BK' + B Pk B(K' — K).

Since | K’|| < 2|| K|, and || K|| can be bounded by C(K) (Lemma 22), all the terms can be bounded by polynomials of
related parameters multiplied by ||K — K||. O
D.3. Smoothing and the gradient descent analysis

This section analyzes the smoothing procedure and completes the proof of gradient descent. Although Gaussian smoothing
is more standard, the objective C'(K') is not finite for every K, therefore technically E,,r(0,o21)[C (K + )] is not well
defined. This is avoidable by smoothing in a ball.

Let S, represent the uniform distribution over the points with norm 7 (boundary of a sphere), and B, represent the uniform
distribution over all points with norm at most r (the entire sphere). When applying these sets to matrix a U, the Frobenius
norm ball is used. The algorithm performs gradient descent on the following function

Cr(K) = Eyup, [C(K + U)].

The next lemma uses the standard technique (e.g. in (Flaxman et al., 2005)) to show that the gradient of C,.(K') can be
estimated just with an oracle for function value.

Lemma 26. VC,(K) = 4Ey.s, [C(K + U)U].

This is the same as Lemma 2.1 in Flaxman et al. (2005), for completeness the proof is provided below.

Proof. By Stokes formula,

v/ cx+u) dx—/ C(k +U)-2
5B, U ||F
By definition,
C(K+U)dz
CT(K):IMBT ( ) ,
voly(6B,.)
Also,

(K+U
Eyes, [C(K +U)U] = rEy~s, [C(K +U )g] = Jos: vold:( ) )U

The Lemma follows from combining these equations, and use the fact that

voly(0B,.) = voly—1(4S,.) -

&.\‘3

O

From the lemma above and standard concentration inequalities, it is immediate that it suffices to use a polynomial number
of samples to approximate the gradient.
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Lemma 27. Given an ¢, there are fixed polynomials hy(1/€), hsampie(d, 1/€) such that when r < 1/h.(1/¢€), with
m > hsampie(d, 1/€) samples of Uy, ..., U,, ~ S, with high probability (at least 1 — (d/€)~9) the average

N R d
is € close to VC(K) in Frobenius norm.

Further, if for © ~ D, |z < L almost surely, there are polynomials hegrada(d,1/€), hytrunc(1/€),
hsample,trunc(da 1/67 g, LQ/M) such that when m Z hsample,trunc(da 1/67 LQ//J/): l Z h&grad(d / ) let .T],’U,j (0 S
j < ¥) be a single path sampled using K + U, then the average

%Z%Z ) Qah + (uh) T RubU;

7=0

is also ¢ close to VC(K) in Frobenius norm with high probability.

Proof. For the first part, the difference is broken into two terms:
V —VC(K) = (VC.(K) — VC(K)) + (V — VC.(K)).

For the first term, choose h,(1/€¢) = min{1/rg,2hgrqq/€} (ro is chosen later). By Lemma 25 when r is smaller than
1/h,(1/€) = €/2hgrqq, every point u on the sphere have ||VC(K + U) — VCO(K)||r < ¢/4. Since VC,(K) is the
expectation of VC(K + U), by triangle inequality ||VC,(K) — VC(K)|r < €/2.

The proof also makes sure that » < r( such that for any U ~ S,., it holds that C(K + U) < 2C(K). By Lemma 24, 1 /rg is
a polynomial in the relevant factors.

For the second term, by Lemma 26, E[V] = VC,.(K), and each individual sample has norm bounded by 2dC/(K)/r, so by
2

Vector Bernstein’s Inequality, know with m > Aggmpie(d, 1/€) = © (d (% ) logd/ e) samples, with high probability

(atleast 1 — (d/e)~%) |V — E[V]||r < ¢/2.

Adding these two terms and apply triangle inequality gives the result.

For the second part, the proof breaks it into more terms. Let V' be equal to = > LOU(K + U;)U; (where C) is
defined as in Lemma 23), then

The third term is just what was bounded earlier, by choosing h, irunc(l/€) = h.(2/¢) and making sure
hsampie,trunc(d, 1/€) > hsampie(d, 2/€), we guarantees that it is smaller than /2.

For the second term, choose ¢ > 16d”. CQ(K)(\LQHJrH)RHHKH ) : hg,grad(d,1/€). By Lemma 23, for any K’ with C'(K’) <

€T i

2C(K), it holds that ||C¥) (K') — C(K")|| < 5. Therefore by triangle inequality

m

IILZ 4ok + U Z C(K + U)Ui|| < ¢/4.

Finally for the first term it is easy to see that IEW] = V'’ where the expectation is taken over the randomness of the initial
. . . . . 2
states zf. Since ||zf|| < L, (zf)(z}) T = £-E[zozg ], as a result the sum

-1 2

3@ TQu + (i) Rul] < LMC(K+UZ-).

Jj=0

Therefore, V — V' is again a sum of independent vectors with bounded norm, so by Vector Bernstein’s inequality, when
hsampie,trunc(d, 1/€, L? /) is a large enough polynomial, |V — V’|| < €/4 with high probability. Adding all the terms
finishes the proof. O
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Theorem 28. There are fixed polynomials hgp,-(1/€), hap sampie(dy 1/€, L? /1), hap.e(d, 1/€) such that if every step
the gradient is computed as Lemma 27 (truncated at step {), pick step size ) and T the same as the gradient descent case of
Theorem 7, it holds that C(Kr) — C(K*) < e with high probability (at least 1 — exp(—d)).

Proof. By Lemma 21, when 7 < 1/hgp,, for some fixed polynomial hap,,(given in Lemma 21), then
2

Cr") ~ O) < (1= noma(R) ) (COF) = ()

Let V be the approximate gradient computed, and let K" = K — 77@ be the iterate that uses the approximate gradient. The
proof shows given enough samples, the gradient can be estimated with enough accuracy that makes sure
12

\C(Kﬁ) C(K )| > 2770mm( )HZT

This means as long as C(K) — C(K™*) > e, it holds that

2

C(K") — O(K*) < (1 - ;namm(R)H;K*”) (C(K) — C(K™Y)).

Then the same proof of Theorem 7 gives the convergence guarantee.

Now C(K")— C(K') is bounded. By Lemma 24, if || K" — K'|| < namm(R) HEm o€ 1/h rune (B punc is the polynomial

in Lemma 24), then C'(K") — C'(K") is small enough. To get that, observe K" — K’ = n(V — V), therefore it suffices to
make sure )
W

-1
IV =V < 5 omin(R) 7
2 (125l

€ 1/hfunc

By Lemma 25, it suffices to pick hgp,r(1/€) = hrtrunc(2R func || k- /(W20 min(R)€)), hap sample(d, 1/€, L?/u) =
hsample trunc(d thunc”ZK*H/(,U/ 0mzn< ) ) L /M) and hGD Z(d 1/6) - hZ grad(d 2hfunc||ZK* /(,U/ Umzn( ) )
This gives the desired upper-bound on ||V — V|| with high probability (at least 1 — (e/d) =%

Since the number of steps is a polynomial, by union bound with high probability (at least 1 — T'(¢/d)~¢ > 1 — exp(—d))
the gradient is accurate enough for all the steps, so

2

C(K") — C(K*) < (1 - ;namm(R)”;K*”) (C(K) — C(K*)).

The rest of the proof is the same as Theorem 7. Note that in the smoothing, because the function value is monotonically
decreasing and the choice of radius, all the function value encountered is bounded by 2C(Kj), so the polynomials are
indeed bounded throughout the algorithm. O

D.4. The natural gradient analysis

Before the Theorem for natural gradient is proven, the following lemma shows the variance can be estimated accurately.

Lemma 29. If for there exists polynomials hy yar(1/€), Ruarsample,trune(d; 1/€, L? /1)
and hyg yar(d, 1/€) such that iffJK is estimated using at least m > Ryarsample trunc(d, 1/€, L? /) initial points z}, ..., 27,
m random perturbations U; ~ S, where r < 1/h, yar(1/€), all of these initial points are simulated using K;=K+U, to
0 > hyvar(d, 1/€) iterations, then with high probability (at least 1 — (d/€)~?) the following estimate

satisfies | — Sk || < e. Further, when € < j1/2, it holds that o pmin(Sx) > 11/2.
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Proof. This is broken into three terms: let E(I? be defined as in Lemma 23, let & = % S Yk4yv, and 0 —
Lym 5%, 4., then it holds that

S Sk = (E-50) £ (£0 £+ (5-Tx).

First, r is chosen small enough so that C'(K + U;) < 2C(K). This only requires an inverse polynomial r by Lemma 24.

For the first term, note that E[Y] = () where the expectation is taken over the initial points 2. Since ||z}| < L,
. . 2
(x5)(xh) T = L-E[zozg ], and as a result the sum

-1 9

oo L
> wh(#5) Q% —Skv,.
i=0 .
Therefore, standard concentration bounds show that when hyqrsample,trunc 15 a large enough polynomial, PO 3 | <e/2
holds with high probability.
For the second term, Lemma 23 is applied. Because C'(K + U;) < 2C(K), choosing £ > hy yer(d, 1/€) = %, the

error introduced by truncation ||32() — 3| is then bounded by /4.

anix](Q))2 w
C(K) 16| BII([A-BK]||+1)°

the average of X, 17, by the triangle inequality, |2 — S || < /4.

Skiv, — k| < €/4. Since ¥ is

For the third term, Lemma 16 is applied. When r < € - (

Adding these three terms gives the result.

Finally, the bound on Jmm(f] i ) follows simply from Weyl’s Theorem. O
Theorem 30. Suppose C(Ky) is finite and and p > 0. The natural gradient follows the update rule:

K1 = Ky —nVC (KX,
Suppose the stepsize is set to be:

1
n= 2
|1 B]I?C (¥o)
BRI+ ==

If the gradient and variance are estimated as in Lemma 27, Lemma 29 with v = 1/hngp,(1/€), with m >
hNGD,sampie(d, 1/€, L2 /1) samples, both are truncated to hygp (d,1/€) iterations, then with high probability (at
least 1 — exp(—d)) in T iterations where

( IR IIBQC(K0)> log 2(C(Fo) = C(K™))
O min (R) MO min (R)

e
>||K
I

T
then the natural gradient satisfies the following performance bound:
C(Kr)—-C(K")<e
Proof. By Lemma 15,

C(K’) _ O(K*) < (1 _namin(R)HZ'l;(*> (C(K) _ C(K*))

Let V be the estimated gradient, » x be the estimated Y, and let K" = K — 77@2}(_1. The proof shows that when both
the gradient and the covariance matrix are estimated accurately enough, then

I

710 min (R)

€
2
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This implies when C(K) — C(K*) > e,
! * 1 *
o) = 0") < (1= grmmn(B ) (ct0) - e
2 [Pyl
which is sufficient for the proof.

By Lemma 24, if | K" — K'|| <
suffices to have

thum MO min(R) ”E T the desired bound on |C(K') — C(K")| holds. To achieve this, it

(R)—L

IV - VOK)Z | < M
125~

€
— O
thunc min

This is broken into two terms

IVER! = VOE)SE | < IV = VIIEL ] + IVCE)IZE" - =K.

For the first term, by Lemma 29 we know when the number of samples is large enough ||X!|| < 2/pu. Therefore it

suffices to make sure H@ -V < crmm(R)ﬁ, this can be done by Lemma 27 by setting hxap,grad,r(1/€) =

__€
8hfunc
Shfu,nCHE*KH )
H2U7nin(R)€ >

2 8h H2 H
hNGD,gradsample<d7 1/67 L/M ) = hsample,trunc(d func K L/M ) and

P pu2omin(

hr,trunc(

hNGD,E,grad(da ]-/6) = h@,grad(d 8hfL”EI;(H)

? w20 min(R)e /"
For the second term, it suffices to make sure |X5' — Y| < ﬁamin(}{)m By standard ma-
trix perturbation, if 0pin(Xx) > pand |[Sx — Skl < /2, |25 — S < 212k — Skl|/p?. Therefore by

8 unc| i [ VU |
N30'7nin(R)€

Lemma 29 it suffices to choose hNGD,var,'r‘(l/E) = hvar,r( )’ hNGD,va'r'sample(dv 1/€a L/:u ) =

8h func||Zr* ||| VC (K 2 8h func||Z = ||[|VC(K
hvarsample,trunc(d; z ;Lli‘llaf;n”(”R)e ( )HyL/,u ) and hNGD,E,var(dv 1/6) = h@,var(da L u!a::m”(”R)e Ol ) This is in-

deed a polynomial because ||VC(K)|| is bounded by Lemma 22.

FinaHYy choose hNGDm = maX{hNGD,grad,r7 hNGD,var,r}’
hNGD,sample = maX{hNGDﬁgradsamplevhNGDmaTsample}’ and hNGD,Z = maX{hNGD,Z,gTadahNGDJ,var}- This en-
sures all the bounds mentioned above hold and that

o) - (") < (1= gummn(B) ) (ct0) - )

The rest of the proof is the same as Theorem 7. Note again that in the smoothing, because the function value is monotonically
decreasing and the choice of radius, all the function values encountered are bounded by 2C(Kj), so the polynomials are
indeed bounded throughout the algorithm. O

D.5. Standard Matrix Perturbation and Concentrations

In the previous sections, we used several standard tools in matrix perturbation and concentration, which we summarize here.
The matrix perturbation theorems can be found in Stewart & Sun (1990). Matrix concentration bounds can be found in
Tropp (2012)

Theorem 31 (Weyl’s Theorem). Suppose B = A + E, then the singular values of B are within || E|| to the corresponding
singular values of A. In particular ||B|| < |A|| + || E| and 0 pin(B) > omin(A) — ||E|.

Theorem 32 (Perturbation of Inverse). Let B = A + E, suppose ||E|| < 0min(A)/2 then |B~1 — A7 < 2|4 —
B||/omin(A).

Theorem 33 (Matrix Bernstein). Suppose A= Zi /L;, where /L are independent random matrices of dimension dy X dg
(letd = dy +da). Let E[A] = A, the variance My = E[Y"; A; AT, My = E[Y", A A]. If 0* = max{|| M|, || M
i A | < R with probability 1, then with high probability

|A — A|| < O(Rlogd + /o2 logd).




Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator

Convergence of the Gradient Descent for LQR with Gradient Oracle

0 20 40 60 80 100
Iterations

Figure 1. Simulation results with Gradient Descent*

In our proof we often treat a matrix as a vector and look at its Frobenius norm, in these cases we use the following corollary:

Theorem 34 (Vector Bernstein). Suppose & = ), a;, where ; are independent random vector of dimension d. Let E[a] = a,
the variance o* = E[Y_, ||a;||?]. If every G; has norm ||a;|| < R with probability 1, then with high probability

la — a|l < O(Rlogd+ +/o?logd).

E. Simulation Results

Here we give simulations for the gradient descent algorithm (with backtracking step size) to show that the algorithm indeed
converges within reasonable time in practice. In this experiment, z € R'%? and v € R?°. We use random matrices A, B.
The scaling of A is chosen so that A is stabilizing with high probability (Ay,q.(A) < 1). We initialize the solution at
Ky = 0, which ensures C(K)) is finite because A is stabilizing. The distribution of the initial point xq is the unit cube. We
computed the gradient using Lemma 1. See Figure 1 for the result. Although the example uses the exact gradient for the
each iterative step, it provides a glimpse into the potential use of first order methods and their variants for direct feedback
gain update in LQR.



